TONALITA DE SAN MARTÍN

»Cordillera Oriental Departamento de Santander

Gabriel Rodríguez, Gilberto Zapata, Ana María Correa Martínez y María Isabel Arango

Catálogo de las unidades litoestratigráficas de Colombia / Jurásico

Citación: Rodríguez, G., Zapata, G., Correa Martínez, A. M. y Arango, M. I. (2020). Tonalita de San Martín. En *Catálogos de las unidades litoestratigráficas de Colombia: Macizo de Santander.* Vol. 1. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585279445.6 La actividad magmática del periodo Triásico-Jurásico en el Macizo de Santander está evidenciada por el emplazamiento de plutones graníticos, así como de cuerpos hipoabisales y volcánicos riolítico-riodacíticos, con dirección preferencial N-S a NW-SE que concuerda con el rumbo de las fallas regionales, principalmente la falla de Bucaramanga, que marcan la tectónica del Macizo de Santander y delimitan las diferentes unidades.

La intrusión de la Tonalita de San Martín, clasificada como "tonalita" por Arias y Vargas (1978), es uno de esos cuerpos, producto de la actividad magmática del Triásico-Jurásico.

En el *Catálogo de la Tonalita de San Martín* se incluyen los análisis petrográficos, químicos y las edades radiométricas U/Pb de este plutón. Con este trabajo se pretende hacer un aporte al desarrollo del conocimiento geológico del país.

1. Proponente del nombre

Cuerpo ígneo descrito por Arias y Vargas (1978) en la memoria de la plancha 86, Ábrego, quienes le dieron el nombre informal de *tonalita*, debido a que en su composición participa principalmente este tipo de roca. Estos autores, además, en esta denominación incluyeron dos intrusivos de tamaño *stock*. En este trabajo, los autores proponemos el nombre de *Tonalita de San Martín*.

2. Origen del nombre y distribución geográfica

El componente geográfico del nombre de la unidad *Tonalita de San Martín* proviene del municipio de San Martín, situado en el sur del departamento del Cesar. Fue descrito inicialmente por Arias y Vargas (1978) en la memoria de la plancha 86, Ábrego, con el nombre informal de *tonalita*.

En este catálogo se propone el nombre de *Tonalita de San Martín*, considerando la definición original dada por Arias y Vargas (1978) de *tonalita*. La composición del plutón es variable, presenta tonalitas, granodioritas y monzogranitos en proporciones similares, sin que se presente una litología predominante. El nombre de San Martín proviene del municipio donde aflora el intrusivo, y se ciñe a las recomendaciones de la International Subcommission on Stratigraphic Classification of IUGS (1987, 1994).

La unidad se encuentra cartografiada en el mapa geológico de la plancha 86, Ábrego (Vargas y Arias, 1981), donde presentan dos *stocks* con la denominación "tonalitas". En el presente estudio se nombra como *Tonalita de San Martín* el plutón que aflora en el borde occidental de la cordillera Oriental y que tiene forma alargada de tendencia NNW-SSE, con un área aproximada de 45,5 km²; 31 km de largo y 2 km de ancho, en promedio (figura 1), ubicado a lo largo de la región noroccidental de la plancha 86 (Ábrego), drenado por las quebradas Torcoroma, en su parte sur; La Rayita, en su parte central, y Torcoromita, en su parte norte.

3. Descripción geológica

3.1. Marco geológico

El Macizo de Santander hace parte de un bloque regional de forma triangular formado por las fallas de Santa Marta-Bucaramanga, en el lado occidental, la falla de Oca-Ancón, en el lado norte, y la falla de Boconó, en el lado oriental.

Las rocas más antiguas del Macizo de Santander comprenden unidades metamórficas como la Anfibolita de Sanín Villa, que arrojó edades U/Pb en circón del Neoproterozoico y el Neis de Bucaramanga (Ward *et al.*, 1973), denominado también Complejo Bucaramanga (Clavijo, 1994). El Neis de Bucaramanga consiste de paraneises migmatíticos de alto grado considerados de edad proterozoica (Goldsmith *et al.*, 1971; Restrepo *et al.*, 1997; Cordani *et al.*, 2005; Ordóñez *et al.*, 2006), con un pico de metamorfismo de edad 1057±28 Ma U/Pb-Shrimp en circón, relacionada con la orogenia Grenvilliana (figura 2).

Edades publicadas por Van der Lelij *et al.* (2016), y otras obtenidas mediante el método U/Pb-ICP-MS en circones, en el desarrollo del presente estudio en unidades cartografiadas como el Neis de Bucaramanga y Ortoneis, arrojaron edades de metamorfismo y cristalización del Ordovícico.

Figura 1. Localización de la Tonalita de San Martín y distribución del muestreo de secciones delgadas, litogeoquímica y dataciones U/Pb Fuente: Arias y Vargas (1978) y autores

Figura 2. Localización de la Tonalita de San Martín y distribución del muestreo de secciones delgadas, litogeoquímica y dataciones U/Pb Fuente: Arias y Vargas (1978) y autores

Figura 3. Aspecto macroscópico de rocas de la Tonalita de San Martín. A) Granodiorita con xenolito de diorita, estación LMC-088. B) Cuarzomonzonita tomada en la estación TCR-399

El Neis de Bucaramanga está cubierto por la Formación Silgará, constituida por esquistos, filitas, metalodolitas, metaareniscas y escasos mármoles, rocas que hacen parte del basamento del Macizo de Santander (Ward *et al.*, 1973; Ríos *et al.*, 2003; Mantilla *et al.*, 2013; Mantilla *et al.*, 2016). La Formación Silgará presenta edades de metamorfismo del Ordovícico inferior-medio relacionadas con la orogenia Famatiniana (Ríos *et al.*, 2003; Ordóñez Cardona *et al.*, 2006; Clavijo *et al.*, 2008; Mantilla *et al.*, 2013).

Algunas edades U/Pb en circón obtenidas en el proyecto muestran magmatismo posterior y anterior al metamorfismo, representado por metavulcanitas y plutones que intruyen el basamento metamórfico, con edades U/Pb en circón del Silúrico, Devónico inferior, Carbonífero y límite Triásico-Jurásico.

Los plutones triásico-jurásicos del Macizo de Santander se consideran emplazados en rocas metamórficas del Terreno Chibcha, en el sentido de Restrepo y Toussaint (1988) y Restrepo *et al.* (2011) o del Terreno Santander de Etayo *et al.* (1983). Estos plutones están emplazados en rocas metamórficas ordovícicas relacionadas a la orogenia Famatiniana, y probablemente algunos se emplazaron en basamento del Neoproterozoico, como la Diorita del alto de Sanín Villa y la Tonalita de San Martín, que intruyen las Anfibolitas de Sanín Villa (figura 2).

Durante el límite Triásico-Jurásico se desarrolló un importante magmatismo de arco continental, con el emplazamiento de grandes batolitos, *stocks* graníticos y cuerpos riolíticos subvolcánicos localizados hacia la margen occidental del Macizo de Santander, en el basamento metamórfico paleozoico (figura 2).

Unidades sedimentarias cretácicas reposan discordantes sobre el basamento metamórfico y los plutones. Después de la sedimentación cretácica hubo escaso magmatismo durante el Mioceno, que emplazó pequeños cuerpos de pórfidos con mineralización de oro (Leal, 2011; Mantilla *et al.*, 2013).

3.2. Características macroscópicas

La Tonalita de San Martin es un cuerpo intrusivo de composición variable de dioritas-cuarzodioritas-cuarzomonzonitas y tonalita-granodioritas-monzogranitos, que, de acuerdo con Arias y Vargas (1978), no son separables en la cartografía a escala 1:100.000, y por esta razón fueron agrupadas en una sola unidad.

Las rocas tonalíticas son de color gris, con tonalidades verdes, textura fanerítica de grano medio, constituidas por minerales como cuarzo, plagioclasa, hornblenda y biotita (Arias y Vargas, 1978). Localmente se reconocen granitoides de color blanco a rosado, con motas negras, moderadamente meteorizados, faneríticos, de grano fino a medio, equigranulares a inequigranulares, con estructura masiva y constituidos por cuarzo, plagioclasa, feldespato potásico rosado y biotita. La Tonalita de San Martín tiene enclaves de microdiorita y andesita de grano fino, de formas subredondeadas y tamaños decimétricos, con contactos netos con las rocas granitoides (figura 3). El cuerpo está atravesado por diques de dacita que tienen formas tabulares y presentan contactos tajantes, cuyo espesor varía entre 10 y 70 cm, de colores blanco a gris claro.

3.3. Características microscópicas

De la Tonalita de San Martín se analizaron quince secciones delgadas, que fueron clasificadas como dioritas, cuarzodioritas, cuarzomonzonitas, tonalitas, granodioritas y monzogranitos, con textura alotriomorfa granular a inequigranular, ocasionalmente con texturas pertíticas, gráficas y simplectíticas locales. Está compuesta principalmente por plagioclasa (22% a 61%), pueden tener feldespato alcalino (0% a 49%) y, en menor proporción, cuarzo (4% a 48%), hornblenda, biotita y, en rocas intermedias, clinopiroxeno. Como minerales accesorios se encuentran apatito, opacos, titanita y allanita. Como minerales de alteración, clorita, sericita, epidota y agregados arcillosos. En la tabla 1 se resumen los resultados del análisis modal, y en la figura 4 se muestra el triángulo de Streckeisen (1976) con la clasificación de las rocas, donde puede observarse el predominio de rocas tonalíticas y monzograníticas en el muestreo realizado.

```
Tabla 1. Composición modal de las rocas de la Tonalita de San Martín
```

IGM	N.° de campo	х	Y	Qtz	PI	Fsp	Срх	Hbl	Bt	Ор	Ар	Zrn	Ttn	Matriz	Otros	Clasificación petrográfica
31124		1070738	1393134	17	48		4	23	3	Tr	1	1	3			Tonalita
31125		1070352	1392430	4	61		1	31		Tr	Tr	Tr	3			Diorita hornbléndica
31134		1069250	1397589	48	28	22			2	Tr			Tr			Monzogranito
31197		1073156	1369803	22	48	22				1	Tr	Tr			7	Granodiorita
31200		1072232	1374914	37	31	28		1	2	1	Tr	Tr			Tr	Monzogranito
31204		1073504	1370620	26	41	22		3	6	2	Tr	Tr			Tr	Granodiorita
31205		1074019	1370446	13	58			16	10	3	Tr	Tr			Tr	Cuarzodiorita
31206		1070586	1385713	25	43	27			5	Tr	Tr					Monzogranito
74856	LJM-1238	1070150	1390970	33	51	4		0	12	Tr	Tr	Tr				Tonalita
120225	AR-77	1071630	1392660	42	22	35			Tr				Tr		1	Cuarzomonzonita
901002	LMC-088	1069983	1392339	37	34	19			10	Tr		Tr				Granodiorita
901003	LMC-090A	1070179	1385799	7	57	20				1	Tr	Tr	1		14	Cuarzomonzodiorita
901004	LMC-090B	1070179	1385799	11	24				4	2	Tr	Tr		59		Fenodacita (dique)
901032	TCR-395A	1075180	1368544	28	53	4		4	6,5	3,5	0,5	1				Tonalita deformada
901033	TCR-399	1072495	1376017	12	30	49		1	8	0,7		0,3			х	Cuarzomonzonita

Tr: trazas

1 Sienita de feldespato alcalino

2 Monzodiorita monzogabro

3 Diorita, gabro

Figura 4. Clasificación modal de las rocas de la Tonalita de San Martín en cuadrados grises y círculo rojo representa el dique fenodacítico

De los diques se analizó una fenodacita con textura porfídica y matriz desvitrificada con desarrollo de esferulitas, y en menor proporción con microcristales félsicos de cuarzo y feldespatos.

La plagioclasa varía desde oligoclasa sódica, en las rocas graníticas, hasta andesina en los dioritoides, siguiendo el método de Michel-Lévy. Se encuentra en cristales subhedrales de hábito tabular, incoloros, cuyo tamaño oscila entre 0,2 y 5 mm, con desarrollo de macla de albita y albita-Carlsbad. Pueden alterarse a escamas de sericita y saussurita, que se presenta en agregados muy finos de tonalidades oscuras (figura 5).

El feldespato de potasio es ortosa. Se presenta en cristales anhedrales de tamaños entre 0,3 y 5 mm, de formas irregulares, con leve moteado marrón por alteración a minerales arcillosos. Presenta textura pertítica con desmezcla de plagioclasa en forma de "flamas" y parches, y puede tener intercrecimientos micrográficos con cuarzo (figura 5A).

El cuarzo aparece en forma de cristales anhedrales incoloros, algunos con extinción ondulatoria, cuyo tamaño varía entre 0,2 y 1,5 mm, como cristales individuales. En algunas rocas, el cuarzo se presenta en intercrecimientos micrográficos, aunque también puede aparecer como inclusiones en el feldespato y tener inclusiones de plagioclasa.

La hornblenda aparece principalmente en las rocas dioritoides (figura 5C, D), en cristales de forma hexagonal, en corte basal, y en algunas rocas, longitudinal; algunos cristales, con maclas dobles. También pueden aparecer en nidos de hornblenda. Presentan color verde intenso a verde pálido, con pleocroísmo de tonos amarillos. El tamaño de los cristales fluctúa entre 0,5 y 1,5 mm, y tienen extinción de 12° a 19° en sección longitudinal. Algunos cristales tienen núcleo de piroxeno con inclusiones de titanita, plagioclasa y apatitos, principalmente, y leve desarrollo de textura simplectítica por presencia de pequeños cristales de cuarzo con forma de gotas en el mineral. Puede estar alterada a clorita y epidota.

La biotita es subhedral a euhedral, con pleocroísmo de color marrón oscuro a claro, con exfoliación perfecta en una dirección, de tamaños entre 0,5 y 1,5 mm, y extinción en ojo de pájaro. Algunos cristales presentan alteración a clorita, de color verde oscuro y birrefringencia anómala azul Berlín, desarrollada entre las trazas de exfoliación de los cristales. Los circones aparecen como cristales euhedrales, en algunas rocas, algo fracturados, de forma prismática corta, incoloros, con tamaño <0,3 mm, birrefringencia fuerte de segundo orden color azul-fucsia. Pueden estar incluidos en biotita o junto a minerales opacos.

La titanita se encuentra en cristales euhedrales, romboédricos y anhedrales de forma irregular, oscurecida por el alto relieve, con birrefringencia fuerte de tercer orden, color rosado moteado con extinción paralela.

El apatito aparece en pequeños cristales prismáticos a redondeados y hexagonales euhedrales, de tamaño <0,1 mm, birrefringencia débil de primer orden gris y extinción paralela. Se presenta como inclusiones en cuarzo, principalmente.

La muestra de dique es una fenodacita (IGM-901004, LMC-090C) constituida por fenocristales de cuarzo, plagioclasa y biotita envueltos por una matriz vítrea (figura 6).

Los fenocristales de cuarzo son bipiramidales, redondeados por corrosión de la matriz, y presentan bahías y "huecos" rellenos de vidrio.

La plagioclasa se presenta en fenocristales y microfenocristales de tamaños que varían entre 0,5 y 2 mm, y microcristales subhedrales. Tiene forma tabular, con maclas de Carlsbad y albita pobremente desarrolladas y en cuñas. Los cristales tienen bordes redondeados y están alterados a saussurita en agregados y a sericita en menor proporción.

La biotita se presenta ocasionalmente en microfenocristales euhedrales de color marrón y verde producto de su alteración, con un tamaño promedio de 0,5 mm, extinción en ojo de pájaro. Se encuentra parcialmente alterada a clorita de color verde claro-oscuro pleocroico, con birrefringencia azul anómala. La mayoría de los cristales presentan inclusiones de opacos asociados.

La matriz está desvitrificada y alterada a minerales del grupo de la arcilla, con desarrollo abundante de esferulitas.

Como minerales accesorios aparecen apatito, circón y opacos de tamaños menores de 0,2 mm.

Los opacos son cristales accesorios de forma irregular, con un tamaño menor de 0,5 mm, y generalmente aparecen junto a biotita.

Figura 5. Aspecto microscópico de rocas de la Tonalita de San Martín. Microfotografías tomadas con nícoles cruzados A) textura micrográfica. B) Cristales de plagioclasa (PI), cuarzo (Qtz) y biotita (Bt) en arreglo granular. C) Tonalita con hornblenda (HbI) y plagioclasa alterada a sericita (PI), cuarzo intersticial (Qtz) y venilla de cuarzo tardía. D) Cristales de hornblenda (HbI), plagioclasa (PI) y titanita (Ttn). E y F) Textura granular con feldespato alcalino pertítico (Fsp)

Figura 6. Aspecto microscópico de la muestra IGM-901004 LMC-090B Fenodacita con textura portídica y fenocristales de cuarzo (Qtz) con bahías de corrosión, biotita (Bt) alterada a clorita y plagioclasa alterada a minerales arcillosos (PI) en una matriz desvitrificada (M)

4. Química mineral

Los análisis de química mineral se hicieron en la Universidad Nacional de Colombia, sede Bogotá. El equipo usado es una microsonda JEOL JXA 8230, cuyas condiciones de operación fueron: 1 a 10 µm de diámetro del haz, tiempo en el pico de 20 msec, intensidad 20 nA y voltaje de aceleración de 15 kV. Los conteos del instrumento son convertidos a porcentajes de óxidos mediante comparaciones con conteos de estándares naturales y sintéticos. Los datos se han tratado mediante la corrección ZAF (Z: número atómico: A: absorción de masas: F: fluorescencia), utilizando el programa de JEOL. La adquisición de los datos consistió en obtener imágenes de electrones retrodispersados de los cristales y en realizar los análisis puntuales. Se seleccionó la muestra TCR-399, clasificada como cuarzomonzonita, teniendo en cuenta la escasa alteración de los minerales. Se escogieron para el análisis plagioclasa, feldespato, pirita y magnetita.

4.1. Feldespato potásico

El feldespato alcalino se analizó para la muestra TCR-399 en un solo cristal, en tres puntos (figura 7), y los resultados de la química mineral se muestran en la tabla 2 y se resumen en la figura 8. En la muestra TCR-399, el feldespato potásico exhibe micropertitas en filoncillo y parches que se pueden apreciar en las imágenes petrográfica y de electrones retrodispersados (figura 7). Para el campo C3 ($Or_{90,9}$ - $Or_{96,06}$, $Ab_{3,77}$ - $Ab_{8,84}$), los análisis grafican en el campo de la ortosa pertítica. Tabla 2. Análisis en cristales de feldespato alcalino en la muestra TCR-399

	TCR-399-C3-Kfs-1	TCR-399-C3-Kfs-3	TCR-399-C3-Kfs-4
SiO	65,297	64,951	64,898
 TiO ₂	-0,009	0,001	0,009
Al ₂ O ₃	18,791	18,715	18,713
FeO	0,012	0,024	0,095
MgO	0,027	0,055	0,036
CaO	0,008	0,035	0,051
Na ₂ O	0,508	0,418	0,972
K ₂ O	15,921	16,203	15,182
Total (% en peso)	100,501	100,292	99,884
Si	11,979	11,965	11,963
AI	4,063	4,063	4,065
Ti	-0,001	0,000	0,001
Fe ²⁺	0,001	0,002	0,010
Mg	-0,00738518	0,0151064	0,00989389
Na	0,181	0,149	0,347
Ca	0,002	0,007	0,010
К	3,726	3,808	3,570
Total cationes (a.p.f.u.)	19,9433	19,980	19,957
Or	95,34	96,06	90,90
Ab	4,62	3,77	8,84
An	0,04	0,17	0,26
Total	100	100	100
a.p.f.u.: átomos por fórmula unitaria			

Figura 7. Imagen de electrones retrodispersados muestra TCR-399

Izquierda cristal de feldespato potásico (C3); derecha imagen petrográfica con nícoles cruzados, donde se observan las micropertitas en filoncillos y parches

Figura 8. Composición de los feldespatos potásicos y las plagioclasas en la muestra TCR-399 Fuente: Smith-Brown (1988) y autores

4.2. Plagioclasa

La plagioclasa se analizó en dos cristales (C1, C2; figura 9, tabla 3), en núcleos y bordes. El cristal C1 mostró inclusiones anhedrales de feldespato alcalino y composición homogénea albítica en la plagioclasa ($Ab_{92,53-95,59} An_{3,09-6,52} Or_{0,95-1,31}$), con una débil zonación composicional con bordes más sódicos. Del cristal C2 se analizaron cinco puntos aleatorios distribuidos en el cristal, que tiene una leve alteración a sericita local y variación composicional que indica composición de albita ($Ab_{88,56-97,07} An_{0,76-9,82} Or_{1,23-2,1}$), como se puede observar en la figura 8.

4.3. Magnetita y pirita

De la muestra TCR-399 se analizaron dos cristales de magnetita (figura 10); los resultados obtenidos se pre-

sentan en la tabla 4. El cálculo del Fe³⁺ se hizo usando la fórmula de Droop (1987).

La magnetita presenta coloración gris, con baja reflectancia, fracturamiento irregular; es homogénea y de aspecto liso, con inclusiones de pirita de color amarillo pálido, con buena reflectancia. La magnetita tiene valores altos de FeO_{total} , entre 94,85 y 96,28 wt% (11,86 a 11,93 a.p.f.u. de Fe^{3+} y aproximadamente 12 a.p.f.u. de Fe^{2+}), concentraciones menores de MnO, entre 0,08 y 0,14 wt%, TiO₂ bajo (alcanza 0,27 a 0,53 wt%) y Al₂O₃ de hasta 0,19 wt%. La pirita tiene concentración en azufre (S) de 52,9 wt% y hierro (Fe) entre 45,5 wt% y 45,9 wt%, valores de Co < 0,11 wt% y valores poco representativos de Cu, As y Ni (tabla 4).

Tabla 3. Análisis en cristales de plagioclasa de la muestra TCR-399

	TCR-399-C1-PI-1	TCR-399-C1-PI-2	TCR-399-C1-PI-3	TCR-399-C2-PI-1	TCR-399-C2-PI-2	TCR-399-C2-PI-3	TCR-399-C2-PI-4	TCR-399-C2-PI-5
SiO ₂	67,452	67,413	68,619	67,286	67,127	68,038	68,526	66,227
TiO ₂	0,004	0,011	-0,003	-0,03	0,008	-0,02	-0,017	0,040
Al ₂ O ₃	20,159	19,888	19,540	20,066	20,292	19,823	19,524	20,268
FeO	0,233	0,087	0,081	0,048	0,063	0,032	0,055	0,036
MgO	-0,016	0,028	0,003	0,012	0,034	-0,002	0,007	-0,008
CaO	1,402	1,324	0,672	1,921	1,795	1,444	0,167	2,095
Na ₂ O	10,992	10,924	11,486	10,523	10,736	11,053	11,400	10,440
K ₂ O	0,171	0,202	0,240	0,323	0,271	0,226	0,382	0,291
Total (% en peso)	100,397	99,877	100,638	100,149	100,326	100,594	100,044	99,389
Si	11,796	11,836	11,943	11,796	11,754	11,864	11,978	11,714
AI	4,155	4,116	4,008	4,146	4,188	4,074	4,022	4,225
Ti	0,023	0,009	0,008	0,005	0,006	0,003	0,005	0,004
Fe	0,001	0,001	0,000	0,000	0,001	0,000	0,000	0,005
Mg	0,000	0,007	0,001	0,003	0,009	0,000	0,002	0,000
Na	3,727	3,719	3,876	3,577	3,645	3,737	3,864	3,580
Ca	0,263	0,249	0,125	0,361	0,337	0,270	0,031	0,397
K	0,038	0,045	0,053	0,072	0,061	0,050	0,085	0,066
Total cationes (a.p.f.u.)	19,998	19,982	20,014	19,957	20,000	19,994	19,985	19,989
Ab	92,53	92,67	95,595	89,200	90,171	92,111	97,074	88,56
An	6,52	6,21	3,091	8,998	8,331	6,650	0,786	9,82
Or	0,95	1,13	1,314	1,802	1,498	1,239	2,140	1,62
Total	100,00	100,00	100,000	100,000	100,00	100,00	100	100,00

Figura 9. Cristales de plagioclasa (PI) en los campos C1 y C2 de la muestra TCR-399 Imagen de microscopía óptica con nícoles cruzados con la selección de puntos, arriba, e imagen de electrones retrodispersados, abajo

Figura 10. Imágenes de electrones retrodispersados (BSE) (izquierda) y luz reflejada (derecha), correspondientes a magnetita y pirita de la muestra TCR-399

	TCR-399-C5- Mt-1	TCR-399-C5- Mt-2	TCR-399-C5- Mt-3	TCR-399-C6- Mt-1	TCR-399-C6- Mt-2	TCR-399-C6- Mt-3		TCR-399-C5- Py-3	TCR-399-C6- Py-1	TCR-399-C6- Py-2
SiO ₂			0,001		0,012	0,007	Zn	0,011	N. D.	0,038
TiO ₂	0,267	0,526	0,513	0,298	0,456	0,271	As	N. D.	0.125	N. D.
Al_2O_3	0,039	0,101	0,071	0,055	0,198	0,018	S	52,886	52,939	52,886
Cr ₂ O ₃	0,017		0,007	0,016	0,003	0,038	Fe	45,647	45,895	45,523
FeO	96,279	95,689	95,911	95,612	94,853	96,187	Co	0,112	0,079	0,066
MnO	0,099	0,14	0,129	0,058	0,134	0,082	Ni	N. A.	N. A.	N. A.
MgO	0,007		0,015	0,002	0,023		Sb	N. A.	N. A.	N. A.
Total	96,708	96,456	96,647	96,041	95,679	96,603	Cu	N. D.	0,003	N. D.
		Formula	basada en 32 o	oxígenos			Total	98,656	99,041	98,513
Si	0,000	0,000	0,000	0,000	0,004	0,002	Zn	0,007	N. D.	0,024
Ti	0,060	0,118	0,115	0,067	0,103	0,061	As	N. D.	0.067	N. D.
AI	0,014	0,035	0,025	0,019	0,070	0,006	S	66,813	66,688	66,883
Cr	0,004	0,000	0,002	0,004	0,001	0,009	Fe	33,103	33,189	33,048
Fe ³⁺	11,931	11,863	11,871	11,921	11,857	11,929	Co	0,077	0,054	0,045
Fe ²⁺	11,963	11,948	11,949	11,973	11,922	11,972	Ni	N. A.	N. A.	N. A.
Mg	0,003	0,000	0,007	0,001	0,010	0,000	Sb	N. A.	N. A.	N. A.

Tabla 4. Composición química de magnetita y pirita en la muestra TCR-399

	TCR-399-C5- Mt-1	TCR-399-C5- Mt-2	TCR-399-C5- Mt-3	TCR-399-C6- Mt-1	TCR-399-C6- Mt-2	TCR-399-C6- Mt-3		TCR-399-C5- Py-3	TCR-399-C6- Py-1	TCR-399-C6- Py-2
Mn	0,025	0,035	0,032	0,015	0,034	0,021	Cu	N. D.	0,002	N. D.
Total	24,000	24,000	24	24,000	24,000	24,000	Total	99,938	99,983	99,968
Mg/(Mg+Fe ²⁺)	0,000259	0	0,001	0,000	0,001	0				
Cr/(Cr+Al)	0,22622	0	0,062	0,163	0,010	0,586				
Fe ²⁺ /(Fe ²⁺ +Mg)	0,999741	1	0,999	1,000	0,999	1				

5. Litogeoquímica

La caracterización litogeoquímica de la Tonalita de San Martín se realizó a partir de cuatro análisis de rocas de las facies más abundantes del plutón (LMC-088, LMC-090A, TCR-395A y TCR-399). Un quinto análisis corresponde a una muestra de dique dacítico (LMC-090B). Los análisis se realizaron con un espectrómetro de fluorescencia de rayos X, FRX, Panalytical AXIOS Mineral para análisis elemental, configurado con software especializado para materiales geológicos. La cuantificación de los óxidos mayores se realizó en muestra fundida con metaborato y tetraborato de litio, y la cuantificación de elementos menores se realizó en muestra prensada (V, Mo, Nb, Ta, W, Zr y Hf). En el análisis de elementos traza de interés geoquímico en rocas se usó un espectrómetro de masas con plasma inductivamente acoplado, ICP-MS, Perkin Elmer Nexion. Para la disolución de la muestra se realizó un ataque por pasos utilizando ácidos inorgánicos fuertes (HF, HNO3, HClO4 y HCl). El proceso se realiza en sistema abierto, empleando distintas rampas de temperatura y tiempos de calentamiento. Gran parte de los diagramas geoquímicos se generaron con el uso del GCDKit versión 4.0 (Janoušek et al., 2006).

5.1. Óxidos mayores

Para la interpretación de los óxidos mayores se hizo el recálculo, teniendo en cuenta los valores de LOI (pérdidas por ignición). Los resultados de óxidos mayores se muestran en la tabla 5.

Los valores de SiO₂ en rocas granitoides de la Tonalita de San Martín varían entre 65,2 wt% y 74,96 wt%, y la muestra de dique de fenodacita presenta valores de SiO₂ de 75,3 wt% (LMC-090B). Considerando las cinco muestras en conjunto, los valores de Al₂O₃, Fe₂O₃, MgO, Na₂O y CaO disminuyen con el aumento de SiO₂; el K₂O varía entre 1,69 wt% y 3,26 wt%; el CaO varía entre 0,41 y 2,05 wt%, MgO < 1 wt% y TiO₂ < 0,7 wt%; las razones K₂O/Na₂O > 1, y presentan contenido de álcalis (Na₂O + K₂O) > 7 wt%. En general, los óxidos mayores con relación al SiO₂ muestran dispersión en las cinco muestras y no es claro un tren de diferenciación común; esto puede deberse al número de muestras analizadas.

En los diagramas K_2O versus SiO_2 (figura 11A), la muestra IGM-901003 se aparta del resto y grafica en el campo de la serie toleítica, mientras las otras muestras se distribuyen en el campo de series calcoalcalinas de contenidos medios y altos en K. No obstante, en el diagrama

Tabla 5. Composición de óxidos mayores en rocas granitoides y roca de diques de la Tonalita de San Martín

•		o ,			
IGM	901002	901003	901032	901033	901004
N.° campo	LMC-088	LMC-090A	TCR-395A	TCR-399	LMC-090B
W	1069983	1070179	1075180	1072495	1070179
Ν	1392339	1385799	1368544	1376017	1385799
SiO ₂	74,48	69,23	65,24	74,96	75,33
TiO ₂	0,16	0,3	0,7	0,18	0,14
Al ₂ O ₃	13,61	16,99	16,94	13,41	13,58
Fe ₂ O ₃	2,2	2,25	4,77	1,74	1,58
MgO	0,33	0,46	0,83	0,35	0,33
CaO	1,17	0,41	2,05	0,67	0,22
Na ₂ O	4,04	9,1	6,68	4,25	4,43
K ₂ O	3,26	0,13	1,69	3,77	3,37
P ₂ O ₅	0,057	0,074	0,118	0,04	0,047
MnO	0,04	0,13	0,15	0,03	0,04
FeO	1,13	1,22	1,82	0,94	0,19
LOI	0,54	0,84	0,53	0,49	0,82
Clasificación petrográfica	Granodiorita	Cuarzomonzodiorita	Tonalita deformada	Cuarzomonzonita	Fenodacita

de Hastie, Kerr, Pearce y Mitchell (2007) (figura 11B), las rocas granitoides y la roca de dique dacítico grafican en las series calcoalcalina con contenidos medios de K y se separan en los campos de BA/A: andesitas basálticas y andesitas y D/R*: dacitas, riolitas, latitas y traquitas, con mejor agrupación. De acuerdo con el diagrama AFM (figura 12), las rocas hacen parte de la serie calcoalcalina y son altamente diferenciadas; sin embargo, la muestra IGM-901032, que corresponde a una tonalita deformada, presenta los menores valores de SiO₂ y valores mayores de Fe₂O₃ (4,77 wt%) y MgO (0,83 wt%).

Figura 11. Diagramas de clasificación de series correspondientes a rocas de la Tonalita de San Martín A) Diagrama K₂O Vs SiO₂ (Peccerillo y Taylor, 1976). B) Diagrama de clasificación Th-Co (Hastie *et al.*, 2007). B: Basalto. BA/A: andesita basáltica/ andesita. D/R*: dacita/riolita/latita traquita (en negro, facies granitoide; en verde, muestra de dique dacítico)

Figura 12. Diagrama AFM (Irvine y Baragar, 1971) correspondiente a las rocas de la Tonalita de San Martín

Figura 13. Clasificación con base en la composición química de rocas de la Tonalita de San Martín A) Diagrama TAS de Middlemost (1985). B) Diagrama TAS de Middlemost (1994) (el símbolo de color verde corresponde a una roca de dique)

Las rocas de la Tonalita de San Martín son subalcalinas y químicamente clasifican en los diagramas TAS de Middlemost (1985, 1994) (figura 13 A y B) en los granitos y cuarzomonzonitas, sin una buena concordancia con la clasificación petrográfica, debido a los valores altos de SiO₂ y álcalis.

Las rocas analizadas (cuarzomonzonitas y granitos), de la Tonalita de San Martín, grafican en el campo peraluminoso del gráfico de Shand (1943), con valores de $(Na_2O+K_2O/Al_2O_3)_{mol}$ (A/NK) > 1 y valores de $(Al_2O_3/$ $Na_2O+K_2O+CaO)_{mol}$ (A/CNK) > 1 (figura 14A), con valores altos de SiO₂ > 65 wt%. La roca de dique IGM-901003 también es peraluminosa. En el diagrama de Debon y Le Fort (1983), modificado por Villaseca, Barbero y Herreros (1998) (figura 14B), las rocas se agrupan en el límite entre los campos de granitoides con baja peraluminosidad (l-p) y los granitos medianamente peraluminosos, la mayoría de ellas por debajo de la línea límite para granitoides tipos I y S y en el campo de los granitoides tipo I. La roca de dique grafica en el campo de las rocas félsicas peraluminosas.

IGM	901002	901004	901032	901033	901003
N.° campo	LMC-088	LMC-090B	TCR-395A	TCR-399	LMC-090A
Li	4,89	7,99	3,49	1,62	7,86
Be	1,58	1,17	1,30	1,60	1,70
Sc	3,40	2,13	10,97	2,15	5,20
v	12,27	12,15	23,18	9,45	10,20
Cr	4,05	5,24	4,36	3,11	4,32
Co	20,24	19,56	10,50	19,88	9,04
Ni	2,26	9,91	1,79	1,20	1,43
Cu	80,24	4,40	6,90	5,49	7,04
Zn	26,53	30,64	81,75	25,01	203,20
Ga	15,66	12,59	20,62	15,73	18,17
As	0,93	0,89	1,10	1,01	1,45
Rb	49,71	53,96	28,83	74,66	1,60
Sr	114,41	116,32	229,94	88,94	116,75
Y	13,72	9,10	27,57	13,15	24,56
Cd	<0,08	<0,08	0,13	<0,08	0,44

IGM	901002	901004	901032	901033	901003
N.° campo	LMC-088	LMC-090B	TCR-395A	TCR-399	LMC-090A
In	0,03	0,01	0,06	0,01	0,48
Cs	0,11	0,13	0,16	0,12	<0,05
Ва	916,73	1081,52	1186,40	1130,75	132,92
La	14,73	14,62	22,73	24,06	17,63
Ce	27,97	25,83	51,03	49,69	39,79
Pr	3,60	3,22	6,21	5,38	5,51
Nd	13,24	11,16	25,10	18,03	19,41
Sm	2,55	2,07	5,79	3,55	4,19
Eu	0,84	0,78	3,68	0,81	0,96
Gd	2,41	1,75	5,92	3,49	4,05
Tb	0,38	0,26	0,91	0,46	0,70
Dy	2,09	1,33	5,44	2,45	4,05
Но	0,42	0,29	1,11	0,48	0,84
Er	1,31	1,00	3,29	1,41	2,50
Tm	0,19	0,16	0,47	0,21	0,34
Yb	1,32	1,19	3,10	1,43	2,20
Lu	0,19	0,20	0,48	0,21	0,31
ті	0,22	0,22	0,11	0,27	<0,01
Pb	7,91	3,19	6,10	8,90	13,13
Th	2,06	1,93	1,70	3,27	2,11
U	0,32	0,54	0,39	0,47	0,53
Zr	137,70	109,20	777,00	152,10	199,40
Nb	5,5	4,5	9,4	6,3	5,3
w	81,4	77,6	37,3	76,4	23
Hf	<8	<8	11,6	<8	<8

Figura 14. Diagrama de alcalinidad-aluminosidad correspondiente a rocas de la Tonalita de San Martín A) Diagrama de Shand (1943). B) diagrama de Debon y Le Fort (1983) modificado por Villaseca *et al.* (1998): f-P, granitoides peraluminosos félsicos; h-P, granitoides altamente peraluminosos; m-P, granitoides medianamente peraluminosos, granitos bajo peraluminoso. (El símbolo de color verde corresponde a una roca de dique)

5.2. Elementos trazas

En la tabla 6 se resumen los resultados de los análisis químicos de elementos traza y tierras raras correspondientes a las cuatro rocas de la Tonalita de San Martín y la roca de dique dacítico. Al analizar el comportamiento de los patrones de tierras raras (REE) en el diagrama multielemental de REE y contrastarlo con los valores normalizados con el condrito de Nakamura (1974) (figura 15A), se observa que las rocas tienen un patrón de REE no paralelo, con un empobrecimiento progresivo desde las tierras raras livianas (LREE) hacia las tierras raras pesadas (HREE), pendiente negativa y anomalía negativa de Eu en las muestras IGM-901002, 9019004 y 901032, lo que sugiere fraccionamiento de la plagioclasa en el magma. Las relaciones Eu/Eu* > 1 y (La/Yb)_N > 4,5 evidencian un enriquecimiento de tierras raras ligeras con relación a las HREE en todas las muestras; además, la muestra 901033 tiene anomalía positiva de Eu. Los patrones de REE presentan diferencias en cada roca, y mayor o menor pendiente de cada uno, lo que sugiere variaciones composicionales en los magmas, diferencias

que podrían explicarse por cambios en la fuente de los magmas de cada patrón, con mayor o menor aporte del manto y de corteza en cada uno de ellos. Los valores de (La/Yb)_N que se han encontrado no son altos y sugieren mayor aporte de manto y menor aporte de corteza por contaminación cortical (Girardi, 2008). La tabla 7 presenta las relaciones normalizadas según el condrito de Nakamura (1974) de algunas REE, donde las relaciones $(Ce/Yb)_N$ varían entre 4,1 y 8,86 y $(La/Sm)_N > 2$, lo que evidencia un enriquecimiento de tierras raras ligeras con relación a las HREE en todas las muestras. Las rocas tienen relación $(La/Yb)_{N}$ con valores entre 4,9 y 11,2, que podrían representar mayores aportes de la corteza, periodos de mayor flujo magmático o corteza más gruesa en los valores más altos de (La/Yb)_N, y los menores valores podrían indicar mayores aportes al magma de material del manto y periodos de más bajo flujo magmático; menores pendientes en los patrones de REE podrían relacionarse con profundidades menores de génesis del magma (Girardi, 2008).

Tabla 6. Resultados de elementos traza y tierras raras en rocas de la Tonalita de San Martín

IGM	901002	901004	901032	901033	901003
N.° campo	LMC-088	LMC-090B	TCR-395A	TCR-399	LMC-090A
Li	4,89	7,99	3,49	1,62	7,86
Ве	1,58	1,17	1,30	1,60	1,70
Sc	3,40	2,13	10,97	2,15	5,20
v	12,27	12,15	23,18	9,45	10,20
Cr	4,05	5,24	4,36	3,11	4,32
Со	20,24	19,56	10,50	19,88	9,04
Ni	2,26	9,91	1,79	1,20	1,43
Cu	80,24	4,40	6,90	5,49	7,04
Zn	26,53	30,64	81,75	25,01	203,20
Ga	15,66	12,59	20,62	15,73	18,17
As	0,93	0,89	1,10	1,01	1,45
Rb	49,71	53,96	28,83	74,66	1,60
Sr	114,41	116,32	229,94	88,94	116,75
Y	13,72	9,10	27,57	13,15	24,56
Cd			0,13		0,44
In	0,03	0,01	0,06	0,01	0,48
Cs	0,11	0,13	0,16	0,12	<0,05
Ва	916,73	1081,52	1186,40	1130,75	132,92
La	14,73	14,62	22,73	24,06	17,63
Се	27,97	25,83	51,03	49,69	39,79
Pr	3,60	3,22	6,21	5,38	5,51
Nd	13,24	11,16	25,10	18,03	19,41
Sm	2,55	2,07	5,79	3,55	4,19
Eu	0,84	0,78	3,68	0,81	0,96
Gd	2,41	1,75	5,92	3,49	4,05
Tb	0,38	0,26	0,91	0,46	0,70

IGM	901002	901004	901032	901033	901003
N.° campo	LMC-088	LMC-090B	TCR-395A	TCR-399	LMC-090A
Dy	2,09	1,33	5,44	2,45	4,05
Но	0,42	0,29	1,11	0,48	0,84
Er	1,31	1,00	3,29	1,41	2,50
Tm	0,19	0,16	0,47	0,21	0,34
Yb	1,32	1,19	3,10	1,43	2,20
Lu	0,19	0,20	0,48	0,21	0,31
ті	0,22	0,22	0,11	0,27	<0,01
Pb	7,91	3,19	6,10	8,90	13,13
Th	2,06	1,93	1,70	3,27	2,11
U	0,32	0,54	0,39	0,47	0,53
Zr	137,70	109,20	777,00	152,10	199,40
Nb	5,5	4,5	9,4	6,3	5,3
W	81,4	77,6	37,3	76,4	23
Hf			11,6		

El diagrama multielemental de elementos trazas normalizado con respecto al NMORB de Sun y McDonough (1989), correspondiente a rocas de la Tonalita de San Martín, muestran empobrecimiento de los elementos inmóviles Nb, Sr, Ti y P, donde el Nb se comporta geoquímicamente de modo similar al Ti (figura 15B). Los mayores valores en elementos incompatibles Cs, Ba, Th, Sr, K, Ba y Rb están relacionados con enriquecimiento del manto localizado por encima de la zona de subducción, debido a movilización de fluidos liberados durante el metamorfismo de alta presión de la placa subducida. El diagrama multielemental de elementos incompatibles (Sun y McDonough, 1989) presenta pequeñas diferencias en los trenes de los elementos traza de las rocas, lo que sugiere varios pulsos magmáticos.

Tabla 7. V	/alores normalizad	os de REE	según e	condrito	de Nakamur	a (1974) en roca	s de la	a Tona	lita de	San	Martín
------------	--------------------	-----------	---------	----------	------------	---------	-----------	---------	--------	---------	-----	--------

	Eu/Eu*	(La/Yb) _N	(La/Sm) _N	(Ce/Yb) _N	(Ce/Sm) _N	(Eu/Yb) _N	Sum_REE
901002	1,04	7,45	3,56	5,39	2,58	1,82	71,26
901004	1,26	8,2	4,35	5,53	2,93	1,87	63,85
901032	1,93	4,88	2,42	4,18	2,07	3,39	135,25
901033	0,71	11,24	4,17	8,86	3,29	1,62	111,65
901003	0,72	5,35	2,59	4,61	2,23	1,25	102,47

Figura 15. Diagramas multielementales de rocas de la Tonalita de San Martín. A) Diagrama de REE normalizado respecto al condrito (Nakamura, 1974); B) Diagrama multielemental normalizado al NMORB (Sun y McDonough, 1989) En negro, rocas de la facies normal de la Tonalita de San Martín, y en verde, roca de dique

5.3. Discriminación del ambiente tectónico

Las anomalías negativas de Nb, Ti y P en el diagrama multielemental de elementos traza normalizados al condrito de Nakamura (1974) son características de rocas relacionadas con ambientes de subducción, que en este caso corresponde a rocas de arco magmático calcoalcalino. El empobrecimiento de las LREE hacia las HREE muestra como resultado patrones comparables al de rocas generadas en ambientes de arcos de margen continental.

Figura 16. Diagramas de discriminación del ambiente tectónico correspondientes a rocas de la Tonalita de San Martín

El símbolo azul corresponde a una roca de dique). A) Pearce (2008) B) Pearce *et al.* (1984) Según el diagrama de Pearce (2008), las muestras de la Tonalita de San Martín están por encima del campo de las rocas de corteza oceánica NMORB-OIB, lo que sugiere fusión de una fuente de manto con influencia de un componente cortical reciclado, en un ambiente de arco. En el diagrama de Pearce *et al.* (1984), las muestras grafican en el campo de los granitos de arco volcánico (figuras 16 A y B). La presencia de minerales como hornblenda y biotita en las facies más básicas y menos diferenciadas del plutón sugiere aporte mantélico.

En el diagrama de Frost *et al.* (2001), las rocas graníticas pertenecen al campo de los granitos ferrosos, junto con las rocas de dique (figura 17).

6. Posición estratigráfica y edad

La Tonalita de San Martín está en contacto intrusivo, al oriente, con la Anfibolita de Sanín Villa, y al occidente está intruida por riolitas subvolcánicas (Arias y Vargas, 1978), probablemente relacionadas a la Formación Noreán, y se presenta cubierta por depósitos cuaternarios.

A la fecha, la Tonalita de San Martín no ha sido datada por métodos radiométricos, y Arias y Vargas (1978) estimaron que su edad correspondía al Triásico, basados en su correlación con otras masas tonalíticas del Macizo de Santander y suponiendo que es más joven que el evento metamórfico de la Formación Silgará, del Paleozoico inferior.

En este proyecto se analizaron tres muestras distribuidas a lo largo del plutón. Los resultados finales y la localización de las muestras se presentan en la figura 1 y en la tabla 8, mientras que el conjunto de análisis llevados a cabo en cada muestra se incluyen en el anexo 1. La separación de minerales densos se realizó en el Laboratorio Químico del Servicio Geológico Colombiano, sede

Figura 17. Diagrama de clasificación para la Tonalita de San Martín Fuente: Frost *et al.* (2001) y autores

Medellín, utilizando separación hidrodinámica, magnética y, por último, el montaje de los circones.

Las muestras LMC-088 y LMC-090B se dataron por el método U/Pb LA-ICPMS en circones en el Laboratorio de Ablación Laser del Servicio Geológico Colombiano, que cuenta con un equipo de ablación laser Photon Machines, Laser Excimer de 193 nm y espectrómetro ICP-Masas Element 2. Se utilizaron como patrones de referencia Plesovice, 91500 y M, Dromedry. Los puntos analizados son de 20 micrones, y la reducción de datos se realizó utilizando el programa Iolite IGROpro y un espectrómetro de masas. En la línea base 0 s-38 s y en las muestras y patrones de referencia 32,5 s-8 s se utilizaron, como lapsos de integración, tiempos que concuerdan con el tiempo de corrida de los análisis. Los isótopos utilizados en la integración manual son ²³⁸U, Pb²⁰⁶ y Pb²⁰⁴. Los resultados finales corresponden a la media de los datos obtenidos luego de aplicar una discriminación de datos a dos desviaciones estándares. El procesamiento se lleva a cabo con las rutinas de Isoplot V3.5, y la corrección por plomo común se realiza de acuerdo con el modelo de evolución según Stacey y Krammers (1975).

La muestra TCR-395A fue enviada al Laboratorio de Estudios Isotópicos (LEI) del Centro de Geociencias de la Universidad Nacional Autónoma de México (UNAM), campus Juriquilla, donde se aplicó la siguiente metodología: las concentraciones de U y Th fueron calculadas empleando un circón estándar externo, de acuerdo con Paton et al. (2010). Las incertidumbres de sigma 2 propagadas se lograron según Paton et al. (2010). Las proporciones 207Pb/206Pb, edades y errores se calcularon según Petrus y Kamber (2012). Los puntos analizados son de 23 micrómetros, y se estudiaron utilizando un protocolo de análisis modificado de Solari et al. (2010). Los datos se midieron empleando un Thermo X series QICPMS acoplado a un Resonetics, estación de trabajo láser Excimer Resolución M050. Se realizó un análisis estadístico con el fin de mejorar el rango de confiabilidad de la edad proporcionada por el Laboratorio, teniendo en cuenta la relación [(207Pb/235U)-(206Pb/238U)/206Pb/238U), eliminando los datos de circones con valores discordantes que estuvieran, en general, por encima de 15% y errores de más de 5%. Los gráficos de concordia e histogramas se elaboraron con el software de Isoplot/Ex vers, 4,15 (Ludwig, 2012).

Tabla 8. Resumen de los resultados de geocronología obtenidos en las muestras de la Tonalita de San Martín por el método LA-MC-ICP-MS U/Pb en circones

IGM-SD	N.° campo	npo W N		Plancha	Clasificación	Edad	N.° Zr
901032	TCR-395A	1075180	1368544	86	Tonalita	198,9±1,8	45
901002	LMC-088	1069983	1392339	86	Granodiorita	198,0±2,8	55
901004	LMC-090B	1070179	1385799	86	Dique-fenodacita	197,1±2,0	38

De las facies normales del intrusivo se dataron las muestras TCR-395A y LMC-088, localizadas en los extremos sur y norte, respectivamente. La muestra TCR-395A corresponde a una tonalita deformada. Los circones tienen un tamaño que varía entre 1 80 y 200 mm, de forma corta, ovalada a prismática. Algunos cristales de circón presentan alargamiento marcado, con zonación concéntrica, y en ellos no se observa una relación aparente entre morfología interna y tamaño.

Los análisis efectuados revelan homogeneidad, ya que todos los zircones son concordantes y exhiben un rango limitado. Se realizó un filtro de los datos para descartar los circones con valores discordantes (discordancia > 15%) y errores de edad corregida > 5, con el fin de mejorar el rango de confiabilidad de la edad con un rango de edades que varía entre 184,8 y 205,1 Ma, lo que arroja una edad promedio ponderada de 198,9±1,8 Ma, n = 20 y MSWD = 1,14, considerando esta la edad de cristalización de la roca (figura 18).

Las razones Th/U en circones de la muestra TCR-395A varían entre 0,7 y 1,2, relación que sugiere cristalización ígnea (Rubatto, 2002).

Se ha datado una segunda muestra de granodiorita (LMC-088), localizada al norte del intrusivo. Los circones son transparentes, predominan los prismáticos cortos, pero hay prismáticos largos con forma de tallos, euhedrales, de tamaños entre 50 y 100 mm. La imagen de catodoluminiscencia (CL) revela que los circones tienen estructura interna concéntrica (zonación oscilatoria) típica de cristales ígneos, algunos con núcleos luminiscentes, pero también hay cristales con núcleos menos luminiscentes que los bordes.

Esta edad presenta una agrupación a lo largo y en la parte baja de la discordia y algunos pocos datos tocan la curva de concordia, lo que indica que los circones fueron afectados por pérdida de plomo. El grupo más consistente lo conforman n = 19 datos, con errores de edad corregida < 5%, con una edad discordante promedio ponderada de 198,0±2,8 Ma, y MSWD = 2,2, similar a la edad concordante obtenida en la muestra TCR-395A. La edad de la muestra LMC-088 se interpreta con cautela, debido a que es discordante, como una edad de cristalización de la roca (figura 19), por estar dentro del rango de cristalización de la Tonalita de San Martín y de otros plutones del Macizo de Santander. La relación Th/U de los circones es cercana a 1 y varía entre 0,5 y 1,2, valores que se asocian a circones que se formaron por cristalización ígnea (Rubatto, 2002).

La tercera muestra analizada (LMC-090B) corresponde a un dique de fenodacita que intruye las facies normales de la Tonalita de San Martín y se localiza en la parte central del cuerpo. Los circones son euhedrales prismáticos alargados con forma de tallos, translúcidos, con escasas inclusiones, algunos de tonalidad amarillenta, algo fracturados. Las imágenes de catodoluminiscencia (CL) evidencian zonación oscilatoria, con núcleo gris claro.

180

190

200

210

170

0,1

0,01

160

A) Gráfico de concordia. B) Gráfico de edad promedio ponderada C). Gráfico de relación Th/U vs. edad en circones de la muestra TCR-395A

220

Figura 19. Calculo de la edad de la muestra LMC-088 A) Gráfico de concordia. B) Gráfico de edad promedio ponderada con imagen de catodoluminiscencia de algunos circones de la muestra

La muestra LMC-090B tiene un amplio rango de edades, que varían entre 187 y 202 Ma, tomando como grupo más coherente n=13 circones, que arrojaron una edad promedio ponderada de 197,1 ±2,0 Ma, con MSWD=1,15, que se interpreta como la edad de cristalización de la roca de dique (figura 20). La muestra LMC-090B presenta un núcleo de circón que arrojó una edad de 999,26 ± 36,8 Ma (Neoproterozoico) (figura 20), con relación Th/U<0,1, que sugiere que corresponde a un núcleo heredado de un xenocristal metamórfico. Las relaciones Th/U en el resto de circones están por encima de 0,3, lo que sugiere origen ígneo.

6.1. Geoquímica de elementos traza en circones

El análisis de ICP-MS permitió determinar la abundancia de los elementos traza de cada circón de la muestra TCR-395A (anexo B). Los valores de REE se normalizaron al condrito (McDonough y Sun, 1995) y se calcularon los valores teóricos de Pm* y Tm*. En el análisis de los elementos traza se tienen en cuenta las edades obtenidas en cada circón y cuáles fueron descartados por tener discordancias > 15%.

En la muestra TRC-395A se observa un patrón de REE con anomalía positiva de Ce y negativa de Eu moderadamente pronunciada (figura 21A), que son características de circones ígneos (Hoskin y Schaltegger, 2003), provenientes de granitoides ígneos de tipos I, A y S (Wang *et al.*, 2012).

El patrón de REE muestra una inclinación positiva entre Lu y Gd, enriquecimiento en HREE, con anomalía negativa moderada de Eu y positiva de Ce, patrón que es más inclinado que en circones metamórficos (Rubatto, 2017) y similar a circones de origen ígneo. Los circones de la muestra TCR-395A presentan contenidos de Pb entre 1,02 y 3,89, Th entre 19,9 y 104 ppm, la relación Th/ Pb varía de 19,4 a 43,94; las concentraciones de Y varían de 938 a 3.208 ppm, con una anomalía negativa de Eu $(Eu/Eu^* = 0, 16 a 0, 54)$ y valores de $(Lu)_N$ en el rango comprendido entre 3.528 y 7.882. Los granitos de tipo I, según Wang et al. (2012), presentan contenidos de Pb < 25 ppm, Th entre 34 y 1.746 ppm, Th/Pb de 14 a 130, (Lu) Nentre 1.330 y 15.574, anomalía negativa de Eu (Eu/Eu* = 0,14 a 0,34) y concentraciones de Y entre 493 y 7.833 ppm (tabla 9).

Los circones de la muestra TCR-395A grafican en el diagrama de Th vs. Pb en el campo de los granitos tipo I (diagrama modificado de Wang *et al.*, 2012) (figura 21B), con algunos pocos circones por fuera del campo. Los contenidos de Pb y Th en circones están en el rango propuesto por Wang *et al.* (2012), con valores bajos de Pb.

197,8+/-7 000 197,8+/-7 000 191+/-5

Figura 20. Calculo de la edad de la muestra LMC-090B

A) Gráfico de concordia. B) Gráfico de edad promedio ponderada. C) Imagen de catodoluminiscencia de algunos circones

Figura 21. Diagrama REE con valores McDonough y Sun (1995) correspondiente a la muestra TCR-395A de la Tonalita de San Martín y diagrama modificado de Wang et al. (2012)

	Tabla 9. Com	paración de valo	ores de elementos	traza reportados i	por Wang et al.	(2012), con	los encontrados en la	a Tonalita de San Martín
--	--------------	------------------	-------------------	--------------------	-----------------	-------------	-----------------------	--------------------------

	Pb	Th	Th/Pb	Y	Eu/Eu*	(Lu) _N
Tonalita de San Martín	1,02-3,89	19,9-104	19,4-43,94	938-3.208	0,16-0,54	3.528-7.882
Granitos tipo I (Wang et al., 2012)	< 25	34-1746	14 a 130	493-7.833	0,14-0,34	1.330-15.574

7. Correlaciones

La posición geotectónica de la Tonalita de San Martin, asociada con los datos geocronológicos U/Pb, presentan un problema de correlación con dos eventos de magmatismo de arco: el magmatismo del Macizo de Santander característicamente peraluminoso y el magmatismo del Valle Superior del Magdalena-serranía de San Lucas-Sierra Nevada de Santa Marta, que varía de metaluminoso, en las facies iniciales, a peraluminoso en las facies finales.

La posición geotectónica no es muy clara todavía, puesto que dependerá de las edades que se obtengan del basamento metamórfico, en este caso específico, las edades en la unidad denominada Anfibolita de Sanín Villa. En caso de obtener edades proterozoicas en la Anfibolita de Sanín Villa, la Tonalita de San Martín se habría emplazado en el basamento Neo a Mesoproterozoico del Terreno Chibcha y la correlación se establecería con el magmatismo jurásico del valle superior del Magdalena-serranía de San Lucas-Sierra Nevada de Santa Marta; en caso de obtener edades del Paleozoico, la correlación se establecería con los plutones triásico-jurásicos del Macizo de Santander.

La Tonalita de San Martín se correlaciona por edad con ambos plutonismos, es decir, la edad está en los pulsos finales del magmatismo peraluminoso del Macizo de Santander y en los pulsos iniciales del magmatismo metaluminoso a peraluminoso del valle superior del Magdalena-serranía de San Lucas-Sierra Nevada de Santa Marta.

En este sentido, la correlación con los plutones del Macizo de Santander se establecería con el Monzogranito de Santa Bárbara (Rodríguez *et al.*, 2018), el Monzogranito de La Corcova (Rodríguez *et al.*, 2016); el Monzogranito de Rionegro (Van der Lelij, 2013; Arango *et al.*, 2016); la Tonalita y Granodiorita de Páramo Rico (Van der Lelij, 2013; Mantilla *et al.*, 2013; Rodríguez *et al.*, 2017); el Batolito de Mogotes (Correa Martínez *et al.*, 2016) y el Granito de Pescadero (Zapata *et al.*, 2016) (tabla 10).

Tabla 10. Edades U/Pb en circones de cuerpos plutónicos del Macizo de Santander

N. muestra	w	N	Clasificación	Unidad	Edad
AMC-0162	1137867	1206436	Monzogranito deformado	Batolito de Mogotes	189,1±3,6
GZ-6831	1140363	1206394	Cuarzomonzodiorita deformada	Batolito de Mogotes	193,7±1,3
LMC-075	1131045	1208090	Monzogranito	Batolito de Mogotes	195,7±3,9
MIA-638	1126040	1217144	Monzogranito	Batolito de Mogotes	200,4±2,2
TCR-376	1124265	1231161	Monzogranito	Batolito de Mogotes	202,5±1,3
MIA-636	1122841	1230947	Monzogranito micrográfico	Batolito de Mogotes	205,4±3,0
GZ-6823	1117247	1257175	Monzogranito	Granito de Pescadero	194,8±3,2
GZ-6824	1119450	1253741	Monzogranito	Granito de Pescadero	197,3±2,4
AMC-0131	1114638	1284010	Sienogranito	Monzogranito de La Corcova	192,5±2,6
JGB-456B	1126023	1260523	Cuarzodiorita	Monzogranito de La Corcova	201,6±4,0
LMC-077	1112260	1283759	Monzogranito	Monzogranito de La Corcova	204,8±6,1
MIA-630B	1114060	1270011	Cuarzodiorita	Monzogranito de La Corcova	202,7±1
MIA-650B	1099011	1313300	Sienogranito	Monzogranito de Rionegro	184,1±2,3
LMC-082	1087830	1343414	Diorita	Monzogranito de Rionegro	189,9±1,6
GR-6743	1083826	1397465	Granodiorita-monzogranito	Monzogranito de Rionegro	195,9±1,6
GZ-6848A	1094474	1337677	Granodiorita	Monzogranito de Rionegro	196,6±2,1
LMC-084	1088404	1339424	Granodiorita con hornblenda	Monzogranito de Rionegro	200,8±1,9
AMC-0137	1126567	1238901	Monzogranito	Monzogranito de Santa Bárbara	191,7±1,2
JGB-457A	1126936	1261464	Monzogranito	Monzogranito de Santa Bárbara	195,1±1,9
GR-6719	1138272	1285445	Monzogranito	Monzogranito de Santa Bárbara	196,8±2,0
GZ-6821	1129543	1257204	Monzogranito	Monzogranito de Santa Bárbara	198,0±2,7
GR-6718	1135523	1280563	Monzogranito	Monzogranito de Santa Bárbara	203,8±2,7
GR-6729	1135094	1204469	Fenodacita	Riolita de San Joaquín	201,0±2,1
MIA-641	1141203	1206200	Riolita porfídica	Riolitas El Uvo	197,2±1,6
TCR-395A	1075180	1368544	Metatonalita	Tonalita de San Martín	197,9±3,0
LMC-088	1069983	1392339	Granodiorita	Tonalita de San Martín	198,0±2,8
TCR-363	1130187	1289698	Granodiorita	Tonalita de Páramo Rico	206,8±1

8. Localidad tipo

Para la Tonalita de San Martín se propone como localidad tipo la quebrada Torcoromita, en su parte norte, en el municipio de San Martín, plancha 86, Ábrego. En este sector, la unidad muestra afloramientos continuos de fácil acceso.

9. Génesis

Los mayores valores de los elementos litófilos de alto radio iónico (LILE) Cs, Ba y Th indican que la génesis del plutón tiene afinidad con márgenes convergentes. Valores mayores en Sr, K, Ba y Rb y anomalías negativas de Nb, Ti y P son características de arcos continentales relacionados con ambientes de subducción; además, presentan anomalía negativa de Nb con respecto al Th y Ce, signatura geoquímica típica de magmas originados en ambientes tectónicos relacionados a arcos calcoalcalinos.

La Tonalita de San Martín se correlaciona por edad con dos eventos de plutonismo regionales diferentes; es decir, la edad está relacionada con los pulsos finales del magmatismo peraluminoso del Macizo de Santander y los pulsos iniciales del magmatismo metaluminoso a peraluminoso del valle superior del Magdalena-serranía de San Lucas-Sierra Nevada de Santa Marta. La localización geotectónica corresponde al límite de estos dos eventos. La afinidad de las muestras analizadas de la Tonalita de San Martín con magmas peraluminosos sugiere una probable correlación con el magmatismo triásico-jurásico del Macizo de Santander, correlación que se fundamenta en los datos de Rodríguez et al. (2017), donde se muestra que los pulsos iniciales del magmatismo jurásico del valle superior del Magdalena inicialmente formaron plutones metaluminosos y evolucionaron a plutones peraluminosos.

La Tonalita de San Martín presenta rocas que varían entre dioritas y granitos, lo cual sugiere diferenciación magmática y cristalización fraccionada, con presencia de minerales fraccionados como hornblenda y plagioclasa. A diferencia de otros plutones triásico-jurásicos del macizo de Santander (MS), la Tonalita de San Martín presenta escasa herencia en los circones analizados (un solo núcleo de edad neoproterozoica), mientras los demás plutones del MS presentan xenocristales con edades que van desde 1.873,1 ±105 (Mesoproterozoico) hasta aproximadamente 220 Ma (Triásico inferior), lo que sugiere un posible emplazamiento de este intrusivo asociado al basamento neoproterozoico del Terreno Chibcha. La Tonalita de San Martín está constituida por rocas con ortosa pertítica, textura común en rocas plutónicas que se forman en ambientes de temperaturas intermedias.

10. Recursos minerales

La alteración meteórica de este cuerpo intrusivo es profunda y desarrolla perfiles de suelo y saprolito espeso, con desarrollo de saprolito de contextura arenosa, que permite localmente la extracción de material que se utiliza en la construcción como arena de mortero.

La Tonalita de San Martín presenta abundantes fracturas y un color de la roca blanco moteado de negro, que hacen de este cuerpo poco atractivo para piedra ornamental.

La Tonalita de San Martín no exhibe características petrográficas y geoquímicas que indiquen una alteración hidrotermal en los sitios visitados. Con el fin de evaluar el potencial mineral de la unidad se interpretaron algunos datos de los resultados de química de roca total a partir de las cinco muestras analizadas, utilizando diagramas que son reconocidos como indicadores de fertilidad de las rocas. En el diagrama de Rb versus Ba (figura 22), adaptado por El-Sheshtawi *et al.* (1999) del diagrama original de Mason (1966), se aprecia que las muestras pertenecen al campo de los granitos estériles.

Figura 22. Diagrama de variación de Rb versus Ba en roca total (Mason, 1966 adaptado por El-Sheshtawi *et al.*, 1999) El símbolo azul corresponde a una roca de dique

Fuente: Mason (1966), adaptado por El-Sheshtawi *et al.* (1999) y autores

Conclusiones

Este catálogo presenta nueva información de la Tonalita de San Martín y mejora el conocimiento petrográfico, litogeoquímico y geocronológico del cuerpo plutónico.

Petrográficamente, las muestras de esta unidad litológica tienen una composición variable entre dioritas-cuarzodioritas-cuarzomonzonitas y tonalitas-granodioritas-monzogranitos. Están compuestas principalmente por plagioclasa (22% a 61%), pueden tener feldespato alcalino (0% a 49%) y, en menor proporción, cuarzo (4% a 48%), hornblenda, biotita y, en rocas intermedias, clinopiroxeno. Como minerales accesorios presentan apatito, opacos, titanita y allanita.

Los valores de SiO₂ varían entre 65,2 wt% y 74,96 wt%; el Al₂O₃, Fe₂O₃, MgO, Na₂O y CaO disminuye con el aumento de SiO₂; el K₂O varía entre 1,69 wt% y 3,26 wt%; el CaO varía entre 0,41 wt% y 2,05 wt%; MgO < 1 wt% y TiO₂ < 0,7 wt%; las razones K₂O/Na₂O > 1; presentan contenido de álcalis (Na₂O + K₂O)> 7, características que sugieren cristalización fraccionada de hornblenda y plagioclasa.

Al analizar el comportamiento de los patrones de tierras raras (REE), las rocas tienen un patrón de REE no paralelo, con un empobrecimiento progresivo de las tierras raras. Varía el patrón de una muestra a otra y solamente presentan en común la pendiente negativa, que sugiere que se generaron en un ambiente de arco continental.

La Tonalita de San Martín muestra empobrecimiento de los elementos inmóviles Nb, Sr, Ti y P, que puede corresponder a separación de fases minerales accesorias como titanita, rutilo, circón y apatito, reflejo de la evolución magmática (Winter, 2001). Los mayores valores de los elementos litófilos Cs, Ba y Th indican una afinidad de corteza continental (márgenes convergentes), y las anomalías negativas de Nb, Ti y P son características de arcos magmáticos relacionados con ambientes de subducción, con empobrecimiento progresivo.

Las edades de cristalización obtenidas por el método U/Pb LA-ICPMS en circones de dos rocas de la masa principal indican una edad de cristalización entre 198,9±1,8 Ma y 198,0±2,8 Ma, y presencia de diques dacíticos que cristalizaron hacia 197,1±2,0 Ma.

Referencias

- Arango, M. I., Rodríguez, G., Zapata G. y Correa, A. M. (2016). Catálogo Monzogranito de Rionegro, cordillera Oriental, departamento Santander. Medellín: Servicio Geológico Colombiano.
- Arias, A. y Vargas, R. (1978). Geología de las planchas 86, Ábrego, y 97, Cáchira, departamento de Santander. Memoria explicativa, Escala 1:100.000. Bogotá: Servicio Geológico Colombiano.
- Clavijo, J. (1994). Mapa geológico generalizado del departamento de Norte de Santander. Memoria explicativa. Escala 1:250.000. Informe. Ingeominas.
- Clavijo, J., Mantilla, F. L. C., Pinto, J., Bernal, L. y Pérez, A. (2008). Evolución geológica de la serranía de San Lucas, norte del valle medio del Magdalena y noroeste de la cordillera Oriental. *Boletín de Geología*, 30 (1), 45-62.
- Cordani, U. G., Cardona, A., Jiménez, D. M., Liu, D. y Nutman, A. P. (2005). Geochronology of Proterozoic basement inliers in the Colombian Andes: Tectonic history of remnants of a fragmented Grenville belt. *Geological Society, London, Special Publications*, 246, 329-346. https://doi.org/10.1144/GSL. SP.2005.246.01.13
- Correa Martínez, A. M., Rodríguez, G., Arango, M. I., Zapata, G. y Bermúdez J. G. (2016). *Catálogo de unidades litoestratigráficas de Colombia: Batolito de Mogotes*. Medellín: Servicio Geológico Colombiano.
- Droop, G. (1987). A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. *Mineralogical Magazine*, 51 (361), 431-435. https://doi.org/10.1180/minmag.1987.051.361.10
- El-Sheshtawi, Y. A., Youssef, F., Ammar, F. A., Hassaan, M. M. y Sakr, S. M. (1999). Petrography and geochemistry of some granites and their metavolcanic country rocks in the Central Eastern Desert, Egypt. The proceeding of 1st Seminar of nuclear raw material and their technology. Cairo, Egypt, 1-3.
- Etayo, F., Barrero, D., Lozano, H., Espinosa, A., González, H., Orrego, A., Ballesteros, I., Forero, H. y Ramírez, C. (1983). *Mapa de terrenos geológicos de Colombia*. Publicaciones Geológicas Especiales del Ingeominas, n.º 14, 235.

- Frost, R. B., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. y Frost, C. D. (2001). A geochemical classification for granitic rocks. *Journal of Petrology*, 42 (11), 2033-2043. https://doi.org/10.1093/petrology/42.11.2033
- Girardi, D. J. (2008). Evolution of magmas and magma sources to the Coast Mountains batholith, British Columbia, Canada, reflected by elemental and isotopic geochemistry [MSc. Thesis]. University of Arizona.
- Goldsmith, R., Marvin, R. F. y Mehnert, H. H. (1971). Radiometric ages in the Santander Massif, Eastern Cordillera, Colombian Andes. U.S. Geological Survey Professional Paper, 750 (D), 44-49.
- Hastie, A. R., Kerr, A. C., Pearce, J. A. y Mitchell, S. F. (2007). Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. *Journal of Petrology*, 48 (12), 2341-2357. https://doi. org/10.1093/petrology/egm062
- Hoskin, P. W. y Schaltegger, U. (2003). The composition of zircon and igneous and metamorphic petrogenesis. *Reviews in Mineralogy and Geochemistry*, 53 (1), 27-62. https://doi.org/10.2113/0530027
- International Subcommision on Stratigraphic Classification. (1987). Stratigraphic classification and nomenclature of igneous and metamorphic rock bodies. *GSA Bulletin*, 99 (3), 440-442. https://doi.org/10.1130/0016-7606(1987)99<440:SCANOI>2.0. CO;2
- International Subcommision on Stratigraphic Classification. (1994). International Stratigraphic Guide: A guide to stratigraphic classification, terminology and procedure. 2nd ed. Boulder: Geological Society of America. https://doi.org/10.1130/9780813774022
- Irvine, T. N. y Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rock. *Canadian Journal of Earth Sciences*, 8 (5), 523-548. https://doi.org/10.1139/e71-055
- Janoušek, V., Farrow, C. M. y Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing Geochemical Data Toolkit (GCDkit). *Journal of Petrology*, 47 (6), 1255-1259. https://doi.org/10.1093/petrology/egl013
- Leal Mejía, H. (2011). *Phanerozoic gold metallogeny in the Colombian Andes: A tectono- magmatic approach* [Ph. D. thesis]. Universitat de Barcelona.

- Ludwig, K. R. (2008). *Isoplot version 4.15: A geochronological toolkit for Microsoft Excel.* Special Publication n.° 4. Berkeley Geochronology Center.
- Ludwig, K. R. (2012). User's Manual for Isoplot 3.75-4.15. A Geochronological Toolkit Microsoft Excel. Special Publication n.° 5. Berkeley Geochronology Center.
- Mantilla, L. C., Bissig, T., Valencia. V. y Hart , C. (2013). The magmatic history of the Vetas-California mining district, Santander Massif Eastern Cordillera, Colombia. *Journal of South American Earth Scien*ces, 45, 235-249. https://doi.org/10.1016/j.jsames.2013.03.006
- Mantilla, L. C., García, C. A. y Valencia, V. (2016). Propuesta de escisión de la llamada "Formación Silgará" (Macizo de Santander) Colombia, a partir de edades U/Pb en circones detríticos. *Boletín de Geología*, 38 (1), 33-47. https://doi.org/10.18273/revbol.v38n1-2016002
- Mason, B. (1966). *Principles of geochemistry*. New York: John Wileys & Sons.
- McDonough, W. F. y Sun S. S. (1995). The composition of the Earth. *Chemical Geology*, 120 (1-3), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
- Middlemost, E. (1994). Naming materials in magma-igneous rock system. Earth-Science Reviews, 37 (3-4), 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
- Middlemost, E. A. K. (1985). *Magmas and Magmatic Rocks. An Introduction to Igneous Petrology*. London, New York: Longman.
- Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. *Geochimica et Cosmochimica Acta*, 38 (5), 757-775. https://doi.org/10.1016/0016-7037(74)90149-5
- Ordóñez Cardona, O., Restrepo Álvarez, J. J. y Pimentel, M. M. (2006). Geochronological and isotopical review of pre-Devonian crustal basement of the Colombian Andes. *Journal of South American Earth Sciences*, 21 (4), 372-382. https://doi.org/10.1016/j. jsames.2006.07.005
- Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A. y Maas, R. (2010). Improved laser ablation U/Pb zircon geochronology through robust downhole fractionation correction. *Geochemistry Geophysics Geosystems*, 11 (3). https://doi.org/10.1029/ 2009GC002618

- Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. *Lithos*, 100 (1-4), 14-48. https://doi.org/10.1016/j. lithos.2007.06.016
- Pearce, J. A., Harris, N. W. y Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. *Journal of Petrology*, 25 (4), 956-983. https://doi.org/10.1093/petrology/25.4.956
- Peccerillo, A. y Taylor, T. S. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey. *Contributions to Mineralogy and Petrology*, 58 (1), 63-81. https://doi. org/10.1007/BF00384745
- Petrus, J. A. y Kamber, B. S. (2012). VizualAge: A novel approach to laser ablation ICP-MS U/Pb geochronology data reduction. *Geostandards and Geoanalytical Research*, 36 (3), 247-270. https://doi.org/10.1111/ j.1751-908X.2012.00158.x
- Restrepo Pace, P., Ruiz, J., Gehrels, G. y Cosca, M. (1997). Geochronology and Nd isotopic data of the Grenville-age rocks in the Colombian Andes: New constraints for late Proterozoic-early Paleozoic paleocontinental reconstructions of the Americas. *Earth and Planetary Science Letters*, 150 (3-4), 427-441. https://doi.org/10.1016/S0012-821X(97)00091-5
- Restrepo, J. J. y Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. *Episodes*, 11 (3), 189-193. https://doi.org/10.18814/epiiugs/1988/v11i3/006
- Restrepo, J. J., Ordóñez Carmona, O., Armstrong, R. y Pimentel, M. M. (2011). Triassic metamorphism in the northern part of the Tahamí Terrane of the Central Cordillera of Colombia. *Journal of South American Earth Sciences*, 32 (4), 497-507. https://doi.org/10.1016/j.jsames.2011.04.009
- Ríos, C., García, C. y Takusa, A. (2003). Tectono-metamorphic evolution of the Silgara Formation metamorphic rocks in the Southwestern Santander Massif, Colombian Andes. *Journal of South American Earth Sciences*, 16 (2), 133-154. https://doi. org/10.1016/S0895-9811(03)00025-7
- Rodríguez, Correa, A. M., Zapata, G. y Arango, M. I. (2018). Catálogo Monzogranito de Santa Bárbara, cordillera Oriental, departamento Santander. Medellín: Servicio Geológico Colombiano.

- Rodríguez, G., Correa, A. M., Zapata, G. y Arango, M. I. (2016). *Catálogo Cuarzomonzonita La Corcova, cordillera Oriental, departamento Santander*. Medellín: Servicio Geológico Colombiano.
- Rodríguez, G., Zapata, G., Correa Martínez, A. M. y Arango, M. (2017). *Caracterización del magmatismo triásico-jurásico del Macizo de Santander*. Medellín: Servicio Geológico Colombiano.
- Rubatto, D. (2002). Zircon trace element geochemistry: Partitioning with garnet and the link between U/ Pb ages and metamorphism. *Chemical Geology*, 184 (1-2), 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2
- Rubatto, D. (2017). Zircon: The metamorphic mineral. *Reviews in Mineralogy and Geochemistry*, 83 (1), 261-295. https://doi.org/10.2138/rmg.2017.83.9
- Shand, S. J. (1943). Eruptive rocks: Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. New York: John Wiley & Sons.
- Smith, J. V. y Brown, W. L. (1988). Feldspar minerals. I. crystal structures, physical, chemical and microtextural properties. Berlin: Springer-Verlag. https://doi. org/10.1007/978-3-642-72594-4
- Solari, L., Gómez Tuena, A., Bernal, J., Pérez Arvizu, O. y Tanner, M. (2010). U/Pb zircon geochronology with an integrated LA-ICP-MS microanalytical workstation: Achievements in precision and accuracy. *Geostandards and Geoanalytical Research*, 34 (1), 5-18. https://doi.org/10.1111/j.1751-908X.2009.00027.x
- Stacey, J. S. y Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a 2-Stage model. *Earth and Planetary Science Letters*, 26 (2), 207-221. https://doi.org/10.1016/0012-821X(75)90088-6
- Streckeisen, A. (1976). Classification and nomenclature of plutonic rocks. *Geologische Rundschau*, 63 (2), 773-786. https://doi.org/10.1007/BF01820841
- Sun, S. y Mcdonough, W. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. En A. Sanders y M. Norry (eds.), *Magmatism in oceanic basins*, vol. 42. Londres: The Geological Society. https://doi.org/10.1144/GSLSP.1989.042.01.19
- Van der Lelij, R. (2013). Reconstructing North-Western Gondwana with implications for the evolution of the lapetus and Rheic Oceans: A geochronological, thermo-

chronological and geochemical study [Tesis de doctorado]. Université de Genéve.

- Van der Lelij, R., Spikings, R., Ulianov, A., Chiaradia, M. y Mora, A. (2016). Palaeozoic to early Jurassic history of the Northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. *Gondwana Research*, 31, 271-294. https://doi.org/10.1016/j.gr.2015.01.011
- Vargas, R. y Arias, A. (1981). *Geología de la Plancha 86 Ábrego. Escala 1:100.000*, versión digital 2009. Ingeominas.
- Villaseca, C., Barbero, L. y Herreros. V. (1998). A reexamination of the typology of peraluminous granite types in intracontinental orogenic belts. *Earth* and Environmental Science Transactions of The Royal Society of Edinburgh, 89 (2), 113-119. https://doi. org/10.1017/S0263593300007045
- Wang, Q., Zhu, D. C., Zhao, Z. D., Guan, Q., Zhang, X. Q., Sui, Q. L., Chu Hu, Z. y Mo, X. X. (2012). Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. *Journal of Asian Earth Sciences*, 53, 59-66. https://doi.org/10.1016/j. jseaes.2011.07.027
- Ward, D., Goldsmith, R., Cruz, J. y Restrepo, A. (1973). Geología de los cuadrángulos H-12 Bucaramanga y H-13 Pamplona, departamento de Santander. *Bo-letín Geol*ógico, 21 (1-3), 1-132.
- Winter, J. (2001). An introduction to igneous and metamorphic petrology. New Jersey: Prentice Hall.
- Zapata, G., Correa, A. M., Rodríguez, G. y Arango, M. I. (2016). *Catálogo de unidades litoestratigráficas de Colombia: Granito de Pescadero*. Medellín: Servicio Geológico Colombiano.

ANEXO A

Edades U/Pb de la Tonalita de San Martín. Muestras TCR-395A (IGM 901032), LMC-088 (IGM-901002) y LMC-090B (IGM 901004)

TCR-395A. Análisis isotópicos U/Pb en circón. Laboratorio de la UNAM

Zr	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Correlación de errores	²⁰⁸ Pb/ ²³² Th	±2s abs	Disc %	Error	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Best age	±2s
Zr-126	30	25.99	0.87	0.142	0.032	0.63	0.16	0.0331	0.0022	0.18729	0.0164	0.0035	56.612	11.47%	210	13	484	72	2180	250	2180	250
Zr-121	33,45	20,09	0,60	0,121	0,021	0,442	0,074	0,0293	0,0025	0,1136	0,017	0,0032	50,532	18,72%	186	16	376	52	1870	350	1870	350
Zr-127	52,7	50,5	0,96	0,084	0,011	0,36	0,044	0,0312	0,0011	0,07401	0,01138	0,0009	35,327	3,44%	198	6,8	306	31	1220	220	197,9	6,8
Zr-147	86,4	49,7	0,58	0,0807	0,0099	0,37	0,05	0,0324	0,001	0,03504	0,0159	0,0014	35,110	3,11%	206	6,4	317	34	1150	220	205,7	6,4
Zr-134	43,51	31,13	0,72	0,082	0,01	0,385	0,044	0,0345	0,0016	0,091984	0,0158	0,0013	32,708	4,44%	219	9,7	325	32	1140	270	218,7	9,7
Zr-137	157	295	1,88	0,0744	0,0046	0,286	0,019	0,027	0,0008	0,040921	0,00779	0,00048	32,134	2,85%	172	4,9	253	15	1080	130	171,7	4,9
Zr-129	60,1	36,76	0,61	0,073	0,023	0,31	0,15	0,0326	0,0017	0,39084	0,0133	0,0035	23,616	5,31%	207	11	271	84	940	340	207	11
Zr-139	40,92	38,7	0,95	0,069	0,013	0,298	0,058	0,0316	0,0012	0,043846	0,01132	0,00097	20,791	3,59%	200	7,2	253	45	770	400	200,4	7,2
Zr-116	45	28,4	0,63	0,063	0,011	0,272	0,041	0,0307	0,0015	0,08091	0,0106	0,0011	18,708	4,92%	195	9,6	240	32	650	330	195,1	9,6
Zr-125	29,33	28,4	0,97	0,066	0,031	0,29	0,16	0,0317	0,0023	0,045102	0,0112	0,0028	17,959	6,97%	201	14	245	89	680	470	201	14
Zr-141	37,71	23,46	0,62	0,0622	0,0083	0,253	0,034	0,0305	0,0016	0,094865	0,0125	0,0011	16,147	5,01%	194	9,7	231	27	660	260	193,7	9,7
Zr-140	64,7	62,7	0,97	0,06	0,05	0,24	0,43	0,0314	0,0036	0,33331	0,0102	0,0093	9,545	11,06%	199	22	220	160	460	520	199	22
Zr-122	99,3	57,7	0,58	0,0552	0,005	0,217	0,019	0,02908	0,0009	0,016108	0,01002	0,00079	6,667	3,19%	185	5,9	198	15	370	180	184,8	5,9
Zr-130	70	70	1,00	0,0526	0,0067	0,221	0,029	0,0297	0,0011	0,349	0,00942	0,00073	5,750	3,50%	189	6,6	200	23	240	250	188,5	6,6
Zr-120	80,4	73,6	0,92	0,054	0,0065	0,214	0,023	0,0306	0,001	0,085716	0,01058	0,00079	0,256	3,29%	195	6,4	195	19	280	230	194,5	6,4
Zr-117	55,82	79,1	1,42	0,0518	0,0064	0,216	0,025	0,0308	0,0014	0,001299	0,00961	0,00062	2,400	4,35%	195	8,5	200	21	250	260	195,2	8,5
Zr-148	31,8	19,9	0,63	0,049	0,0095	0,218	0,041	0,0308	0,0018	0,25211	0,01	0,0012	1,508	5,61%	196	11	199	33	90	350	196	11
Zr-144	63,3	66,6	1,05	0,0534	0,0091	0,224	0,035	0,031	0,0012	0,11906	0,0105	0,0007	1,650	3,66%	197	7,2	200	30	130	340	196,7	7,2
Zr-149	70,3	78,7	1,12	0,0557	0,0081	0,247	0,033	0,03101	0,0009	0,026328	0,01128	0,00074	10,545	3,00%	197	5,9	220	27	410	290	196,8	5,9
Zr-135	52,4	69,6	1,33	0,0551	0,0072	0,237	0,034	0,0311	0,0016	0,072487	0,01076	0,00086	11,659	5,08%	197	10	223	28	390	240	197	10
Zr-142	49,7	34,6	0,70	0,0585	0,0086	0,245	0,033	0,0311	0,0013	0,006182	0,01165	0,00098	11,570	4,01%	197	7,9	223	27	390	310	197,2	7,9
Zr-115	115,4	100,2	0,87	0,052	0,0054	0,229	0,024	0,03127	0,0009	0,017319	0,00907	0,00063	5,476	2,87%	199	5,7	210	19	370	200	198,5	5,7
Zr-123	48,2	39,5	0,82	0,0536	0,0076	0,233	0,032	0,0314	0,0013	0,22372	0,01035	0,00088	4,737	4,02%	199	8	209	26	290	290	199,1	8
Zr-146	70,4	58,1	0,83	0,0531	0,0073	0,23	0,031	0,0314	0,001	0,20615	0,01023	0,00081	6,038	3,26%	199	6,5	212	26	320	280	199,2	6,5
Zr-136	79,8	63,5	0,80	0,0512	0,0055	0,221	0,021	0,0314	0,0011	0,044325	0,01063	0,00075	0,846	3,31%	199	6,6	201	17	230	210	199,3	6,6
Zr-128	58,4	33	0,57	0,0518	0,0067	0,232	0,029	0,0314	0,0014	0,15443	0,01037	0,00095	4,593	4,26%	199	8,5	209	23	240	270	199,4	8,5
Zr-133	45,51	38,8	0,85	0,0498	0,0076	0,223	0,03	0,0315	0,0014	0,12499	0,00979	0,00089	0,498	4,40%	200	8,8	201	25	280	310	200	8,8
Zr-132	88	104	1,18	0,054	0,0057	0,226	0,021	0,0315	0,0011	0,13815	0,00974	0,00058	2,864	3,50%	200	7	206	17	300	220	200,1	7
Zr-119	77	70,1	0,91	0,0519	0,0065	0,232	0,024	0,0318	0,0011	0,10655	0,00938	0,00069	4,000	3,52%	202	7,1	210	20	270	230	201,6	7,1
Zr-131	50,4	48,7	0,97	0,057	0,011	0,251	0,04	0,032	0,0012	0,2824	0,0098	0,0013	12,208	3,65%	203	7,4	231	35	460	300	202,8	7,4
Zr-118	59,49	61,3	1,03	0,0475	0,008	0,202	0,036	0,032	0,0013	0,024965	0,0098	0,00079	-10,217	3,94%	203	8	184	29	-20	310	202,8	8
Zr-124	66,1	55,8	0,84	0,053	0,007	0,232	0,029	0,032	0,0012	0,043384	0,00956	0,00092	2,871	3,69%	203	7,5	209	24	300	250	203	7,5
Zr-145	82	96	1,17	0,0498	0,0071	0,217	0,03	0,0321	0,0013	0,086377	0,00973	0,00081	-1,900	4,07%	204	8,3	200	25	180	280	203,8	8,3
Zr-143	44,32	40,41	0,91	0,0469	0,0069	0,213	0,031	0,0323	0,0018	0,039969	0,01158	0,00086	-7,330	5,37%	205	11	191	26	50	290	205	11
Zr-138	100,1	82,7	0,83	0,0541	0,0057	0,237	0,024	0,0323	0,0011	0,10323	0,00967	0,00059	5,91743	3,36%	205	6,9	218	20	350	230	205,1	6,9

LMC-088. Análisis isotópicos U/Pb en circón, Laboratorio SGC

Identificación	Relación	Error interno	Relación	Error interno	Ajuste error	Error de	Edad	Edad Ph	0/	Edad		Poloción
Muestra	final Pb	Pb 207/U 235	final Pb	Pb 206/U 235	(datos	Pb 206/U 238 vs.	corregida Pb	207/U 235 (Ma)	discordia	corregida Pb	± 2σ	final U/Th
	207/0 235	a 2 D.E.	200/0 230	a 2 D.E.	negativos)	Pb 207/U 235	206/U 238 (Ma)			200/U 200 (Ma)		
LMC_088_46	5,4000	1,0000	0,08190	0,00960	0,7764	0,77641	250,45	1.860,00	642,66	250,45	56.68	3.14
LMC_088_22	2,9800	0,2400	0,05330	0,00230	0,6724	0,67236	191,01	1.361,00	612,52	191,01	18.87	1.28
LMC_088_40	2,2900	0,3000	0,04810	0,00280	0,6446	0,64456	200,73	1.147,00	471,43	200,73	18.64	1.02
LMC_088_48	2,0900	0,2000	0,04570	0,00190	0,7676	0,76764	192,47	1.087,00	464,77	192,47	14.96	2.22
LMC_088_11	1,6900	0,1100	0,04370	0,00140	0,4606	0,46062	193,61	999,00	416,00	193,61	12.72	1.07
LMC_088_20	1,2900	0,1200	0,04140	0,00150	0,3752	0,37518	204,81	790,00	285,72	204,81	12.78	0.91
LMC_088_34	0,7380	0,0560	0,03176	0,00071	0,4358	0,43575	172,82	554,00	220,56	172,82	7.31	1.35
LMC_088_9	0,9100	0,1100	0,03780	0,00150	0,7368	0,73675	206,94	593,00	186,56	206,94	11.88	2.04
LMC 088 17	0,6740	0,0630	0,03300	0,00120	0,4564	0,45635	182,65	513,00	180,87	182,65	9.34	1.24
LMC 088 33	0.5120	0.0510	0.03350	0.00100	0.0213	0.02126	196.99	435.00	120.82	196.99	8.95	1.08
LMC 088 52	0.6130	0.0740	0.03470	0.00110	0.4957	0.49565	202.08	436.00	115.76	202.08	9.57	1.47
LMC 088 21	0.5190	0.0620	0.03310	0.00120	0.3023	0.30228	193.10	405.00	109.74	193 10	8.98	1.25
LMC_088_12	0,5100	0.0490	0.02420	0,00002	0.0192	0.01924	200 52	411.00	104.05	200 52	0.00	1.05
LINC_088_13	0,5240	0,0400	0,03420	0,00093	0,0103	0.00104	104.17	411,00	100.96	104.17	0.32	1.00
LMC_088_12	0,5220	0,0600	0,03324	0,00093	0,2912	0,29124	194,17	390,00	100,86	194,17	8.48	1.13
LMC_088_18	0,5160	0,0500	0,03560	0,00100	0,1102	0,11018	210,06	412,00	96,13	210,06	8.94	0.97
LMC_088_1	0,5140	0,0550	0,03450	0,00096	0,8146	0,81458	203,17	391,00	92,45	203,17	8.79	1.67
LMC_088_6	0,4850	0,0630	0,03350	0,00094	0,3597	0,35966	197,52	369,00	86,82	197,52	8.56	1.48
LMC_088_23	0,3620	0,0350	0,02923	0,00086	0,0916	0,09163	176,18	306,00	73,69	176,18	7.60	1.21
LMC_088_50	0,4230	0,0470	0,03345	0,00095	0,4343	0,43427	201,09	345,00	71,57	201,09	8.36	1.36
LMC_088_42	0,3500	0,0320	0,03079	0,00065	0,2040	0,20404	187,44	299,00	59,52	187,44	7.04	1.61
LMC_088_39	0,3430	0,0250	0,03110	0,00072	0,2529	0,25294	190,02	297,00	56,30	190,02	6.95	0.75
LMC_088_10	0,3450	0,0390	0,03194	0,00084	0,1778	0,17775	195,21	292,00	49,58	195,21	7.77	1.24
LMC_088_41	0,3190	0,0290	0,03044	0,00072	0,1000	-0,00086	186,67	278,00	48,92	186,67	7.03	1.40
LMC_088_27	0,3470	0,0300	0,03226	0,00063	0,4715	0,47154	198,29	289,00	45,75	198,29	7.03	1.53
LMC_088_31	0,3430	0,0400	0,03131	0,00074	0,1839	0,18391	192,50	280,00	45,45	192,50	7.71	1.29
LMC_088_29	0,3164	0,0094	0,03096	0,00036	0,7488	0,74877	191,22	277,90	45,33	191,22	5.90	3.20
LMC_088_15	0,3650	0,0360	0,03366	0,00085	0,1804	0,18035	205,46	298,00	45,04	205,46	7.72	1.14
LMC_088_26	0,3610	0,0390	0,03386	0,00088	0,2376	0,23758	207,36	296,00	42,75	207,36	8.32	1.49
LMC_088_25	0,3700	0,0410	0,03427	0,00093	0,4102	0,41016	210,33	298,00	41,68	210,33	8.34	1.39
LMC 088 44	0,3670	0,0440	0,03390	0,00100	0,1963	0,19633	207,58	294,00	41,64	207,58	8.97	1.84
LMC 088 19	0.3140	0.0350	0.03323	0.00075	0.1000	-0.05541	205.63	288.00	40.06	205.63	7.76	0.81
LMC 088 36	0.3050	0.0230	0.03060	0.00059	0 1578	0 15781	189.60	264.00	39.24	189.60	6.39	1 10
LMC 088 38	0.3150	0.0280	0.03151	0.00068	0.2305	0.23051	194.69	271.00	39.20	194.69	7.03	1.64
LMC 088 3	0.2030	0.0340	0.03043	0.00075	0.1589	0.15886	187.01	253.00	34.64	187.01	7 13	1.48
LMC 088 24	0,2350	0,0340	0,03040	0,00070	0,1303	0,13000	200.17	265.00	22.20	200.17	7.10	1.40
LMC_088_14	0,3350	0,0300	0,03259	0,00070	0,3790	0,37900	200,17	203,00	22,39	200,17	7.12	0.92
LIVIC_088_14	0,3290	0,0340	0,03260	0,00078	0,4400	0,44679	203,35	209,00	52,20	203,35	7.07	0.02
LMC_088_2	0,2170	0,0140	0,02995	0,00056	0,0561	0,05612	189,22	200,00	5,70	189,22	6.38	0.91
LMC_088_4	0,2130	0,0170	0,02992	0,00050	0,0791	0,07907	189,41	196,00	3,48	189,41	6.29	1.10
LMC_088_45	0,2310	0,0240	0,03047	0,00081	0,2360	0,23603	191,73	209,00	9,01	191,73	7.66	0.99
LMC_088_49	0,2550	0,0290	0,03076	0,00077	0,3337	0,33365	192,79	219,00	13,60	192,79	7.71	1.17
LMC_088_37	0,2790	0,0250	0,03108	0,00070	0,2608	0,26078	193,82	246,00	26,92	193,82	7.03	1.64
LMC_088_35	0,2710	0,0260	0,03139	0,00063	0,1831	0,18312	196,55	233,00	18,55	196,55	7.05	0.97
LMC_088_30	0,2510	0,0230	0,03131	0,00062	0,2338	0,23379	196,89	221,00	12,25	196,89	7.04	1.74
LMC_088_5	0,2900	0,0340	0,03166	0,00081	0,1228	0,12281	197,20	255,00	29,31	197,20	7.73	1.22
LMC_088_43	0,3060	0,0330	0,03230	0,00089	0,1913	0,19133	200,61	261,00	30,10	200,61	8.29	1.41
LMC_088_8	0,2280	0,0220	0,03173	0,00063	0,1571	0,15711	200,73	205,00	2,13	200,73	7.08	0.85
LMC_088_51	0,2630	0,0230	0,03204	0,00065	0,0646	0,06460	201,33	235,00	16,72	201,33	7.05	1.12
LMC_088_55	0,2840	0,0250	0,03231	0,00058	0,0829	0,08285	201,87	254,00	25,82	201,87	7.04	1.20
LMC_088_53	0,2930	0,0320	0,03247	0,00094	0,3381	0,33806	202,50	247,00	21,97	202,50	8.29	1.38
LMC_088 16	0,2830	0,0380	0,03260	0,00110	0,2877	0,28769	203,12	237,00	16,68	203,12	9.01	0.94
LMC 088 47	0.2870	0.0350	0,03275	0.00093	0.1738	0.17380	203.90	239.00	17.22	203.90	8.37	1.59
LMC 088 32	0.3030	0.0390	0.03292	0.00095	0 1000	-0.08265	204 43	252.00	23.27	204 43	8 40	1 50
LMC 088 54	0.3180	0.0440	0 03321	0 00007	0 1000	_0.04001	204.70	263.00	28 48	204.70	8.52	1 49
IMC 089 29	0.2500	0.0260	0.03266	0.00087	0.2605	0.26047	205.30	200,00	0.10	205 30	7 00	1 60
LIVIO_000_20	0,2090	0,0200	0.03419	0,00007	0.0007	0.06975	200,02	071 00	3,10	200,02	0.00	1.02
	0,3050	0,0320	0,03418	0,00086	0,0087	0,00875	211,98	2/1,00	∠1,84	211,98	0.32	

LMC-090B.	Análisis	isotópicos	U/Pb en	circón.	Laboratorio	SGC
EIIIO 000D.	Ananoio	1001001000	0/1 0 011	01100111	Laboratorio	000

Identificación muestra	Relación final Pb ²⁰⁷ /U ²³⁵	Error interno relación final Pb ²⁰⁷ /U ²³⁵ a 2 D.E.	Relación final Pb ²⁰⁶ /U ²³⁸	Error interno relación final Pb ²⁰⁶ /U ²³⁵ a 2 D.E.	Ajuste error de correlación (datos negativos)	Error de correlación Pb ²⁰⁶ /U ²³⁸ vs. Pb ²⁰⁷ /U ²³⁵	Edad corregida Pb ²⁰⁶ /U ²³⁸ (Ma)	Edad Pb ²⁰⁷ /U ²³⁵ (Ma)	% discordia	Edad corregida Pb ²⁰⁶ /U ²³⁸ (Ma)	± 2σ	Relación final U/Th
LMC_90_B_37	0,91	0,17	0,0406	0,0024	0,12805	0,12805	218,971853	631	188,16489	218.97	16.58	3,4465195
LMC_90_B_21	0,545	0,062	0,0329	0,0011	0,3231	0,3231	190,902665	412	115,81679	190.90	8.20	1,8321429
LMC_90_B_20	0,494	0,042	0,03229	0,00084	0,27142	0,27142	188,50956	401	112,72131	188.51	6.77	1,4063444
LMC_90_B_34	0,467	0,083	0,0329	0,0021	0,2867	0,2867	194,526608	391	101,00078	194.53	13.70	2,2635659
LMC_90_B_4	0,495	0,095	0,0359	0,0022	0,085836	0,085836	213,787029	427	99,731482	213.79	15.02	2,1481481
LMC_90_B_6	0,408	0,042	0,032	0,001	0,18191	0,18191	192,070918	342	78,059231	192.07	7.51	2,2719679
LMC_90_B_29	0,427	0,071	0,0329	0,0016	0,056036	0,056036	196,336819	347	76,7371	196.34	11.51	2,6377953
LMC_90_B_24	0,403	0,036	0,03286	0,00096	0,088971	0,088971	197,961885	340	71,750234	197.96	7.47	1,6358382
LMC_90_B_27	0,382	0,049	0,031	0,0014	0,062864	0,062864	186,314451	311	66,922103	186.31	9.97	2,235239
LMC_90_B_13	0,369	0,035	0,03242	0,00079	0,044292	0,044292	196,966607	325	65,002588	196.97	6.95	2,5877378
LMC_90_B_14	0,388	0,061	0,0314	0,0013	0,029591	0,029591	189,192601	308	62,797064	189.19	9.69	2,2511905
LMC_90_B_19	0,369	0,042	0,03285	0,00086	0,27696	0,27696	200,794375	318	58,37097	200.79	6.98	2,5333333
LMC_90_B_26	0,34	0,025	0,03189	0,00081	0,18954	0,18954	194,804744	299	53,487022	194.80	6.83	2,2734761
LMC_90_B_16	0,349	0,039	0,03202	0,00099	0,20763	0,20763	195,541145	292	49,329186	195.54	7.59	2,2468514
LMC_90_B_15	0,312	0,022	0,03233	0,00069	0,29115	0,29115	199,679696	274	37,21976	199.68	6.25	2,0779944
LMC_90_B_22	0,307	0,027	0,0322	0,0011	0,071441	0,071441	198,783114	271	36,329487	198.78	8.14	1,7403509
LMC_90_B_38	0,31	0,03	0,0336	0,001	0,032117	0,032117	208,184105	275	32,094619	208.18	8.19	1,28
LMC_90_B_12	0,295	0,036	0,03161	0,00074	0,16731	0,16731	195,747295	257	31,291725	195.75	6.47	2,2542787
LMC_90_B_28	0,298	0,043	0,0326	0,0011	0,24494	0,24494	203,099389	265	30,47799	203.10	8.36	1,5017222
LMC_90_B_23	0,289	0,022	0,03322	0,00089	0,35226	0,35226	206,45334	259	25,452075	206.45	7.47	1,4530201
LMC_90_B_5	0,266	0,024	0,03119	0,00088	0,1762	0,1762	194,791477	237	21,668568	194.79	6.94	2,507837
LMC_90_B_7	0,263	0,018	0,03099	0,00052	0,14034	0,14034	193,895913	235	21,199048	193.90	5.54	2,3374827
LMC_90_B_17	0,24	0,022	0,02976	0,00069	0,32133	0,32133	187,350267	212	13,157031	187.35	6.17	1,6822323
LMC_90_B_8	0,197	0,014	0,03001	0,0005	0,17849	0,17849	191,061599	180	-5,7895458	191.06	5.35	2,8662675
LMC_90_B_3	0,224	0,024	0,03061	0,00093	0,10448	0,10448	193,710807	199	2,7304582	193.71	7.64	2,1219512
LMC_90_B_1	0,22	0,022	0,03072	0,00069	0,07878	0,07878	194,254943	201	3,4722706	194.25	6.33	1,3956159
LMC_90_B_36	0,228	0,031	0,03098	0,00098	0,028846	0,028846	195,590236	196	0,2095012	195.59	7.73	2,2294118
LMC_90_B_35	0,223	0,025	0,03122	0,00072	0,068466	0,068466	197,090475	194	-1,5680489	197.09	6.44	0,8566553
LMC_90_B_32	0,204	0,024	0,03108	0,00087	0,053768	0,053768	197,829959	181	-8,5072852	197.83	7.08	1,3668942
LMC_90_B_25	0,258	0,036	0,03154	0,00093	0,1	-0,0022221	198,023397	223	12,612956	198.02	7.75	1,9725686
LMC_90_B_33	0,192	0,026	0,03109	0,00095	0,1	-0,065805	198,920678	175	-12,025234	198.92	7.73	1,7514911
LMC_90_B_2	0,232	0,03	0,03159	0,00084	0,04663	0,04663	199,104736	206	3,4631341	199.10	7.10	2,3485477
LMC_90_B_10	0,179	0,021	0,03115	0,00076	0,057374	0,057374	199,447736	163	-18,274329	199.45	6.47	1,2022293
LMC_90_B_31	0,272	0,035	0,03197	0,00097	0,056999	0,056999	200,24371	236	17,856386	200.24	7.69	1,8661616
LMC_90_B_30	0,223	0,026	0,03182	0,00078	0,067439	0,067439	201,816248	198	-1,8909518	201.82	7.06	1,7964602
LMC_90_B_9	0,2	0,034	0,0318	0,001	0,029708	0,029708	202,140856	175	-13,426705	202.14	7.82	2,8836545
LMC_90_B_18	0,231	0,031	0,03196	0,00099	0,1452	0,1452	202,217625	210	3,8485148	202.22	7.71	2,3012658
LMC_90_B_11	1,723	0,078	0,1683	0,0051	0,38363	0,38363	999,265056	1.025	2,5753872	999.27	36.82	21,256039

ANEXO B

Análisis de elementos traza en circón. Muestra TCR-395A (IGM 901032)

TCR-395A. Análisis isotópicos de elementos traza en circón (ppm)

(ppm)	Р	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
Circón-115	1.150	9	1.810	5,4	7,1	48,4	2,4	14,5	6,6	0,86	30,1	11,17	144,1	60,3	291,2	622	131,6	10.310	3,888	100,2	115,4
Circón-117	697	13,67	3.208	2,23	0,161	24,01	0,39	6,83	13,14	5,45	69,5	23,73	280,3	108,9	482,8	937	193,9	7.830	1,8	79,1	55,82
Circón–118	410	8,65	1.135	1,91	0,135	14,29	0,122	1,45	2,95	0,593	16,26	6,86	84,1	36,57	181,9	403,4	86,8	9.500	1,975	61,3	59,49
Circón-119	674	9,49	2.485	5,87	0,131	35,02	0,163	2,52	6,09	1,68	44,6	16,36	214	86,6	396,8	740	151,2	8.870	2,565	70,1	77
Circón–120	720	8,71	2.766	5,07	0,002	37,6	0,145	2,92	7,29	1,86	52,6	19,17	245,3	97,3	435	798	161,7	8.540	2,613	73,6	80,4
Circón-122	321	7,01	1.462	5,45	0,102	18,52	0,042	0,92	2,92	0,432	18,81	7,91	109,2	47,45	241,4	540	118,4	10.680	3,058	57,7	99,3
Circón-123	1.150	12,24	2.351	3,52	10,4	47,2	4,4	25,1	11,2	2,51	49,1	16	204,4	81,5	377,5	715	150,5	8.690	1,593	39,5	48,2
Circón-124	713	7,13	2.220	2,3	0,06	17,27	0,17	3,1	6,07	1,47	39,5	14,1	185	74,1	346	701	144,1	9.710	2,185	55,8	66,1
Circón–128	700	7,62	1.212	2,34	4,5	24,4	1,45	8,1	4,04	0,454	18,2	6,73	95,5	40,9	199,9	442	97,2	11.120	1,965	33	58,4
Circón-130	1.114	10,71	2.726	5,12	3,21	42,7	1,51	9,4	9,03	2,23	52,2	19,09	240,8	95,6	426	780	156,2	8.280	2,208	70	70
Circón-131	600	150	1.392	4,17	0,4	14,63	0,236	2,11	2,82	0,44	22,1	8,44	108,9	44,8	215	452	95,3	10.580	1,598	48,7	50,4
Circón–132	490	7,32	1.590	3,99	0,019	26,9	0,052	1,59	3,93	0,67	25,1	9,9	128	54,4	257	519	108,8	10.950	2,95	104	88
Circón–133	530	11,37	2.711	2,25	0,027	12,24	0,25	4,18	8,49	3,38	56,3	19,98	240,7	97	429,2	775	158,4	7.333	1,505	38,8	45,51
Circón–135	560	11,18	2.005	2,64	0,139	21,68	0,226	2,74	5,9	2,62	40,5	14,8	178,1	70,2	312	556	111,4	7.660	1,7	69,6	52,4
Circón–136	493	7,61	1.725	3,59	0,065	17,52	0,059	1,31	3,18	0,8	24,5	9,61	131,5	56	275	591	126,1	10.050	2,663	63,5	79,8
Circón-138	884	7,81	2.324	3,92	0,311	27,19	0,156	2,36	5,19	0,78	39,3	14,33	189,5	79,2	371	751	159,3	11.450	3,48	82,7	100,1
Circón-142	470	7,34	1.333	3,18	0,031	23,6	0,033	0,88	2,81	0,488	20	8,03	108	45,9	220	462	98,1	10.650	1,613	34,6	49,7
Circón–143	570	9,99	2.934	2,7	0,017	18,25	0,239	4,57	9,73	3,52	57,4	21,19	257,9	101,2	448,7	807	164,9	7.710	1,54	40,41	44,32
Circón-144	640	9,48	2.080	3,78	0,029	26,9	0,111	2,46	5,31	1,79	39,9	14,32	184,9	71,3	326,6	604	123,3	8.490	2,04	66,6	63,3
Circón–145	644	7,32	1.830	3,75	0,186	25,1	0,151	2,59	4,18	0,83	29,8	11,2	149	61,5	293	606	127	10.150	2,775	96	82
Circón–146	1.070	12,1	2.663	6,2	6,2	49,8	2,81	17,1	10	2,06	50,4	17,62	228,8	94,6	433,7	822	171,2	8.860	2,255	58,1	70,4
Circón–148	300	9,36	938	2,14	0,28	11,29	0,052	0,52	1,77	0,375	13,7	5,71	74,8	31	151,4	322	68,2	9.580	1,028	19,9	31,8
Circón–149	320	10,5	2.754	2,36	0,144	19,74	0,362	6,29	11,43	3,61	61,2	20,87	247,3	95	426,3	827	169,8	9.360	2,22	78,7	70,3