CATÁLOGO DE LAS UNIDADES LITOESTRATIGRÁFICAS DE COLOMBIA

MACIZO DE SANTANDER

Vol. 1

CATÁLOGO DE LAS UNIDADES LITOESTRATIGRÁFICAS DE COLOMBIA

MACIZO DE SANTANDER

Vol. 1

El futuro M es de todos

Minenergía

Vol. 1

Batolito de Mogotes

Granito de Pescadero

Monzogranito de Santa Bárbara

Monzogranito de La Corcova

Monzogranito de Rionegro

Tonalita de San Martín

Riolitas El Uvo

Riolita de San Joaquín

Riolitas del Alto Los Cacaos

Catálogo de las unidades litoestratigráficas de Colombia

MACIZO DE Santander

Gabriel Rodríguez Ana María Correa Martínez María Isabel Arango Gilberto Zapata José Gilberto Bermúdez

© Servicio Geológico Colombiano

Oscar Paredes Zapata Director general

ISBN impreso: 978-958-52794-3-8 ISBN digital: 978-958-52794-4-5

Autores Gabriel Rodríguez Ana María Correa Martínez María Isabel Arango Gilberto Zapata José Gilberto Bermúdez

Colaboradores Juan Pablo Zapata Villada Lina María Cetina Tarazona Tomás Correa Restrepo José Faustino Mosquera Gómez Manuel Antonio Castro David

Comité Editorial

Presidente Virgilio Amaris Ibáñez

Integrantes Mario Andrés Cuéllar Gloria Prieto Rincón Marta Calvache Velasco Hernán Olaya Dávila Humberto Andrés Fuenzalida Hernando Camargo Margarita Bravo Guerrero Viviana Dionicio Teresa Duque Julián Escallón Armando Espinosa Juan Guillermo Ramírez Manuel Hernando Romero

Diagonal 53 n.º 34-53 Bogotá D. C., Colombia Teléfono: 220 0200, ext.: 3048 ceditorial@sgc.gov.co

Édgar Ordóñez **Corrección de estilo**

Diana Paola Abadía **Diseño**

Leonardo Cuéllar **Diagramación**

Carolina Hernández **Editora general**

Citación: Rodríguez, G., Correa Martínez, A. M., Arango, M. I., Zapata, G. y Bermúdez, J. G. (2020). *Catálogos de las unidades litoestratigráficas de Colombia: Macizo de Santander*. Vol. 1. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585279445

PRÓLOGO

I conocimiento geológico de Colombia tuvo un gran impulso a partir de la cartografía geológica sistemática que se inició en las décadas de los sesenta y setenta del siglo pasado, labor que continúa hasta el día de hoy. A finales de los cincuenta se dieron las condiciones para el avance del conocimiento geológico, con las primeras promociones de geólogos egresados de la Facultad Nacional de Minas, en Medellín, de la Universidad Nacional de Colombia, sede Bogotá, y de la Universidad Industrial de Santander, en Bucaramanga. A principios de los sesenta se inició el Inventario Minero Nacional, un ambicioso programa de cooperación internacional entre el United States Geological Survey y el Servicio Geológico Nacional, que sentó las bases, las metodologías y el entrenamiento de geólogos nacionales en cartografía geológica, constituyéndose en el inicio de la cartografía sistemática del país. Se publicaron las primeras cartas geológicas, que aún son la base del conocimiento geológico de algunas regiones, como es el caso de buena parte de la geología del Macizo de Santander. Entre esos trabajos aparecen los de Dwight E. Ward y Richard Goldsmith, del U. S. Geological Survey, realizados en conjunto con Andrés Jimeno, Jaime Cruz, Hernán Restrepo, Jaime Vargas, Eduardo Gómez y Luis Jaramillo, del Ingeominas. Se publicaron los cuadrángulos H-12 Bucaramanga, H-13 Pamplona, F-13 Tibú y G-13 Cúcuta.

La cartografía geológica se convirtió en la actividad fundamental durante el Inventario Minero Nacional. Posteriormente, durante el Ingeominas, y actualmente, con el Servicio Geológico Colombiano, ha sido una actividad institucional sistemática, organizada y coordinada con claros objetivos, que representa la base del conocimiento geológico de la nación y que constituye la base para la exploración mineral, el estudio de amenazas de tipo geológico, el ordenamiento del territorio y las obras de infraestructura.

Con la cartografía geológica se vio la necesidad de nombrar y separar las unidades litológicas, teniendo en cuenta las características estratigráficas, litológicas, geocronológicas, la definición, redefinición y revisión de unidades, así como el abandono de ciertos términos y la actualización de otros que han surgido como resultado de la mezcla de criterios litoestratigráficos y bioestratigráficos. Se dio a la imprenta, entonces, la primera parte del fascículo "Colombia" del *Léxico estratigráfico internacional*, publicado en 1968 por el Centre National de la Recherche Scientifique (CNRS, Francia), con los auspicios de la Union Internationale des Sciences Géologiques, obra dirigida por Robert Hoffstetter y que contó con la autoría de Manuel Julivert. A partir de la publicación del *Léxico estratigráfico* pasaron dos décadas y media antes de que se hiciera una nueva edición del *Léxico* en forma de catálogos. En el transcurso de ese periodo, numerosas unidades litológicas fueron reconocidas, a medida que avanzaba la cartografía del país. Se vio la necesidad de entregarle al usuario de la información, una caracterización cuidadosa de las unidades geológicas. Así surgieron los catálogos estratigráficos de Colombia a manera de fascículos individuales de cada unidad, con la idea de conformar una colección que el lector podría ordenar alfabéticamente. Esta colección tendría carátulas de colores diferentes, que permitirían a los usuarios agrupar los fascículos según unidades litodémicas, litoestratigráficas y bioestratigráficas; además, podrían ser agrupadas por provincias geológicas. Esta colección estuvo integrada por más de ochenta fascículos publicados entre 1994 y 2002, que abarcaron unidades ígneas, metamórficas y formaciones sedimentarias. Como autores se destacaron Giancarlo Renzoni, Humberto González, Ana Cristina Londoño, Alberto Núñez, Carlos Ulloa, Jorge Gómez, Ricardo Méndez, Martha Calvache, Carlos Julio Morales, Patricia Torres, Gloria Inés Rodríguez, Erasmo Rodríguez, Diana Jiménez, Juan Carlos Caicedo y Alfonso Arias, entre otros.

A finales del siglo pasado y principios del actual se vio la necesidad de crear la Comisión Estratigráfica Nacional, conformada por geólogos del Servicio Geológico, de la industria petrolera y la Academia. Los miembros debieron adoptar el Código de Nomenclatura Estratigráfica con el fin de normalizar la definición y presentación de las unidades. Posteriormente, el Servicio Geológico Colombiano desarrolló el Plan Estratégico 2014-2023, en el que nuevamente se incorporaron, entre los productos institucionales, los catálogos estratigráficos.

En las dos últimas décadas, el avance del conocimiento geológico del país se ha visto jalonado por el aumento de profesionales de la geología. Nuevos programas de geología han surgido a lo largo y ancho del país, en concordancia con las necesidades de desarrollo, y el número de profesionales con estudios de posgrado ha aumentado. Las técnicas analíticas han mejorado y hay un más fácil acceso a los datos robustos de laboratorio en áreas como la geocronología, la geoquímica de rocas y minerales, los isótopos, la microtectónica y la sísmica, entre otras.

Este trabajo es la continuación de los catálogos publicados dos décadas atrás. Se han modernizado el contenido y la presentación de acuerdo con las necesidades actuales de información. Se agrupan en un solo volumen las unidades litológicas que definen un evento geológico regional en una provincia particular. Esta versión incorpora nueva información petrográfica, litogeoquímica, química mineral y geocronológica, al tiempo que realiza interpretaciones de los datos según el avance del conocimiento actual. Estas publicaciones constituyen un aporte al conocimiento básico de la geología colombiana y al conocimiento y evolución del Macizo de Santander.

> Gabriel Rodríguez Grupo de Estudios Geológicos Especiales Dirección de Geociencias Básicas Servicio Geológico Colombiano

CONTENIDO

Presentación

5

Batolito de Mogotes

Anexos

de Mogotes	13
1. Proponente del nombre	14
2. Origen del nombre y distribución geográfica	14
3. Reseña histórica	15
4. Descripción geológica	16
5. Química mineral	40
6. Geoquímica	45
7. Posición estratigráfica y edad	55
8. Correlación	75
9. Génesis	76
10. Recursos minerales	77
Conclusiones	77
Referencias	78

Granito de Pescadero

1. Origen del nombre	104				
2. Distribución geográfica	104				
3. Reseña histórica	106				
 Descripción geológica 	106				
5. Química mineral	114				
6. Geoquímica	118				
7. Posición estratigráfica y edad	122				
8. Correlaciones	126				
9. Localidad tipo	127				
10. Génesis	127				
11. Recursos minerales	127				
Conclusiones	128				
Referencias					
Anexos	131				

Monzogranito de Santa Bárbara

1. Origen del nombre, distribución geográfica					
y reseña histórica	136				
2. Descripción geológica	136				
3. Litogeoquímica	148				
4. Posición estratigráfica y edad					
5. Correlaciones					
6. Génesis					
7. Localidad tipo y recursos minerales	173				
Conclusiones	173				
Referencias	174				
Anexos	177				

Monzogranito de La Corcova

4	07	
	δ/	

1. Origen del nombre, distribución geográfica					
y reseña histórica	188				
2. Descripción geológica	190				
3. Química mineral	199				
4. Litogeoquímica	218				
5. Posición estratigráfica y edad					
6. Correlaciones					
7. Localidad tipo					
8. Génesis					
9. Recursos minerales	238				
Conclusiones					
Referencias	239				
Anexos					

Monzogranito de Rionegro

252
254
263
271
282
294
294
294
294
294
295
298

Tonalita de San Martín 317

1. Proponente del nombre					
2. Origen del nombre y distribución geográfica	318				
3. Descripción geológica	318				
4. Química mineral	325				
5. Litogeoquímica	330				
6. Posición estratigráfica y edad	336				
7. Correlaciones	341				
8. Localidad tipo	342				
9. Génesis	342				
10. Recursos minerales	342				
Conclusiones					
Referencias					
Anexos					

Riolitas El Uvo

1. Proponente del nombre					
2. Origen del nombre y distribución geográfica					
3. Reseña histórica	354				
4. Descripción geológica	354				
5. Geoquímica	359				
6. Posición estratigráfica y edad	363				
7. Correlaciones					
8. Localidad tipo					
9. Génesis					
10. Recursos minerales	366				
Conclusiones	366				
Referencias	366				
Anexos	369				

Riolita de San Joaquín 371

1. Proponente del nombre						
2. Origen del nombre, distribución geográfica						
y reseña histórica	372					
3. Descripción geológica	372					
4. Litogeoquímica	378					
5. Posición estratigráfica y edad						
6. Correlaciones						
7. Localidad tipo						
8. Génesis						
9. Recursos minerales						
Conclusiones						
Referencias						
Anexos						

Riolitas del Alto Los Cacaos 395

1. Proponente del nombre					
2. Origen del nombre y distribución geográfica	396				
3. Reseña histórica	396				
4. Descripción geológica	398				
5. Química mineral	402				
6. Geoquímica	405				
7. Posición estratigráfica y edad					
8. Correlación					
9. Génesis					
10. Recursos minerales	414				
Conclusiones	415				
Referencias	415				
Anexos	419				

BATOLITO DE MOGOTES

»Cordillera Oriental Departamento de Santander

Ana María Correa Martínez, Gabriel Rodríguez, María Isabel Arango, Gilberto Zapata y José Gilberto Bermúdez

Catálogo de las unidades litoestratigráficas de Colombia / Triásico-Jurásico

Citación: Correa Martínez, A. M., Rodríguez, G., Arango, M. I., Zapata, G. y Bermúdez, J. G. (2020). Batolito de Mogotes. En *Catálogos de las unidades litoestratigráficas de Colombia: Macizo de Santander*. Vol. 1. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585279445.1 La actividad magmática del periodo Triásico tardío-Jurásico en el Macizo de Santander queda en evidencia por el emplazamiento de cuerpos intrusivos graníticos, cuerpos hipoabisales y vulcanismo riolítico-riodacítico en basamento metamórfico del Paleozoico (Ward *et al.*, 1973; Van der Lelij, 2013). Los cuerpos son alargados y con dirección preferencial norte-noroeste, que es concordante con el rumbo de las fallas regionales, principalmente la falla de Bucaramanga, que marcan la tectónica del Macizo de Santander y delimitan las diferentes unidades geológicas.

La unidad Batolito de Mogotes es uno de los cuerpos intrusivos graníticos resultantes del magmatismo del Triásico-Jurásico en el Macizo de Santander. En el catálogo del Batolito de Mogotes, a partir de diferentes muestras del mismo que fueron obtenidas en el proyecto de investigación denominado "Magmatismo jurásico del Macizo de Santander", se presentan descripciones generales de campo, análisis petrográficos, de química mineral, resultados geoquímicos y geocronológicos U-Pb en circón por LA-ICP-MS. Este proyecto hace parte del macroproyecto "Magmatismo jurásico en Colombia", llevado a cabo por el grupo de estudios geológicos especiales de la regional Medellín del Servicio Geológico Colombiano, cuyo objeto es caracterizar geológicamente las principales unidades jurásicas de Colombia como un aporte al conocimiento geológico del país.

1. Proponente del nombre

El nombre de la unidad fue propuesto por Ward *et al.* (1973) en la memoria de los cuadrángulos H-12 y H-13.

Goldsmith *et al.* (1971) usaron el nombre *Batolito de Mogotes* en su trabajo sobre edades radiométricas en el Macizo de Santander, pero no hicieron ninguna definición de la unidad.

En este trabajo se conserva el nombre, ya que es un plutón con más de 100 km² que cumple con la definición de *batolito* y la denominación se ajusta a las recomendaciones de la International Subcommission on Stratigraphic Classification of IUGS (1987, 1994). La diferencia con la definición original es que Ward *et al.* (1973) clasificaron la roca predominante como una cuarzomonzonita según el esquema de clasificación de rocas disponible en esa época, que era el de Travis (1955) y de acuerdo con la clasificación actual el nombre correcto para ese litotipo es monzogranito. Además, aunque predominan los monzogranitos, también se encuentran otros litotipos, como granodioritas.

2. Origen del nombre y distribución geográfica

2.1. Origen del nombre

El nombre asignado a la unidad en este catálogo es el mismo dado por Goldsmith *et al.* (1971) y Ward *et al.* (1973). La unidad toma el nombre del municipio de Mogotes, (Santander), localizado al sur de Bucaramanga, en la cordillera Oriental de Colombia.

2.2. Distribución geográfica

El Batolito de Mogotes se encuentra al occidente de la falla de Bucaramanga, tiene cerca de 45 km de largo y alcanza hasta 21 km de ancho en su zona más amplia (figura 1). La unidad tiene un rumbo preferencial NW-SE y aflora en dos Planchas geológicas del Ingeominas. La mayor parte del cuerpo está en la Plancha 136-Málaga (Vargas *et al.*, 1984) donde ocupa un área de 390 km², y una pequeña extensión (13 km²) del mismo se encuentra en el sector NW de la Plancha 152-Soatá (Vargas *et al.*, 1987).

Figura 1. Ubicación del Batolito de Mogotes y estaciones con secciones delgadas, litogeoquímica y geocronología Fuente: modificado a partir de Ward *et al.* (1977) y Vargas *et al.* (1984, 1987)

3. Reseña histórica

La primera referencia escrita de este cuerpo plutónico se encuentra en Goldsmith *et al.* (1971), aunque estos autores no describieron la unidad en términos litológicos, petrográficos o estructurales. Ward *et al.* (1973) utilizaron el nombre *Batolito de Mogotes* para designar un cuerpo compuesto por rocas cuarzomonzoníticas y granodioríticas, localizado en la parte media-sur del cuadrángulo I-13 del Ingeominas. En las *Memorias de la geología del cuadrángulo I-13-Málaga*, Vargas *et al.*, (1976a, 1981) usaron nuevamente la denominación *Batolito de Mogotes*; sin embargo, en el mapa del cuadrángulo I-13, Soatá (Vargas *et al.*, 1976b) y de la Plancha 152-Soatá (Vargas *et al.*, 1987), la unidad no aparece con el nombre mencionado, sino con la abreviatura y descripción "JRcm: cuarzo monzonita biotítica blanca a rosada grano medio alaskítica", abreviatura que no consta en la memoria. Por otro lado, en el mapa geológico de la Plancha 136-Málaga (Vargas *et al.*, 1976c) esta unidad JRcm (o JTRcm), junto con otras dos unidades (JRcs y JRgp) fueron agrupadas bajo la denominación de *Granito de Pescadero*.

En el mapa de Ward *et al.*, (1977) aparece cartografiado hacia el extremo suroriental del Batolito de Mogotes un cuerpo de granodiorita denominado *JRgd*. No obstante, según lo encontrado en el presente estudio del área, no todo el cuerpo es de granodioritas, ya que en esta zona afloran dacitas, riolitas y cuarzolatitas. Van der Lelij (2013) denomina *granodioritas de Onzaga y de Mogotes* a los granitoides ubicados al norte de Onzaga, en lo que sería la granodiorita de Ward *et al.* (1977).

4. Descripción geológica

4.1. Marco geológico

El Macizo de Santander hace parte de un bloque regional triangular formado a grandes rasgos por la falla Bucaramanga, en el lado occidental, la falla de Oca-Ancón, en el lado norte, y la falla de Boconó, en el lado oriental.

Según Ward *et al.* (1973), las rocas del basamento del Macizo de Santander se encuentran en el Neis de Bucaramanga, el Ortoneis y la Formación Silgará, esta última denominada *Esquistos de Silgará* por Urueña Suárez (2014). Estas unidades están cubiertas en discordancia por rocas sedimentarias de la Formación Floresta del Devónico (Cediel, 1969).

El Neis de Bucaramanga denominado también Complejo Bucaramanga (Clavijo, 1994), consiste de neises cuarzo-feldespáticos con andalucita, sillimanita, cordierita y granate, con intercalaciones de neises hornbléndicos, anfibolitas, mármoles y migmatitas (Ward et al., 1973), metamorfizados en la facies anfibolita alta. La unidad está cubierta por la Formación Silgará, aunque las relaciones entre ambas unidades no son totalmente claras (Ward et al., 1973, Restrepo, 1995). Las rocas se interpretaban del Proterozoico (Goldsmith et al., 1971; Ward et al., 1973; Restrepo-Pace et al., 1997; García y Ríos, 1999; Cardona, 2003 y Cordani et al., 2005), aunque los resultados geocronológicos obtenidos por Van der Lelij (2013) y en este proyecto sobre el Neis de Bucaramanga indican edades de aproximadamente 465 Ma, que corresponden al Ordovícico.

La Formación Silgará de Ward *et al.* (1973), compuesta de rocas metamórficas pelíticas y semipelíticas, ha sido dividida por Mantilla-Figueroa *et al.*, (2016) en tres conjuntos: el primero, denominado *esquistos del Silgará*, con edad máxima de depositación del protolito del Neoproterozoico Temprano y metamorfismo en facies esquisto verde situado en el Ordovícico Temprano, durante el evento orogénico Famatiniano principal (Mantilla-Figueroa *et al.*, 2016). El segundo corresponde a los Esquistos del Chicamocha, en el que su protolito tiene una edad máxima de depositación del Cámbrico y metamorfismo en facies anfibolita situado en el Ordovícico Temprano. El tercer conjunto es el de las Filitas de San Pedro, con máxima edad de depositación de su protolito del Ordovícico Tardío; su metamorfismo aún no ha sido determinado geocronológicamente, pero se considera de finales del Ordovícico Tardío, durante el evento orogénico Famatiniano Menor (Mantilla-Figueroa *et al.*, 2016).

El Ortoneis consiste de neises cuarzo-feldespáticos que varían en composición desde granito hasta tonalita (Ward *et al.*, 1973), con lentes de anfibolita. En muchos lugares exhibe concordancia con estructuras del Neis de Bucaramanga y de la Formación Silgará (Ward *et al.*, 1973). Son rocas de medio a alto grado de metamorfismo, con edades del protolito correspondientes al Ordovícico (Mantilla Figueroa *et al.*, 2012; Van der Lelij, 2013).

Algunas edades U-Pb en circón muestran magmatismo posterior al metamorfismo, representado por metavulcanitas y plutones que intruyen el basamento metamórfico, con edades U-Pb en circón del Silúrico, Devónico Inferior, Carbonífero y límite Triásico-Jurásico (Goldsmith *et al.*, 1971; Mantilla Figueroa *et al.*, 2012; Van der Lelij, 2013, y en este proyecto).

Durante el límite Triásico-Jurásico se desarrolló un importante magmatismo de arco de margen continental, con el emplazamiento de grandes batolitos, *stocks* graníticos y cuerpos riolíticos subvolcánicos localizados hacia el margen occidental del Macizo de Santander, en el basamento metamórfico (Goldsmith *et al.*, 1971; Ward *et al.*, 1973; Van der Lelij, 2013 y en este estudio sobre el magmatismo jurásico en Colombia).

Los plutones Triásico-Jurásicos del Macizo de Santander hacen parte del *Terreno Santander*, en el sentido de Etayo Serna *et al.*, (1985). Según estos autores, el Terreno Santander tiene un basamento con metamorfismo de finales del Proterozoico (945 ± 40 Ma), una sedimentación acumulada durante el Cámbrico (?) y metamorfoseada durante el Ordovícico-Silúrico (?), con el emplazamiento conjunto de neises graníticos y metadioritas. En este terreno también hay registro de una sedimentación ocurrida durante el Devónico-Pérmico y un *rifting* durante el Triásico-Jurásico, cuando se originaron los plutones, junto con actividad volcánica félsica a intermedia. Posteriormente, en el Jurásico, ocurrió una sedimentación intracontinental, y en el Cretácico, una sedimentación marina epicontinental.

En el sentido de Restrepo y Toussaint (1989) y Restrepo *et al.* (2011), los plutones Triásico-Jurásicos del Macizo de Santander hacen parte del Terreno Chibcha. De acuerdo con estos autores, dicho terreno tiene basamento continental del Precámbrico, donde el último evento tectonometamórfico es Caledoniano. Estas rocas metamórficas están cubiertas en discordancias por rocas sedimentarias del Paleozoico Superior. En el borde occidental del terreno se originó un cinturón magmático jurásico y se depositó una importante cobertura sedimentaria mesocenozoica.

Unidades sedimentarias cretácicas reposan discordantemente sobre el basamento metamórfico y los plutones. Con posterioridad a la sedimentación cretácica se dio escaso magmatismo durante el Mioceno, que de todos modos emplazó pequeños cuerpos de pórfidos con mineralización de oro (Leal-Mejía, 2011; Mantilla Figueroa *et al.*, 2013).

4.2. Descripción macroscópica y microscópica

El Batolito de Mogotes está constituido principalmente por monzogranitos y, en menor proporción, por granodioritas. En dirección del municipio de Onzaga (sector SE de la unidad), la roca es una granodiorita localmente porfirítica (Ward *et al.*, 1973). Las granodioritas son comunes principalmente al E y NE de San Joaquín, en la vía que conduce de Las Tapias a El Morro, y en menor cantidad se presentan al SE de San Joaquín y norte de Onzaga, en la vía que de Las Tapias conduce a Onzaga, y en la parte noroeste del Batolito de Mogotes, en cercanías de Cepitá. Cuarzodioritas se hallan en la parte norte del cuerpo y como enclaves máficos pequeños de hasta 2 cm de diámetro, redondeados en el monzogranito en la vía Aratoca-La Palma.

En el extremo suroccidental del cuerpo, en la vía que de Mogotes conduce a San Joaquín, aflora un cuerpo de riolitas y traquitas que fue reportado por Ward *et al.* (1973) y cartografiado por Ward *et al.* (1977) como una parte del Granito de Pescadero. En la Plancha 136-Málaga

(Vargas et al., 1984), el cuerpo no aparece cartografiado. Debido a las diferencias litológicas y geocronológicas de estas rocas con los granitoides típicos del Batolito de Mogotes, en este estudio se trata el cuerpo como una unidad distinta, que se denomina Riolitas del Alto Los Cacaos. Las relaciones en campo entre ambas unidades son ambiguas, porque en algunos lugares parece que las rocas hipoabisales intruyen el batolito, y en otras, que la relación intrusiva ocurre al contrario. Este cuerpo de riolitas se describe de manera independiente del Batolito de Mogotes, en otro catálogo. Las rocas del Batolito desarrollan un relieve de montañas con aristas subangulosas y drenaje dendrítico (figura 2 A y B) y exhiben grados variables de meteorización. Donde la meteorización es intensa se encuentran saprolitos de entre 5 y 15 metros de espesor, que originan suelos arenosos de tonalidades que varían entre crema y café claro y anaranjado (figura 2 C y D), que localmente conservan la textura granular fanerítica de grano medio (figura 2D). También hay afloramientos de roca levemente meteorizada y otros de roca fresca sin aparente intemperismo superficial (figura 2 E y F).

Se colectaron muestras de mano representativas de cada litotipo identificado en el Batolito. En algunos casos se colectaron saprolitos (de entre 2 y 3 kg) para separar de estos los circones.

4.2.1. Descripción macroscópica del cuerpo principal

A continuación se describen las características macroscópicas de los principales litotipos del Batolito.

4.2.1.1. Monzogranitos

Los monzogranitos son de color blanco rosáceo, rosado-naranja, gris rosáceo, moteados de micas oscuras u óxidos de hierro, y comúnmente exhiben un grado alto de meteorización. Estas rocas son equigranulares a inequigranulares, con un tamaño de grano que varía de 1 a 3 mm (figura 2E, figura 3 A-D). Se encuentran variaciones locales a rocas faneríticas de grano fino con textura sacaroidal granular. Localmente contiene enclaves desde melanocráticos hasta leucocráticos (figura 2F). Las rocas consisten de plagioclasa blanca (30 a 40%), feldespato potásico rosado (25 a 35%), cuarzo de color gris (20 a 30%) y biotita (3 a 5%), como se puede apreciar en la figura 3.

Figura 2. Imágenes de las características macroscópicas del Batolito de Mogotes

A) Geomorfología desarrollada sobre el Batolito de Mogotes de montañas con aristas subangulosas y drenaje dendrítico; imagen capturada desde la estación TCR-379. B) Geomorfología desarrollada sobre el Batolito de Mogotes de montañas con aristas subangulosas y drenaje dendrítico; imagen capturada desde la estación TCR-379. C) Saprolito espeso del Batolito de Mogotes en la estación LMC-072. D) Detalle del saprolito del Batolito de Mogotes, que conserva textura fanerítica medio granular; estación LMC-073. E) Afloramiento de monzogranito fresco en la estación GZ-6828. F) Enclave en monzogranito en la estación MIA-636

Figura 3. Fotografías de las muestras de mano de monzogranitos del Batolito de Mogotes. A) Estación GR-6727. B) Estación TCR-376. C) Estación TCR-379. D) Estación JGB-470

4.2.1.2. Granodioritas y cuarzomonzodioritas

Granodioritas y cuarzomonzodioritas se encuentran en los extremos SE (alrededores de Onzaga y occidente de San Joaquín) y N-NW del cuerpo principal (cercanías de Cepitá). Los afloramientos de esta roca se observaron frescos en los cortes de quebradas y moderadamente meteorizados en los taludes de las carreteras. Su relación con el monzogranito parece ser intrusiva, por lo que se aprecia en los alrededores del puesto de salud de Las Tapias, donde una roca melanocrática semejante a la granodiorita se presenta en venas de 5 a 10 cm de espesor dentro del monzogranito. La granodiorita es gris a gris rosácea o blanco rosado, moteada de gris oscuro (figura 4A), de grano medio a grueso, de equigranular a inequigranular, compuesta por plagioclasa blanca (60%), cuarzo gris (10%), biotita negra y anfíbol verde oscuro (20 a 25%) y feldespato potásico rosado a naranja pálido (5 a 10%). En algunos puntos en la vía Las Tapias-El Morro contiene enclaves (posibles autolitos) de rocas melanocráticas porfiríticas (figura 4A). La cuarzo-monzodiorita es semejante macroscópicamente a la granodiorita, pero exhibe una ligera orientación de los minerales máficos (figura 4B), debido posiblemente a la deformación.

Figura 4. A) Afloramiento de granodiorita con enclaves (posible autolito) en la estación GZ-6830. B) Muestra de mano de cuarzomonzodiorita deformada, en la estación GZ-6831

4.2.2. Descripción macroscópica de cuerpos menores

Hay dos cuerpos menores: uno de granófido en la vía Aratoca-La Palma, y otro de sienogranito en la vía San Joaquín-Las Tapias, que exhiben características macroscópicas y edades diferentes a las típicas del Batolito de Mogotes, y por tal motivo se describen de manera independiente.

4.2.2.1. Cuerpo menor de monzogranito granofídico en borde W del batolito, en la vía Aratoca-La Palma

En la parte noroccidental del batolito en la vía Aratoca-La Palma, en el sector Tempranito se encontró una roca ígnea inequigranular con cristales de tamaño de grano fino, menor o igual a 1 mm, leucocrática de color blanco a rosado, ligeramente moteada de pardo por biotitas lixiviadas (figura 5). Consiste de feldespato potásico rosado (40%), plagioclasa blanca (30%), cuarzo gris (25) y biotita (5%). Corresponde a un monzogranito fino con aspecto mesoscópico diferente del monzogranito principal. Debido a las características texturales y a la edad de 204 Ma obtenida en esta muestra se decidió tratar como un cuerpo menor independiente y diferente del Batolito de Mogotes.

4.2.2.2. Cuerpo menor de sienogranito Los Trapiches

Un cuerpo menor de sienogranito aplítico, aparentemente intrusivo en Mogotes, denominado en este trabajo *sienogranito Los Trapiches*, aflora en la vía San Joaquín-Las Tapias-Onzaga, en el sector de Los Trapiches. Podría corresponder a lo que Vargas *et al.* (1981) consideraron una intrusión pequeña de la Riolita de Onzaga en los alrededores de San Joaquín. Sin embargo, la roca aplítica es macroscópicamente disímil de la riolita de Onzaga, porque esta última es foliada.

El sienogranito aplítico es una roca ígnea finogranular, localmente de aspecto sacaroidal, leucocrática de color beige (figura 6), compuesta por feldespato potásico (60%), cuarzo (25%), plagioclasa (10 a 15%) y biotita (<5%).

4.2.3. Descripción macroscópica de diques

Diques porfídicos y aplíticos se observan en varias partes del cuerpo. Riolitas y cuarzolatitas se encontraron en la parte NE del municipio de San Joaquín y al norte Onzaga, que se denominaron *Riolita de San Joaquín* y *Riolitas El Uvo*, y se describen como unidades independientes del Batolito de Mogotes. Diques de andesita y

Figura 5. Muestra de mano de monzogranito finogranular encontrado en la vía Aratoca-La Palma, en la estación MIA-636

Figura 6. A) Afloramiento de sienogranito aplítico en la estación AMC-0144, en la vía San Joaquín-Las Tapias, sector Los Trapiches. B) Muestra de mano de sienogranito aplítico en la estación AMC-0144

microtonalita se encuentran en la parte sur del batolito, al norte de Onzaga y en la parte norte, en cercanías de Cepitá.

4.2.3.1. Diques máficos a intermedios

Diques de microtonalita alterada que varían en espesor de 0,6 a 1,6 m se encuentran sobre la vía Cepitá-San Miguel, en la parte norte del batolito (figura 7A). Son finogranulares masivos, de color verde oscuro por la presencia de minerales de alteración propilítica, como epidota y clorita. Otro dique de una clasificación similar, pero no tan alterado, se encuentra al norte de Onzaga.

Un dique máfico de aproximadamente 12 m de ancho saprolitizado y cizallado se halla cortando el Batolito de Mogotes en la vía Aratoca-desvío La Palma, en el sector Tempranito (estación MIA-636). Diques de andesita se hallan en la parte sur del cuerpo, al norte de Onzaga, y otros de andesita hornbléndica, en la parte norte del batolito, al este de Cepitá.

Un dique de granodiorita metamorfizada se encontró en el sector de El Morro, al NE de San Joaquín (estación GZ-6833), donde intruye los esquistos de la Formación Silgará.

4.2.3.2. Diques félsicos

En diferentes partes del batolito se encuentran diques aplíticos de composición sienogranítica a monzogranítica y porfídicos, en su mayoría de composición riolítica.

Diques aplíticos y porfídicos de color blanco se aprecian en la parte SW del batolito, en la vía San Joaquín-San Martín (La Aurora). Los diques aplíticos se presentan de hasta 10 m de espesor y están cortados a veces por venas

Figura 7. A) Saprolito de dique máfico cortando el monzogranito en la estación MIA-636. B) Diques de microtonalita en monzogranito, en la vía Cepitá-San Miguel, estación AMC-0136

de cuarzo lechoso. Corresponden a granitoides aplíticos faneríticos de grano muy fino a fino, con textura sacaroidal, y están compuestos por cuarzo (20 a 30%) y feldespatos blancos (60 a 70%) con biotita (1%). Se encontró un dique de monzogranito granatífero (estación GR-6727). En la vía Las Tapias-El Morro (estación GZ-6829) hay diques de sienogranito.

En la parte norte del batolito, sobre la vía Aratoca-La Palma, se hallan diques félsicos finogranulares aplíticos (estación TCR-376A) y porfídicos (estaciones MIA-636 y TCR-376). Los aplíticos son de 15 cm de espesor en promedio, y están compuestos por cuarzo (60%), plagioclasa (28%), feldespato potásico (10%) y biotita (2%). En esta vía existen en forma de diques rocas félsicas inequigranulares con fenocristales de feldespato y cuarzo embebidos en una matriz afanítica felsítica.

4.2.4. Características microscópicas del cuerpo principal

Las secciones delgadas y delgadas pulidas fueron confeccionadas en el Laboratorio de Petrografía del Servicio Geológico Colombiano, en Bogotá. Para la caracterización petrográfica de las rocas plutónicas en el cuerpo de Mogotes se analizaron catorce secciones delgadas de rocas elaboradas durante la ejecución del proyecto "Magmatismo jurásico en Colombia, Macizo de Santander" (véase la ubicación en la figura 1), se reanalizaron trece secciones delgadas y se compilaron trece descripciones de proyectos anteriores no determinados, del Ingeominas. La composición modal, que se resume en la tabla 1 y se visualiza en la figura 9, se determinó a partir del conteo de puntos. La abreviatura de minerales es la de Whitney y Evans (2010).

Figura 8. Fotografías de diques félsicos que cortan el Batolito de Mogotes A) Muestra de mano de dique de sienogranito, en la estación TCR-736. B) Muestra de mano de dique de fenocuarzolatita, en estación TCR-736. C) Dique félsico de cuarzolatita en contacto con monzogranito, en la estación LMC-071. D) Diques félsicos de sienogranito en la estación GZ-6829

lgm	W	N	Qtz	PI	Fsp	Hbl	Bt	Ms	Ор	Ар	Zrn	Ttn	Aln	Otros	Clasificación
37303	1124710	1237510	11	83						0,5	0,5			5	Cuarzodiorita
37304	1125300	1237860	12	75	2		6		1	1	1	1		1	Cuarzodiorita
10909	1139824	1200391	14,5	52	20	0,5	10		1	0,5	0,5	1			Cuarzomonzodiorita
900903	1140363	1206394	14,7	54,5	11,9		18,6		Tr		Tr	0,3	Tr		Metacuarzomonzodiorita
37302	1124700	1238060	18	33	39		6		1,5	1	1,5				Cuarzomonzonita
73670	1138480	1202240	15	30	35		10		3	Х		2			Cuarzomonzonita
900902	1140297	1205191	21,1	46,3	16,5	6,3	8,8		0,5	Tr	Tr	0,5			Granodiorita
10906	1139110	1202152	26	37,5	17	5	12		1		0,5	1			Granodiorita
13263	1131624	1220996	21	46	11		13		2,5	0,5	1,5	4,5			Granodiorita
14356	1140492	1204203	24,5	39,4	21,6	13,4	0,7		Tr		Tr	0,3	0,1		Granodiorita
37307	1123940	1239320	45	37	11		2		1		1			3	Granodiorita
37690	1138300	1202250	24,9	45,7	18,9		8		0,5	1,1	0,2	0,5		0,2	Granodiorita
73671	1139660	1200920	28	47	16	1	6		1	Tr		1			Granodiorita
73672	1141550	1200400	16	42	20	9	13		Tr	Tr	Tr	Tr			Granodiorita
37300	1124020	1238900	27	40	8				1	1				23	Granodiorita
73676	1139780	1197040	42	40	14							Х			Metagranodiorita
14346	1139460	1223192	30	43	15		12		Tr	Tr	Tr	Х			Metagranodiorita
900869	1123996	1238967	34	24,5	36		4,5		1	Tr	Tr				Monzogranito
900879	1139278	1196886	27	37	24	1	10		Tr	Tr	Tr	0,5	0,5		Monzogranito
900887	1129973	1218837	40,2	29,9	26,1	0,5	2,7		0,6	Tr	Tr	Tr			Monzogranito
900900	1140183	1203787	18,5	30,9	31,5	18,5			0,6						Monzogranito
900917	1139227	1200562	27,6	35,4	31,0		6,0		Tr	Tr	Tr				Monzogranito
900927	1131045	1208090	35	25	38		2		Tr	Tr	Tr				Monzogranito
900943	1128418	1218926	25,2	28,7	33,2		12,5		0,4	Tr	Tr				Monzogranito
900944	1126040	1217144	25,8	32,6	39,6		1	Х	0,5	0,5	Tr				Monzogranito
900962	1124265	1231161	25,5	40	24		8		1,7	0,5	0,3				Monzogranito
900965	1127293	1212077	37	25	33		3,5		1	0,3	0,3				Monzogranito
900966	1128868	1206624	18,5	27,5	41		11,5		1,3		0,2				Monzogranito
10905	1138462	1202918	28	23	38		7		2	Tr	1	Tr	1		Monzogranito
10915	1123599	1218456	30	28	41,5		0,5	Х	Tr		Tr				Monzogranito
10916	1122157	1218528	22,8	31,1	43,4		1,7		1		Tr				Monzogranito
13265	1123559	1236907	25	38	25		6,5		2,5	0,5	0,2	2,3			Monzogranito
13275	1123936	1231305	36,5	24,5	35		3		0,5	0,5					Monzogranito
14355	1143647	1205531	26,2	28,8	32,5	1,2	10,9		0,2	Tr	Tr	0,2	Tr		Monzogranito
37291	1123270	1226081	22	42	27		6			1		1		1	Monzogranito
37301	1124250	1238840	26	34	32		3		1	1	1	1		1	Monzogranito
37691	1133280	1217960	17	34,5	30.5		6.5	0.5	1	2	Tr			5	Monzogranito
900874	1139427	1199642	35	28	34		3	Х			Tr				Monzogranito deformado
13245	1125762	1228417	38	20	40		1	Х	1	Tr	Tr		Tr		Sienogranito
37712	1132150	1219410	40	20	39		1			Х	Х	Х	Tr		Sienogranito

Tabla 1. Composición modal de las rocas plutónicas principales en el Batolito de Mogotes

Figura 9. Triángulo QAP de Streckeisen (1974) que muestra la composición modal de las rocas plutónicas del Batolito de Mogotes En cuadrados rojos, monzogranitos, sienogranitos y cuarzomonzonitas; en cuadrados negros, granodioritas, cuarzomonzodioritas y cuarzodioritas

El Batolito de Mogotes está compuesto principalmente por monzogranitos (52,5%), seguidos de granodioritas (27,5%), y en muy baja proporción, por sienogranitos (5%), cuarzomonzonitas (5%), cuarzomonzodioritas (5%) y cuarzodioritas (5%). A nivel microscópico se observa que muestras del NE de San Joaquín, recogidas en el sector de El Morro y al norte de Onzaga, exhiben deformación, y en su denominación se introdujo el prefijo "meta-".

4.2.4.1. Monzogranitos, sienogranitos y cuarzomonzonitas

Los monzogranitos exhiben principalmente textura hipidiomórfica (figura 10A) inequigranular (IGM 900962, 900917, 900943, 900966, 900900, 10905, 10915, 10916, 13265, 13275, 14355, 37291, 37301 y 37691). En algunas muestras (IGM 900869, 900887, 900944 y 900965) se aprecian además las texturas alotriomórfica inequigranular, la micrográfica y mirmequítica (figura 10 B y C), y en una muestra (IGM900927) se observa que la textura mirmequítica y micrográfica es posterior y se superpone a la alotriomórfica inequigranular (figura 1 OC). De manera subordinada aparece la textura poiquilítica (figura 1 OD) con oikocristales de feldespato potásico y cuarzo encerrando cristales menores de plagioclasa, feldespato potásico y biotita.

Al norte de Onzaga, el monzogranito se encuentra con deformación dinámica en la que los cuarzos se hallan en agregados de subgranos, y las biotitas, estiradas y dobladas. Consisten de cuarzo (17 a 40%, si bien la población dominante está entre 22 y 28%), plagioclasa (23 a 42%, con la población dominante entre 23 y 31%), feldespato potásico (24 a 43,4%, con la población dominante entre 30 y 41%), biotita (0,5 a 12,5%, con la población principal entre 3 y 7%), y en esporádicas muestras se encuentra hornblenda, alrededor de 1%, aunque en una muestra (IGM900900) se encontró en un 18,5%. Como minerales accesorios se encuentran apatito, circón, opacos, titanita y allanita.

Se encontraron dos secciones delgadas que pueden clasificarse como sienogranitos en límite con monzogranito. De una de las secciones delgadas (IGM37712) se retomó la descripción original realizada en el año de 1992 (formato que hace parte del acervo del Servicio Geoló-

Figura 10. Microfotografías en las que se muestran las texturas de los monzogranitos del Batolito de Mogotes y las características del feldespato potásico en estas rocas. A) GM900962. Textura general, hipidiomórfica inequigranular. Nícoles paralelos. B) IGM900944. Textura micrográfica dada por inclusiones alargadas de cuarzo (Qtz) que contrastan con el feldespato potásico (Fsp) alterado a caolín. Nícoles cruzados. C) IGM900927. Crecimiento mirmequítico sobre feldespato potásico con desmezclas pertíticas. Nícoles cruzados. D) IGM14355. Textura poiquilítica con inclusiones de plagioclasa (PI), cuarzo (Qtz) y opacos (Op) en feldespato potásico. Nícoles cruzados

gico Colombiano), y la otra (IGM13245) se reinterpretó en este estudio. Ambas se describen junto con los monzogranitos, suponiendo que son una variación del monzogranito principal del batolito, pero en realidad no se tiene información sobre su forma de existencia, ni de sus relaciones con las otras rocas. También hay dos muestras (IGM 37302 y 73670) clasificables en el campo de las cuarzomonzonitas, en límite con el monzogranito, que se incluyen en la descripción del monzogranito.

El cuarzo aparece en cristales anhedrales, con bordes irregulares, incoloros, limpios, algunos con inclusiones de polvo a manera de líneas o caminillos, con microfracturas irregulares internas. La extinción es ondulatoria, de moderada a fuerte. En el monzogranito deformado muestra formación de subgranos. Pueden tener inclusiones de plagioclasa, feldespato potásico, biotita y apatito. En algunas muestras forman mosaicos de granos. En varias muestras aparece en los bordes de cristales de feldespato potásico, como producto de reacción entre feldespatos potásicos o entre feldespato potásico y plagioclasa. También puede encontrarse en finas venillas que atraviesan los cristales de feldespato potásico. El tamaño de cristales varía entre 0,2 y 3 mm, si bien predomina el rango de 0,5 a 2 mm.

La plagioclasa se presenta en cristales subhedrales a euhedrales, con bordes rectos. Su grado de alteración es variable, por lo que se los halla desde incoloros, cuando están frescos, hasta parduzcos, por fuerte sericitación y saussuritización. Presentan maclas de albita, Carlsbad y combinadas albita-Carlsbad. Esporádicamente se aprecia macla de la periclina; también son comunes los cristales zonados con zonación oscilatoria (figura 11A), y en ocasiones los núcleos muestran mayor alteración que los bordes. La composición según el método de Michel-Lévy varía entre oligoclasa - An_{28} y andesina - An_{38} . Ocasionalmente se presenta como inclusiones dentro del feldespato potásico y del cuarzo. Los tamaños varían entre 0,5 y 5 mm, aunque predominan el rango entre 1 y 2,5 mm.

El feldespato potásico se presenta en cristales anhedrales a subhedrales de contornos irregulares, y corresponde a ortosa y, en menor cantidad, a ortosa, pasando a microclina. Los cristales son incoloros cuando están frescos, aunque normalmente exhiben una superficie parduzca debido a la caolinización. Es común que presenten micropertitas, principalmente en cordones (figura 11B), y en menor cantidad en venas y parches. Esporádicamente pueden mostrar macla de Carlsbad (figura 11B) y maclas mal desarrolladas de microclina. Pueden desarrollar texturas poiquilíticas con inclusiones de cuarzo, plagioclasa, biotita y apatito. Ocasionalmente generan bordes de reacción en los contornos de los cristales de mayor tamaño y con las plagioclasas que tienen incluidas. Puede aparecer como inclusiones dentro del cuarzo. En algunas muestras puede desarrollar texturas gráficas con cuarzo. En el caso de la muestra IGM900927, el crecimiento gráfico de feldespato potásico-cuarzo se superpone a los cristales de feldespato potásico con textura pertítica (figura 10C). Los tamaños varían de 0,3 a 4 mm, aunque predomina el rango entre 0,5 y 2,5 mm.

La biotita aparece en láminas subhedrales a euhedrales (figura 12A), algunas de forma hexagonal. De color pardo, con pleocroísmo X: pardo medio, Y-Z: pardo oscuro, con extinción paralela al clivaje y en ojo de pájaro. Se puede encontrar inalterada, pero por lo general está alterada a clorita con epidota-clinozoisita, magnetita y en ocasiones con titanita. Comúnmente tiene inclusiones de apatito, circón y opacos, y localmente, de cuarzo y plagioclasa. Algunos cristales en cortes transversales muestran inclusiones de rutilo como finas agujas incoloras que se disponen a 60°, semejando una textura sagenítica. Los tamaños varían de 0,1 a 2 mm, si bien el rango predominante se encuentra entre 0,5 y 1 mm.

La hornblenda se observa en pocas muestras de monzogranitos (IGM 900900, 900887, 14355). Se halla en cristales subhedrales a euhedrales (figura 12B), en cortes basales y longitudinales, pleocroicos de color pardo amarillento a verde oliva. Puede tener inclusiones de opacos, epidota, cuarzo y circón. El tamaño predominante está entre 0,5 y 1,5 mm.

Los opacos se presentan en cristales anhedrales y subhedrales-euhedrales, muy finos a finos. Los muy finos (0,05 a 0,1 mm) son anhedrales y aparecen diseminados en la roca, principalmente en los clivajes de biotita alterada, y deben ser opacos secundarios. Los finos muestran un tamaño predominante entre 0,2 y 0,5 mm, si bien pueden llegar hasta 1 mm, y parecen corresponder a opacos primarios (figura 1 3A). Hay cristales anhedrales que a la luz reflejada son de color gris con tinte rosado y reflectancia baja; localmente, en bordes presentan hematita de color gris a blanco. Algunos tienen fracturas rellenas de clorita. Los subhedrales-euhedrales exhiben contornos cuadrados resultantes de un hábito cúbico, y pueden corresponder a pirita.

Figura 11. Microfotografías en las que se observan texturas y minerales en los monzogranitos del cuerpo Batolito de Mogotes. A) IGM10905. Cristales de plagioclasa (PI) con zonación oscilatoria. Nícoles cruzados. B) IGM900943. Texturas de exsolución-pertitas y maclas tipo Carlsbad en feldespato potásico (Fsp), plagioclasa (PI) alterada a sericita, láminas finas de biotita (Bt). Nícoles cruzados

Figura 12. Microfotografías que muestran las características de la biotita y la hornblenda en los monzogranitos del Batolito de Mogotes. A) IGM900917. Cristales euhedrales de biotita (BT), plagioclasa (PL) alterada a saussurita y feldespato potásico (Fsp). Nícoles paralelos. B) IGM900900. Textura hipidiomórfica inequigranular. Compuesta por plagioclasa (PI), cuarzo (Qtz), feldespato potásico (Fsp) y hornblenda (Hbl). Nícoles paralelos

El apatito se presenta en cristales euhedrales y subhedrales prismáticos, en cortes basales hexagonales (figura 13B) y longitudinales, incoloros. Se encuentran principalmente asociados a biotita como inclusiones o en sus bordes, pero también pueden estar incluidos en plagioclasa y feldespato, y diseminados en la roca. En general, son menores de 0,3 mm en su dimensión mayor.

El circón aparece en cristales euhedrales prismáticos e incoloros (figura 13A). Se presenta como inclusiones, principalmente en biotita, y también puede estar incluido en feldespato potásico, plagioclasa, cuarzo y anfíbol. Es común hallarlo asociado a opacos. El tamaño en general es menor de 1 mm. La titanita es un mineral accesorio que se aprecia solo en algunas muestras. Se presenta en cristales euhedrales (figura 1 3A) de hábito rómbico, color amarillo oscurecido, levemente pleocroico a marrón oscuro sin pleocroísmo. Está asociada con los opacos, la biotita cloritizada, los cristales que parecen haber sido anfíbol y como inclusión en los feldespatos. Muestra extinción paralela. Generalmente se observa fracturada, y su tamaño varía entre 0,5 y 1 mm.

La allanita se encuentra en cristales subhedrales y euhedrales. Su forma es prismática, su color, marrón intenso (figura 14), levemente pleocroico, tiene relieve muy alto y desarrollo de marcadas fracturas irregulares.

Figura 13. Microfotografías en las que se observa la forma en que aparecen la titanita, los opacos, el apatito y el circón en los monzogranitos del Batolito de Mogotes. A) IGM14355. Opacos (Op), titanita (Tnt), hornblenda (Hbl) y trazas de circón (Zrn). Nícoles paralelos. B) IGM13265. Inclusiones de apatito (Ap) y opacos (Op) en cristales alterados de biotita (Bt alterada). Nícoles paralelos

Localmente muestra bordes interrumpidos por otros minerales. Puede presentar inclusiones de opacos, apatito y cuarzo. Se halla diseminada en la roca o como inclusión en el feldespato. Los tamaños comunes oscilan de 0,3 x 0,4 mm a 0,25 x 0,75 mm, si bien algunos cristales pueden alcanzar 2,5 mm de largo.

Figura 14. Microfotografía de un cristal de allanita de los monzogranitos del Batolito de Mogotes. IGM10905. Cristal subhedral de allanita (Aln). Nícoles paralelos

4.2.4.2. Granodioritas-cuarzomonzodioritas

Se analizaron once secciones delgadas de granodioritas (IGM 900902, 10906, 13263, 14356, 37307, 37690, 73671, 73672, 37300, 73676 y 14346) y dos de cuarzomonzodioritas (IGM 10909 y 900903).

Las granodioritas muestran textura hipidiomórfica inequigranular de grano medio (figura 15A). Localmente poiquilítica (figura 15B), donde el feldespato potásico encierra cristales menores de plagioclasa, biotita u hornblenda. Consisten de plagioclasa (38 a 47%), cuarzo (20 a 30%), feldespato potásico (15 a 22%), anfíbol (0 a 14%), biotita (0 a 13%), y como minerales accesorios, opaco, titanita, apatito, circón y allanita. Son comunes los feldespatos potásicos con desmezclas pertíticas. Las cuarzomonzodioritas exhiben textura hipidiomórfica inequigranular, y una de las muestras (IGM900903) exhibe deformación dinámica, por lo que presenta una textura cataclástica con recristalización de cuarzo, que se describe en la parte final del capítulo dedicado a las granodioritas-cuarzomonzodioritas. En menor proporción se observan texturas poquilíticas en las que oikocristales de feldespato potásico encierran cristales de plagioclasa, biotita y opacos. Están

compuestas por plagioclasa (52 a 55%), feldespato potásico (10 a 20%), cuarzo (15%), biotita (10 a 20%), hornblenda (1%), y como minerales accesorios se encuentran titanita, opacos, circón, apatito y allanita.

La plagioclasa se presenta en cristales subhedrales, de incoloros a empolvados por la alteración parcial a minerales de arcilla y sericita (figura 15B), y localmente, a saussurita. Maclas de tipo albita y albita-Carlsbad. Algunos cristales exhiben zonación. La composición de la plagioclasa en las granodioritas, estimada por el método Michel-Lévy, es oligoclasa-andesina entre An_{30} y An_{42} , mientras que en las cuarzomonzodioritas es oligoclasa-andesina An_{30} - An_{31} . El tamaño varía entre 0,3 mm y 2,5 mm, si bien el rango predominante se encuentra entre 1 y 1,5 mm.

El feldespato potásico es de tipo ortosa, se encuentra en cristales anhedrales de contornos irregulares, incoloros levemente parduzcos debido a una leve caolinización. Los cristales presentan textura pertítica en filoncillos (figura 15B). Localmente muestran textura poiquilítica con inclusiones de pequeños cristales de biotita, plagioclasa (alterada a sericita), hornblenda, cuarzo y titanita (figura 15B). Los tamaños varían entre 0,5 y 3 mm, aunque predomina el rango entre 1,5 mm y 2 mm.

El cuarzo se presenta en cristales anhedrales incoloros, y tiene extinción ondulatoria. Algunos cristales están fracturados y otros forman mosaicos de granos. Pueden tener pequeñas inclusiones de plagioclasa y hornblenda. El tamaño varía entre 0,5 y 2,5 mm, pero predomina el rango entre 1 y 2 mm.

La biotita se encuentra en láminas subhedrales a euhedrales con terminaciones fibrosas (figura 16A) de color pardo claro, con pleocroísmo a pardo rojizo. Las láminas varían de frescas a parcialmente alteradas a clorita y epidota. Algunas contienen inclusiones de cuarzo y circón. El tamaño varía entre 0,1 y 2 mm, siendo el promedio de 1 mm.

La hornblenda se halla en cristales euhedrales a subhedrales (figura 1 6 A y B) de color pardo-verdoso claro. El anfíbol se aprecia desde fresco, parcialmente alterado a epidota, hasta completamente alterado a clorita, epidota y cuarzo; conserva los contornos de cortes basales y longitudinales. Algunos cristales exhiben maclas (figura 1 6B). La hornblenda aparece en cristales diseminados en la roca, aunque también pueden estar agrupados en un enclave, como en la muestra IGM10909. Localmente se presentan acumulaciones de minerales opacos en zonas

Figura 15. Fotomicrografías en las que se aprecian texturas de las granodioritas del Batolito de Mogotes. A) IGM900902. Textura hipidiomórfica inequigranular. Granodiorita compuesta por plagioclasa (PI), cuarzo (Qtz), feldespato potásico (Fsp) y hornblenda (HbI). Nícoles paralelos. B) IGM10906. Textura poiquilítica, con inclusiones de plagioclasa (PI), biotita (Bt) y hornblenda (HbI) en feldespato potásico (Fsp), el cual tiene pertitas. Nícoles cruzados

Figura 16. Microfotografías con características de la biotita y la hornblenda en las granodioritas del Batolito de Mogotes. A) IGM10906. Aspecto general de los cristales de biotita (Bt) y hornblenda (Hbl). Nícoles cruzados. B) IGM73672. Cristal maclado de anfíbol (Hbl). Nícoles cruzados

Figura 17. Microfotografías en las que se observa la forma de presentación de opacos y titanita en las granodioritas del Batolito de Mogotes. A) IGM10906. Cristales de opacos (Op) asociados a anfíbol (Hbl). Nícoles paralelos. B) IGM13263. Cristales de esfena (Tnt) y opacos (Op). Nícoles paralelos

donde hay presencia de hornblenda, generalmente junto a esfena. El tamaño de cristales varía entre 0,5 y 1,5 mm, aunque los que están en el enclave (IGM10909) son de menor tamaño: entre 0,2 y 0,3 mm.

Los opacos se encuentran en cristales muy finos a finos, anhedrales a subhedrales, diseminados en la roca, asociados a ferromagnesianos y a titanita (figura 17 A y B). El tamaño en general es menor de 0,2 mm.

La titanita se halla en cristales euhedrales rómbicos a subhedrales (figura 17B), algunos anhedrales, de color marrón oscuro, sin pleocroísmo. Suele estar asociada a los opacos y ferromagnesianos, principalmente a hornblenda. Su tamaño es menor de 0,4 mm.

El apatito se encuentra en cristales euhedrales prismáticos, de bordes rectos, incoloros. También se presenta como inclusiones en el feldespato de potasio y en la biotita. Puede tener inclusiones de epidota. Su tamaño varía entre 0,1 y 0,7 mm.

El circón se presenta en cristales euhedrales incoloros, y se encuentra incluido en plagioclasa, cuarzo y biotita. Su tamaño oscila entre 0,1 y 0,3 mm. En algunas muestras, la allanita se encuentra en cristales euhedrales de color pardo con pleocroísmo a pardo verdoso. Puede estar rodeada por una corona de epidota. Su tamaño varía entre 0,3 y 0,8 mm.

La muestra, clasificada como metacuarzomonzodiorita (IGM900903), tiene composición similar a las ya descritas, pero se diferencia de estas en que exhibe rasgos de deformación dinámica, con agregados de cuarzo recristalizado y láminas de biotitas cloritizadas dobladas, estiradas y localmente alineadas.

Características microscópicas de cuerpos menores

De cuerpos menores se analizaron cinco secciones delgadas: una del monzogranito del sector de Tempranito (IGM900942) y cuatro de sienogranitos del sector de Los Trapiches (IGM 900875, 10904, 10912 y 10913). El resumen de la composición modal se presenta en la tabla 2, y la composición modal se grafica en la figura 18.

	Tabla 2. Composición modal	de cuerpos menores y diques d	el Batolito de Mogotes
--	----------------------------	-------------------------------	------------------------

lgm	W	N	Qtz	PI	Fsp	Hbl	Bt	Ms	Grt	Ор	Ар	Zrn	Ttn	Matriz	Otros	Clasificación
900942	1122841	1230947	26,2	29,1	38,7		6	Tr		Tr	Tr	Tr				Monzogranito
900875	1136936	1202313	25,5	12,5	60		1	Tr		1						Sienogranito aplítico
10904	1136722	1202554	35	22	40		Tr	Tr		Tr		Tr			3	Monzogranito en límite con sienogranito
10912	1134224	1205402	28,5	22	45		3			1,5		0,5				Sienogranito
10913	1134462	1203358	33	27	35		3			2		0,5				Monzogranito
900904	1141272	1208004	34,8	38,1	14,1		1	1,1		Tr				10,5		Metagranodiorita
900888	1129973	1218837	31,2	30,6	38,2		Tr			Tr	Tr	Tr				Monzogranito
900889	1134866	1203574	36,2	36,8	25,0			Tr	2,0	Tr		Tr	Tr			Monzogranito
900901	1140288	1204364	45,4	6,1	46,6		1			0,5						Sienogranito
900963	1124265	1231161	28	17,5	51,5		2			1						Sienogranito
900915	1137541	1202175	33,5	12,5	48,6		4	1,4		Tr	Tr	Tr				Sienogranito
900868	1123996	1238967	12	40								Tr?		35	5	Microtonalita
10907	1139123	1200431	12	50		35				1	0,5		1,5			Tonalita
10908	1138984	1200113	3,5	49		41				5,5			1			Andesita
37711	1124220	1238720		86		2				0,5			0,5		11	Andesita hornbléndica
900926	1122453	1222482	6	55	39					Tr		Tr				Cuarzolatita límite con latita
900964	1124265	1231161	15	37,5	36,5	9				2						Fenocuarzolatita
13246	1126681	1229783	8	6	4,5		2							80		Fenorriolita
900914	1137541	1202175	14	3,7	17,6		1			Tr		Tr	Tr	62	1,37	Riolita

Figura 18. Diagramas de clasificación de cuerpos menores y diques

A la izquierda, composición modal de los cuerpos menores (cuadrados verdes) y de los diques plutónicos (círculos negros), en el triángulo de Streckeisen (1974). A la derecha, composición modal de los diques subvolcánicos (círculos rojos) en el triángulo de Streckeisen (1978)

Cuerpo menor de monzogranito en borde W en vía Aratoca-La Palma

Este cuerpo está representado por un monzogranito granofídico (muestra IGM900942). La textura granofídica (figura 20) se presenta como intercrecimientos en los bordes de los cristales de feldespato, cuarzo y plagioclasa que se conservan en forma de núcleos. La roca consiste de feldespato potásico (39%), plagioclasa (29%), cuarzo (26%), biotita (6%) y, como accesorios, opacos, apatito y circón. En la muestra se distingue una matriz microgranular equigranular aplítica con cristales de tamaños que fluctúan entre 0,1 y 0,2 mm, de color pardo (figura 19). Esta matriz está compuesta por feldespato con alteración a caolín y cuarzo que contrasta por ser cristales limpios sin alteración, y en menor proporción plagioclasa. Se aprecian texturas de reacción entre la matriz y cristales de feldespato y cuarzo con bordes en bahías y cristales corroídos.

El feldespato potásico es ortosa y aparece en cristales anhedrales de aspecto sucio, alterados a caolín, en tamaños que fluctúan entre 0,7 y 1 mm, y presentan maclas tipo Carlsbad. También está en intercrecimientos con el cuarzo, formando texturas micrográficas. Láminas finas de moscovita se encuentran intersticiales entre cristales de cuarzo y feldespato, posiblemente como producto de alteración de feldespato.

La plagioclasa está en cristales finos tabulares en la matriz y muestra maclas tipo albita. En cristales de mayor tamaño (0,5 mm) muestra maclas tipo Carlsbad, y alteración a sericita y epidota. Exhibe texturas mirmequíticas hacia los bordes por intercrecimiento con feldespato y cuarzo. Según el método Michel-Lévy, la composición es andesina (An₃₄).

El cuarzo aparece en cristales desde anhedrales (figura 19B) hasta euhedrales bipiramidales, rodeados por intercrecimientos micrográficos de cuarzo y feldespato, con formas de cuñas triangulares. Hacia los bordes de los cristales pueden presentarse finas láminas de biotita. Los tamaños varían entre 0,2 y 0,5 mm.

La biotita aparece en láminas euhedrales tabulares de color pardo, pleocroicas de pardo amarillento a amarillo claro, con extinción ojo de pájaro. Se hallan hacia los bordes de los cristales de cuarzo, plagioclasa y feldespato, y en nidos a los que se asocian cristales de clinozoisita. El tamaño es fino, de aproximadamente 0,05 mm.

Figura 19. Microfotografías en las que se muestra la textura granofídica en cuerpo menor de monzogranito en vía Aratoca-La Palma. A) IGM900942. Textura holocristalina granofídica, dada por intercrecimientos micrográficos de cuarzo (Qtz) y feldespato potásico (Fsp). Nícoles paralelos. B) IGM900942. Textura granofídica inequigranular compuesta por cuarzo (Qtz) e intercrecimientos micrográficos. Además, láminas de biotita (Bt). Nícoles paralelos

Los opacos son escasos en la muestra y se presentan como cristales isotrópicos de tamaño fino (0,05 mm), incluidos en láminas de biotita.

El circón se presenta en cristales euhedrales prismáticos, se encuentra en los nidos de láminas de biotitas y junto a epidota/clinozoisita. El apatito está en cristales euhedrales prismáticos cortos, incoloros, de 0,05 mm, incluidos en plagioclasa y cuarzo.

Cuerpo menor de sienogranito en Los Trapiches

Este cuerpo está compuesto por sienogranitos, monzogranitos y monzogranitos en el límite con sienogranitos (IGM 900875, 10904, 10912 y 10913). Consisten de feldespato potásico (35 a 60%), cuarzo (25,5 a 35%), plagioclasa (12,5 a 27%), biotita (desde trazas hasta 2,5%) y como minerales accesorios moscovita, circón y opacos. La textura predominante es la alotriomórfica inequigranular (figura 20A), y de manera subordinada la textura micrográfica (figura 20B); también son comunes las pertitas en los feldespatos potásicos. Los principales minerales de alteración son arcilla (caolín), epidota y sericita. En algunas muestras se aprecian microfracturas y microfallas rellenas de cuarzo finogranular.

El feldespato potásico es ortosa y aparece en cristales anhedrales de incoloros a levemente parduzcos por alteración a caolín. Muchos presentan textura pertítica por desmezcla de plagioclasa en forma de cordones (figura 20A); algunos tienen inclusiones de cuarzo, y otros muestran textura micrográfica (figura 20B). En algunos cristales se insinúa zonación hacia los bordes. Se encuentran cristales con macla de Carlsbad. Los tamaños varían desde 0,5 x 1 mm hasta 1,5 x 2,5 mm, si bien los tamaños predominantes están entre 0,5 y 1 mm.

La plagioclasa se aprecia en cristales subhedrales (figura 20A) a anhedrales, incoloros a levemente parduzcos por alteración a sericita, y localmente, a saussurita. Presentan macla de albita en ocasiones mal definida, y Carlsbad. Su composición por el método Michel-Lévy varía entre oligoclasa An_{28} a andesina An_{34} . Los tamaños varían desde 0,25 x 0,5 mm a 0,5 x 1 mm, y en general son menores que los cristales de feldespato potásico.

El cuarzo se halla en cristales anhedrales (figura 20 A y B), incoloros, con extinción ondulatoria. Se encuentra en los intersticios de cristales de feldespato potásico, plagioclasa y otros cuarzos. En algunas muestras se presentan "gotas" alargadas e irregulares de cuarzo en la ortoclasa que forman textura gráfica (figura 20B). Los tamaños varían entre 0,2 y 1,5 mm, aunque en promedio son menores de 0,8 mm en su dimensión mayor.

La biotita, presente en láminas subhedrales, es pleocroica de pardo a amarillo claro, con extinción ojo de pájaro. Color de interferencia azul de segundo orden. Puede estar levemente alterada a clorita y presentar un poco de alteración a moscovita en sus bordes. Los tamaños varían desde 0,1 x 0,15 mm hasta 0,12 x 1,75 mm.

La moscovita es escasa y solo se encuentra en algunas muestras. Se encuentra presente en láminas subhedrales, con tonalidad verde pálido, relieve variable, y aparece entre cristales de cuarzo y feldespato potásico. Su tamaño promedio es de 0,25 x 0,5 mm.

Figura 20. Microfotografías en las que se observan rasgos texturales y los minerales principales del cuerpo menor sienogranito de Los Trapiches. A) IGM10904. Textura alotriomórfica inequigranular, con sus minerales principales: cuarzo (Qtz), plagioclasa (PI), feldespato potásico (Fsp) y, como mineral accesorio, opaco (Op). Nícoles cruzados. B) IGM900875. Feldespato potásico (Fsp) intercrecido con cuarzo, en una textura micrográfica. Nícoles cruzados

Los opacos se presentan en poca cantidad, principalmente en cristales anhedrales con tendencia a ser equidimensionales (0,15 x 0,2 mm), diseminados por toda la roca y asociados a biotita. Escasos cristales subhedrales son alargados, de 0,05 x 0,25 mm.

El circón aparece en poca cantidad, en cristales euhedrales prismáticos incoloros; sus tamaños fluctúan entre 0,05 y 0,1 mm.

4.2.5. Características microscópicas de diques

De diques distribuidos por todo el batolito, se analizaron catorce secciones delgadas (IGM 10907, 10908, 13246, 37711, 900868, 900926, 900901, 900963, 900964, 900904, 900889, 900914, 900915 y 900888). El resumen de la composición modal se presenta en la tabla 2, y la composición modal se grafica en la figura 18. Para la clasificación de los cristales según los tamaños, en rocas en las que se distinguen fenocristales y matriz, se usan los siguientes rangos: fenocristales, \geq 2 mm; microfenocristales, entre 2 y 0,5 mm, y microcristales, < 0,5 mm.

4.2.5.1. Dique de metagranodiorita

La metagranodiorita (IGM900904) tiene textura granoporfidoclástica y cataclástica (figura 21). Se caracteriza por ser fracturada con porfidoclastos de minerales de la roca ígnea original, con tamaño \leq 2,5 mm, y una matriz finogranular (\leq 0,1 mm) resultante de la blastesis y trituración de la roca, con cuarzo recristalizado con individualización de subgranos formando bandas de deformación frágil junto con las micas blancas, biotita, plagioclasa y feldespato potásico (figura 21). Consiste de plagioclasa (38%), feldespato potásico (14%), cuarzo (35%), biotita (1,5%), mica blanca (1%) y matriz (10,5%), así como trazas de opaco. Los minerales de alteración son arcilla, sericita y clorita.

La plagioclasa está en cristales incoloros, cuando su superficie está fresca, a parduzcos con aspecto sucio por alteración a minerales de arcilla y sericita (figura 21), subhedrales con bordes irregulares; con maclas mal conservadas de albita, albita-Carlsbad y periclina, parcialmente cubiertas por minerales de alteración o sin maclas. Según el método Michel-Lévy, su composición es oligoclasa (An_{29}). Localmente muestra inclusiones de biotita. Su tamaño es menor de 2,5 mm.

El feldespato aparece en cristales anhedrales inequigranulares con contornos irregulares, superficie parduzca por alteración a caolín, sin maclas. Algunas maclas de microclina presentan abundantes desmezclas pertíticas en cordoncillos y textura micrográfica. Se presenta con microfracturas, algunas rellenas de mica blanca. Su tamaño es menor de 3 mm.

El cuarzo se presenta en cristales anhedrales (figura 21). Forma cristaloblastos y agregados poligonales con puntos triples (granoblástica poligonal) y bandas lenticulares de subgranos con bordes irregulares, con extinción ondulatoria en cristales individuales y en mosaico, en las bandas de cuarzo. El tamaño en general es menor de 1 mm. Los cristales de menor tamaño forman unas bandas que se pliegan junto con las micas.

Figura 21. Microfotografías de las características petrográficas de un dique de metagranodiorita en el Batolito de Mogotes. A) IGM900904. Textura granoporfidoclástica y cataclástica. Roca compuesta por feldespato potásico (Fsp), cuarzo (Qtz), plagioclasa (PI), moscovita (Ms) y biotita (Bt). Nícoles paralelos. B) IGM900904. El mismo campo de la fotomicrografía de la izquierda, pero con nícoles cruzados

La biotita se halla en pequeñas láminas anhedrales (figura 21) de hábito fibroso, de color pardo claro con pleocroísmo a pardo oscuro, exfoliación en una dirección, relieve moderado, color de interferencia verde del segundo orden, con extinción paralela, parcialmente alterada a clorita y opaco. Su tamaño varía entre 0,3 y 0,5 mm.

La moscovita se observa en láminas anhedrales dobladas, con tamaños menores de 0,5 mm. Forma delgadas bandas lenticulares plegadas (figura 21) e intergranulares junto con la biotita y el cuarzo microcristalino recristalizado. También se presenta como microinclusiones en la plagioclasa y rellenando microfracturas.

4.2.5.2. Diques de monzogranitos y sienogranitos

De muestras de diques de monzogranito se analizaron dos secciones delgadas (IGM 900888 y 900889), y de sienogranitos, tres (IGM 900901, 900963 y 900915). Estos presentan texturas alotriomórficas e hipidiomórficas equigranulares de grano fino (figura 22). Otra textura común son las pertitas en ortosa en forma de filoncillos (figura 22A). En algunas se aprecia además textura micrográfica. La muestra IGM900889 muestra textura poiquilítica en granate (figura 22B). Están compuestas por feldespato potásico (25 a 52%), cuarzo (28 a 45%), plagioclasa (7 a 37%), biotita (desde trazas hasta 4%), trazas de opacos y escasos cristales de apatito y circón. La muestra IGM900889 contiene 2% de granate. Como minerales de alteración se encuentran sericita, arcilla, clorita, titanita y epidota-clinozoisita. El feldespato potásico corresponde a ortosa y se presenta en cristales anhedrales de contornos irregulares, de superficie ligeramente parduzca por alteración a caolín. Puede exhibir desmezclas pertíticas en filoncillos irregulares (figura 22 A y C) y parches e intercrecimientos gráficos con cuarzo a manera de gotas y vermicular gruesa. En general, no presenta desarrollo de maclas, aunque en algunos casos muestra maclas de tipo Carlsbad, y en otros desarrollan maclas incipientes de microclina. Puede presentar bordes de reacción con las plagioclasas. En los bordes de contacto entre cristales de feldespato se acumulan agregados finos de plagioclasa. Los tamaños más comunes están entre 0,2 y 1 mm, pero pueden alcanzar 4 mm en su dimensión mayor.

El cuarzo aparece en cristales anhedrales con bordes irregulares (figura 22), incoloros, con extinción ondulatoria de débil a fuerte. Localmente está intercrecido con ortosa, y en ocasiones, con plagioclasa. Los tamaños varían desde 0,15 hasta 3,7 mm, si bien predominan los menores de 2 mm.

La plagioclasa se presenta en cristales euhedrales tabulares cortos a anhedrales (figura 22 A, C y D); en algunas muestras pueden estar levemente doblados. La superficie varía de incolora, cuando los cristales están frescos, a parduzca por alteración a arcilla y sericita. Se presenta con maclas de albita, albita-Carlsbad y localmente de la periclina, mal desarrolladas en los bordes. Según el método Michel-Lévy su composición es de oligoclasa (An₂₈) a andesina (An₃₅). Algunos exhiben zonación y los núcleos están más alterados que los bordes,

Figura 22. Microfotografías que muestran características petrográficas de diques de monzogranitos y sienogranitos en el Batolito de Mogotes. A) IGM900888. Cristales de plagioclasa (PI), feldespato alcalino (Fsp) con desmezclas pertíticas y cuarzo (Qtz) en un dique de monzogranito. Nícoles cruzados. B) IGM900889. Cristales de granate (Grt) poiquilíticos con inclusiones de cuarzo (Qtz), en dique de monzogranito. Nícoles paralelos. C) IGM900901. Textura hipidiomórfica inequigranular de un dique de sienogranito compuesto principalmente por plagioclasa (PI), cuarzo (Qtz) y feldespato potásico (Fsp). Nícoles cruzados. D) IGM900963. Textura hipidiomórfica equigranular de un dique de sienogranito compuesto por plagioclasa (PL), cuarzo (Qtz), feldespato potásico (Fsp) y biotita (Bt). Nícoles cruzados

reemplazados por sericita en agregados, saussurita y arcilla. Puede estar incluida en feldespato potásico y presenta bordes de reacción. Los tamaños predominantes están entre 0,2 y 1,5 mm, y de manera esporádica se encuentran cristales mayores. La biotita se halla en láminas subhedrales (figura 23D) a anhedrales, pocas euhedrales, de color pardo, con inclusiones de apatito, opacos, allanita y circón. Se altera a clorita en los bordes y a epidota; puede pasar a moscovita, y a lo largo del clivaje se forman magnetita y titanita residual. El tamaño de cristales varía entre 0,1 y 0,5 mm.

Los opacos son principalmente anhedrales, diseminados en la roca o en zonas de alteración de la biotita. De forma esporádica aparecen junto a biotita, circón y apatito, y pueden tener inclusiones de apatito y cristales de circón en sus bordes. Los tamaños predominantes están entre 0,1 y 0,25 mm.

El apatito es escaso y solo se observó en dos muestras, en cristales incoloros, generalmente en cortes basales hexagonales, incluidos en biotita y en opacos, principalmente. Su diámetro está por debajo de 0,1 mm.

El circón también es escaso en estas muestras. Aparece en cristales euhedrales prismáticos, con color de interferencia de segundo orden. Muestra microfracturas. Está junto a opacos e incluido en biotita. Su tamaño es menor de 0,1 2 mm.

La moscovita se encontró en dos muestras (IGM900889 e IGM900915), donde se presenta en láminas finas anhedrales a subhedrales. Algunas incluidas dentro de plagioclasa, otras individuales. Es incolora, con bordes irregulares, algunos de sus cristales con inclusiones de biotita, o pasan gradualmente de biotita a moscovita en los bordes.

El granate también se apreció solo en una muestra (IGM900889) (figura 22B). Se presenta en cristales más gruesos que los minerales principales, anhedrales, con crecimiento intersticial entre los cristales de cuarzo, de relieve alto, color rosado, microfracturas irregulares internas e inclusiones poiquilíticas de cuarzo, con contornos irregulares. El tamaño del mayor es aproximadamente de 0,8 x 1,6 mm.

Diques de tonalita

El dique IGM10907 se clasifica como una tonalita. Presenta una textura subidiomórfica inequigranular (figura 23) de grano fino y está compuesto por plagioclasa (45%), hornblenda (29%), cuarzo (23%) y titanita, opacos y apatito, que suman el 3% restante. A diferencia de la muestra IGM900868, la plagioclasa y el anfíbol están preservados.

La plagioclasa se aprecia en cristales subhedrales incoloros (figura 23) a localmente parduzcos en los lugares donde presentan moderada a fuerte alteración a sericita. En algunos cristales localmente es posible ver maclas polisintéticas. Su composición, según el método Michel-Lévy, es andesina (An₃₂). En la mayoría de los casos exhibe epidotización, especialmente en el centro de los cristales, dejando una textura esquelética de las plagioclasas hacia los bordes. Los tamaños varían entre 0,3 y 1 mm.

La hornblenda está en cristales euhedrales a subhedrales de color pardo claro (figura 23) con pleocroísmo a pardo. Localmente se presentan cristales maclados. La mayoría de cristales presentan una alteración a clorita entre leve y moderada (figura 24) y epidota. Titanita y opacos aparecen en zonas en donde las hornblendas se encuentran más alteradas. El tamaño de los cristales varía entre 0,3 y 1,5 mm.

El cuarzo se halla en cristales anhedrales incoloros. Aparece intersticialmente entre los cristales de plagioclasa y hornblenda. El tamaño de los cristales no varía mucho, en el margen de 0,2 y 0,4 mm.

La titanita se presenta en cristales subhedrales de color pardo claro, con colores de interferencia de azul a rosado de tercer orden. Se encuentra generalmente asociada a los minerales producto de alteración de la hornblenda. El tamaño de sus cristales varía entre 0,3 y 0,7 mm.

Figura 23. Microfotografía en la que se aprecian la textura y los minerales de un dique de tonalita en el Batolito de Mogotes. IGM10907. Textura subidiomórfica inequigranular con minerales primarios: plagioclasa (PI), cuarzo (Qtz) y hornblenda (HbI), y secundarios: clorita (ChI). Nícoles paralelos

Los opacos se observan en cristales euhedrales a subhedrales de color negro (probablemente de pirita) y anhedrales de color rojo (probablemente de hematita). Los cristales se encuentran en zonas de alteración de ferromagnesianos y en general diseminados en toda la roca. El tamaño de los cristales es menor de 0,3 mm.

El apatito está en cristales incoloros euhedrales, isotrópicos en corte basal. Su tamaño es menor de 0,2 mm.

El dique de microtonalita alterada (IGM900868) corresponde a una roca en la que la textura original fue obliterada por la alteración hidrotermal (figura 24). Consiste de epidota-clinozoisita, un ferromagnesiano alterado a clorita, cuarzo primario y de introducción, y calcita. De acuerdo con los porcentajes estimados de minerales, su clasificación modal corresponde a tonalita en límite con cuarzo-diorita, pero por los minerales de alteración parece que originalmente correspondía a una roca de composición más básica, posiblemente una cuarzodiorita. Tiene fracturas menores de 0,5 mm de ancho, rellenas con los siguientes minerales de introducción: epidota-clinozoisita, cuarzo, calcita y clorita. Otras más finas están rellenas de calcita.

La epidota-clinozoisita se presenta en cristales anhedrales de epidota y subhedrales prismáticos o tabulares de clinozoisita, principalmente dispuestos en agregados irregulares (figura 24). Corresponde posiblemente al resultado de alteración hidrotermal de plagioclasa o de algún ferromagnesiano, o de ambos. El tamaño predominante es menor de 0,5 mm en su dimensión mayor.

Figura 24. Microfotografía en la que se observan las características de un dique de microtonalita del Batolito de Mogotes. IGM900868. Microtonalita fuertemente alterada a epidota (Ep) y clorita (ChI). Contiene cuarzo (Qtz). Nícoles paralelos

La clorita es de hábito fibroso, color verde claro (figura 24), con leve pleocroísmo. El color de interferencia es pardo anómalo. Puede corresponder a un ferromagnesiano alterado.

El cuarzo aparece en cristales anhedrales entre los otros minerales (figura 24) y rellenando fracturas. En los que se encuentran en los intersticios, algunos tienen extinción ondulatoria moderada, que puede corresponder a minerales primarios, y en otros no se aprecia extinción ondulatoria o, si existe, es leve; estos pueden ser cuarzo secundario y se hallan localmente junto con cristales de calcita. Su tamaño es menor de 0,25 mm.

Hay unos cristales muy finos equidimensionales con relieve y colores de interferencia altos que pueden ser circones, pero no es totalmente seguro, porque también podría tratarse de cristales de epidota muy finos.

La calcita se encuentra en cristales anhedrales asociados a la epidota-clinozoisita, al cuarzo y rellenando fracturas muy finas. También aparecen en cristales subhedrales maclados, como relleno de una fractura más gruesa.

En las muestras se pueden encontrar microfracturas rellenas por cuarzo y carbonato. En estas, el cuarzo es anhedral, exhibe extinción ondulatoria leve y los cristales son de mayor tamaño (hasta 0,3 mm) que los que conforman la roca.

Diques de andesita

Las andesitas (IGM10908 e IGM37711) exhiben texturas microporfídicas y subofíticas a levemente porfídicas. La andesita microporfídica (IGM10908) consiste de 8% de cristales (tanto fenocristales como microfenocristales) y 92% de matriz. Está compuesta por plagioclasa (49%), hornblenda (41%), cuarzo (3,5%), opacos (5,5%) y titanita (1,0%). La matriz consta de cristales muy finos de plagioclasa moderadamente alterada y cuarzo en muy poca cantidad (figura 25A).

La plagioclasa está en cristales subhedrales a anhedrales, incoloros. Su tamaño varía entre 0,1 y 0,3 mm; localmente se observan cristales de mayor tamaño que conforman la fracción de microfenocristales junto con hornblenda. Los cristales se encuentran moderadamente alterados a sericita y muestran bordes corroídos. Debido al tamaño y alteración de los cristales no es posible clasificar el tipo de plagioclasa por el método Michel-Lévy.

La hornblenda conforma la fracción de microfenocristales de la roca junto con algunos cristales de plagioclasa. El anfíbol aparece en cristales subhedrales, tabulares, de color café verdoso claro (figura 25A), con leve pleocroísmo a café un poco más oscuro. El tamaño de los cristales fluctúa entre 0,3 y 0,5 mm. Algunos muestran el clivaje típico de anfíbol. Hay cristales maclados, que exhiben alteración a clorita y localmente a epidota.

El cuarzo se halla en cristales anhedrales incoloros. El tamaño de los cristales oscila entre 0,05 y 0,1 mm; esporádicamente aparecen cristales redondeados de mayor tamaño, de hasta 1,3 mm, que pueden corresponder a amígdalas.

Los opacos están presentes en cristales anhedrales de color negro, localmente rojizo, con tamaños de entre 0,2 y 0,5 mm. Se encuentran diseminados en toda la roca (figura 25A).

La titanita aparece en cristales subhedrales de color pardo claro, levemente pleocroicos a pardo más oscuro, con alto relieve.

La roca presenta una alteración propilítica marcada por la presencia de clorita y epidota. Presenta una microvenilla de epidota y localmente lo que parecen ser amígdalas rellenas de cuarzo.

La andesita hornbléndica de textura subofítica (IGM37711) consiste de 55% de fenocristales, 43% de matriz y 2% de amígdalas. Está compuesta por plagioclasa (88%), hornblenda (11%) y opacos + titanita (1%). La roca está muy alterada a clorita, epidota y calcita.

En esta roca, la plagioclasa se presenta en cristales euhedrales tabulares, principalmente como microfenocristales y microcristales, y en poca cantidad como feno-

Figura 25. Microfotografías que muestran las características petrográficas de diques de andesita en el Batolito de Mogotes. A) IGM10908. Textura microporfídica con microfenocristales de plagioclasa (PI), hornblenda (HbI) en andesita. La roca tiene además opacos (Op) diseminados y epidota (Ep) de alteración. Nícoles paralelos. B) IGM37711. Cristales de hornblenda parcialmente cloritizada en andesita hornbléndica. Nícoles cruzados

Figura 26. Microfotografías que muestran las características petrográficas de diques de cuarzolatita y riolita en el Batolito de Mogotes. A) IGM900964. Textura portídica con matriz vítrea (Vd) y microlítica en cuarzolatita. Esferulitas en la matriz por devitrificación. Fenocristales de feldespato potásico (Fsp), plagioclasa (PI) y cuarzo (Qtz). Nícoles cruzados. B) IGM13246. Fenocristal de cuarzo (Qtz) bipiramidal con inclusión de la matriz y fenocristal euhedral de biotita (Bt) en una riolita, con matriz felsítica de grano muy fino. Nícoles cruzados

cristales. Tiene maclas según albita y albita-Carlsbad. Los fenocristales están corroídos por la matriz. No se pudo establecer la composición de la plagioclasa, dada la fuerte saussuritización.

El anfíbol que puede corresponder a hornblenda basáltica se presenta preferentemente en cortes longitudinales, como microfenocristales subhedrales (figura 25B) de color marrón y alterado a clorita en sus bordes.

Las amígdalas son circulares y están rellenas de clorita y calcita; la clorita en ocasiones es plumosa y aparece en láminas con color de interferencia azul Berlín.

Diques de cuarzolatitas y riolitas

Las cuarzolatitas (IGM 900964 y 900926) presentan como texturas principales la porfídica con matriz microlítica (figura 26) y afanítica microgranular. Otra textura también presente en la matriz es la esferulítica (figura 26A). En la IGM900964, la matriz se compone de vidrio devitrificado con microlitos de feldespato potásico. En la IGM900926 la muestra presenta una fuerte sericitización que impide identificar su composición mineral original, con excepción de las esferulitas.

Las cuarzolatitas consisten aproximadamente de 45% de cristales y 55% de matriz. La muestra IGM900964, de textura porfídica y matriz microlítica y esferulíti-

ca, está compuesta por 37,5% de plagioclasa, 36,5% de feldespato potásico, 15% de cuarzo, 9% de ferromagnesiano alterado, 2% de opacos y trazas de allanita; la roca está levemente saussuritizada y sericitizada. La muestra IGM900926, con textura afanítica microgranular y matriz localmente esferulítica, consiste de 55% de plagioclasa, 39% de feldespato potásico, 6% de cuarzo y trazas de opacos y circón; la roca está fuertemente sericitizada.

En la muestra IGM900964, la plagioclasa se presenta en microfenocristales y pocos fenocristales subhedrales (figura 26A) incoloros. Estos están levemente saussuritizados, y algunos, sericitizados. Presentan maclas polisintéticas tipo albita-Carlsbad. Su composición es andesina (An₃₀), según estimación por el método Michel-Lévy. En la muestra IGM900926 la plagioclasa está en microfenocristales y microcristales alotriomórficos, alterados casi totalmente a sericita, sin maclas visibles, que pueden estar enmascaradas por la alteración. No fue posible estimar su composición.

En la muestra IGM900964, el feldespato potásico (sanidina) se presenta en mayor porcentaje como microcristales, y en menor proporción como microfenocristales y fenocristales, subhedrales (figura 26A), de incoloros a levemente pardos debido a caolinización. Algunos cristales presentan corrosión en el borde y hacia el centro de los cristales. En la muestra IGM900926, el feldespato potásico aparece principalmente como microcristales, y en menor porcentaje como microfenocristales de textura esferulítica, de incoloros a moteados de color marrón por alteración a caolín, relieve muy bajo y extinción ligeramente radial. El tamaño promedio es menor de 0,5 mm.

En la muestra IGM900964, el cuarzo se presenta principalmente como microfenocristales, y en menor proporción como fenocristales y pocos microcristales. Estos son anhedrales, incoloros, exhiben formas subredondeadas con embahiamientos hacia los bordes y corrosión hacia el centro. Algunos cristales presentan coronas de esferulitas hacia los bordes (figura 26A). En la muestra IGM900926, el cuarzo se presenta como microcristales subordinados, algunos anhedrales, con bordes difusos y otros con un hábito bipiramidal algo irregular, incoloros, con un tamaño promedio de 0,5 mm, y extinción ondulatoria.

En la muestra IGM900964, el ferromagnesiano está completamente alterado a clorita y un poco de epidota. Algunos cristales conservan en cortes basales formas típicas de anfíbol, y otros pudieron corresponder a biotita. En la muestra IGM900964, la allanita se presenta en microcristales subhedrales, pleocroicos de marrón oscuro a marrón claro, diseminados en la roca.

En ambas muestras, los opacos son escasos. En la IGM900964 son anhedrales y están asociados principalmente al ferromagnesiano alterado, y en la muestra IGM900926 aparecen en microcristales anhedrales de forma irregular alargada y de tonalidad rojiza. Su tamaño está por debajo de 0,1 mm.

En la muestra IGM900926, el circón está presente en cristales euhedrales prismáticos cortos muy finos, menores de 0,01 mm. En la muestra IGM900964 no se observaron circones.

Las riolitas (IGM13246 y 900914) son porfídicas con matriz felsítica de grano muy fino, con un 20% de cristales y un 80% de matriz. Están compuestas por cuarzo (8%), feldespato potásico (4,5%), plagioclasa (6%) y biotita (1,5%). Pueden presentar glomerocristales, con predominio de feldespatos potásicos sobre la plagioclasa o fragmentos con textura granofídica. Pueden tener fracturas muy finas, menores de 0,1 mm de espesor, rellenas de calcita.

El cuarzo ocurre en cristales subhedrales bipiramidales con inclusiones redondeadas de la matriz y algunas bahías de corrosión en los bordes. Es incoloro y muestra extinción ondulatoria leve. Su tamaño varía desde fenocristales de 1,2 x 1,5 mm y 2 x 2,5 mm hasta microcristales de 0,25 x 0,3 mm.

El feldespato potásico de tipo sanidina se presenta en microfenocristales, microcristales y fenocristales subhedrales tabulares con incipiente desmezcla en pertitas. Exhibe muy leve alteración a arcilla. Su tamaño varía desde 0,75 x 0,75 mm hasta 1,75 x 2,5 mm.

La plagioclasa se encuentra en microfenocristales, microcristales y fenocristales subhedrales tabulares con macla de albita y albita-Carlsbad, y escasa de periclina. No se hallaron cristales con cortes apropiados para determinar ópticamente su composición. La plagioclasa presenta sericitización moderada e incipiente saussuritización. El tamaño en general es menor de 0,9 x 1,25 mm.

La biotita se presenta en láminas euhedrales y subhedrales, en microfenocristales y microcristales, completamente alterada a clorita y epidota. Puede tener circones incluidos. Su tamaño es menor de 0,9 x 1,2 mm.

El circón se halla en cristales subhedrales redondeados incluidos en biotita alterada y euhedrales prismáticos, con halo pleocroico en la biotita; también en los bordes de opacos. Por lo regular su tamaño es menor de 0,06 x 0,1 mm. Algunos cristales de mayor tamaño, clasificados como circones, pueden corresponder a monacita.

El apatito está presente en cristales euhedrales en cortes basales menores de 0,1 mm de diámetro. Se lo encuentra dentro o en los bordes de biotita alterada.

La allanita es escasa y se presenta en microcristales euhedrales diseminados dentro de la matriz. Su tamaño aproximado es de 0,08 x 0,12 mm.

Los opacos se encuentran en cristales anhedrales diseminados en la roca. Su tamaño es menor de $0,25 \ge 0,3$ mm.

5. Química mineral

Las secciones delgadas pulidas para análisis de química mineral fueron previamente metalizadas en la Universidad Industrial de Santander. Los minerales representativos de dos muestras del Batolito de Mogotes (IGM900917-JGB470 e IGM900962-TCR376) se analizaron en la microsonda electrónica de la Universidad Nacional de Colombia, sede Bogotá. El equipo usado fue una microsonda JEOL JXA 8230, cuyas condiciones de operación fueron estas: 1 a 10 µm de diámetro del haz, tiempo en el pico de 20 ms, intensidad de 20 nA y voltaje de aceleración de 15 kV. Los conteos del instrumento son convertidos a porcentajes de óxidos mediante comparaciones con conteos de estándares naturales y sintéticos. Los datos se han tratado mediante la corrección ZAF (Z: número atómico: A: absorción de masas: F: fluorescencia), utilizando el programa de JEOL. La adquisición de los datos consistió en obtener imágenes de electrones retrodispersados de los cristales seleccionados para el análisis y en realizar los análisis puntuales.

En la muestra IGM900917 se analizaron feldespato potásico, plagioclasa y biotita, mientras que en la muestra IGM900962 se analizaron feldespato potásico, plagioclasa, biotita, magnetita e ilmenita. Los resultados se muestran en las tablas 3 a 7.

De los feldespatos potásicos analizados en la muestra IGM900917 (JGB-470) no se obtuvieron buenos resultados, al parecer por problemas con la metalización. La plagioclasa se analizó en núcleos y bordes, pero los resultados no fueron buenos en algunos lugares, por lo que se obtuvieron análisis puntales en diferentes cristales, que no permiten interpretar variaciones a lo largo de perfiles núcleo-bordes ni definir la zonación composicional.

5.1. Feldespato potásico

El feldespato potásico exhibe micropertitas en filoncillos que se pueden apreciar en las imágenes de las dos muestras analizadas (figura 27). En la muestra IGM900962 (TCR-376) el feldespato potásico corresponde a ortosa pertítica ($Or_{86-95}Ab_{14-5}$) y a pertita ($Or_{70-74}Ab_{30-26}$) (tabla 3, figura 28).

5.2. Plagioclasa

La composición de la plagioclasa varía desde andesina $(Ab_{67}An_{31}Or_2)$ hasta oligoclasa-albita $(Ab_{89}An_9Or_2)$, según se observa en la tabla 4 y en la figura 28.

Figura 27. Microfotografía electrónica con imágenes de electrones retrodispersados de cristales de feldespato potásico A) En muestra TCR-376. Feldespato potásico (Fsp) del campo de análisis C4 en TCR-376. B) En muestra JGB-470. Feldespato potásico con micropertitas en filoncillos, del campo de análisis C3 en JGB-470

Figura 28. Composición de los feldespatos potásicos y las plagioclasas en monzogranitos del Batolito de Mogotes. Diagrama de Smith y Brown (1988)

Tabla 3. 0	Composición	auímica de	el feldespato	potásico de	la muestra	IGM900962	(TCR-376)	del Batolito	de Moaotes
							· · · · ·		

Punto analizado	TCR-376-C2-Kfs_1	TCR-376-C2-Kfs_2	TCR-376-C2-Kfs_3	TCR-376-C4-Kfs-2
SiO ₂	66,07	64,51	65,64	65,16
TiO ₂	0,01	0,01	0,00	0,00
Al ₂ O ₃	18,70	18,44	18,42	18,46
FeO	0,09	0,01	0,06	0,08
MgO	0,00	0,00	0,00	0,00
CaO	0,07	0,02	0,06	0,06
Na ₂ O	3,45	0,50	3,01	1,53
K ₂ O	12,29	16,01	12,96	14,64
Total (% masa)	100,68	99,50	100,15	99,92
Si	11,975	11,976	11,994	11,991
AI	3,995	4,034	3,965	4,003
Fe	0,002	0,002	0,000	0,000
Ti	0,009	0,001	0,006	0,008
Mg	0	0	0	0
Na	1,211	0,179	1,068	0,544
Ca	0,013	0,005	0,011	0,011
К	2,842	3,793	3,021	3,438
Total (cationes)	20,047	19,990	20,065	19,995
0	32	32	32	32
Z	15,97	16,01	15,96	15,99
Х	4,08	3,98	4,11	4,00
Or	69,90	95,37	73,69	86,09
Ab	29,78	4,51	26,05	13,63
An	0,32	0,12	0,27	0,27

Punto analizado	JGB-470-C2-PI-1	JGB-470-C4-PI-4	TCR-376-C3-PI1-1	TCR-376-C3-PI1-3	TCR-376-C3-Pl2-2	TCR-376-C6-PI-4
SiO2	59,49	65,09	62,86	65,87	65,12	66,13
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,00
Al ₂ O ₃	24,25	20,95	23,68	21,51	22,05	21,26
FeO	0,21	0,14	0,13	0,06	0,08	0,07
MgO	0,01	0,00	0,00	0,00	0,01	0,00
CaO	6,79	2,48	4,66	2,21	2,92	2,00
Na ₂ O	7,99	9,69	9,31	10,65	10,28	11,10
K ₂ O	0,37	0,57	0,30	0,50	0,38	0,40
Total (% masa)	99,10	98,92	100,94	100,80	100,85	100,95
Si	10,738	11,587	11,059	11,529	11,409	11,561
AI	5,159	4,396	4,910	4,438	4,554	4,380
Fe	0,000	0,000	0,000	0,000	0,000	0,000
Ti	0,021	0,014	0,013	0,005	0,008	0,007
Mg	0,002	0,000	0,000	0,000	0,002	0,000
Na	2,795	3,344	3,175	3,615	3,492	3,761
Ca	1,313	0,473	0,878	0,415	0,548	0,374
К	0,085	0,130	0,066	0,111	0,085	0,089
Total (cationes)	20,112	19,944	20,100	20,112	20,098	20,171
0	32	32	32	32	32	32
Z	15,92	16	15,98	15,97	15,97	15,95
Х	4,22	3,96	4,13	4,15	4,14	4,23
Ab	66,66	84,73	77,08	87,30	84,64	89,04
An	31,32	11,98	21,31	10,03	13,30	8,86
Or	2,02	3,29	1,61	2,67	2,06	2,10

Tabla 4. Composición química de la plagioclasa en las muestras IGM900962 (TCR-376) e IGM900917 (JGB-470) del Batolito de Mogotes

5.3. Biotita

Se analizaron láminas de micas pardas en las muestras JGB-470 y TCR-376 (figura 29). Los resultados se presentan en la tabla 5. De acuerdo con el diagrama Si (a.p.f.u.) vs. Fe/(Mg + Fe) de Rieder *et al.* (1998), se clasifican como biotitas (figura 30A) y genéticamente parecen haberse formado en suites orogénicas calcoalcalinas (figura 30B).

Figura 29. Microfotografías electrónicas que muestran láminas de biotitas analizadas en muestras del Batolito de Mogotes. Imagen de electrones retrodispersados. A) Biotita (Bt) del campo C1 en JGB-470. B) Biotita (Bt) del campo C5 en TCR-376

Figura 30. Diagramas de clasificación de micas. A) Diagrama de clasificación de micas según Rieder et al. (1998). B) Composición de las biotitas del Batolito de Mogotes en el diagrama MgO vs. Al₂O₃ de Abdel-Rahman (1994)

Tabla 5. Composición química de la biotita en las muestras IGM900917 (JGB-470) e IGM900962 (TCR-376) del Batolito de Mogotes

	JGB-470- C1-Bt-1	JGB-470- C1-Bt-2	JGB-470- C1-Bt-3	JGB-470- C1-Bt-4	JGB-470- C1-Bt-5	JGB-470- C1-Bt-6	TCR-376- C1-Bt-1	TCR-376- C1-Bt-2	TCR-376- C5-Bt-1	TCR-376- C5-Bt-2	TCR-376- C5-Bt-3
SiO ₂	37,11	37,46	37,21	37,07	36,72	37,17	37,07	37,40	37,77	37,31	37,24
TiO ₂	3,17	3,20	3,21	3,03	3,35	3,09	3,27	3,24	3,52	3,39	3,35
Al ₂ O ₃	13,78	13,77	13,73	13,86	13,88	13,81	14,47	14,06	14,27	14,31	14,64
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	16,91	16,44	17,08	16,73	16,39	16,51	15,82	15,78	16,18	16,42	15,79
MgO	12,99	13,21	13,19	13,57	13,13	13,43	13,64	13,94	13,62	13,21	13,39
MnO	0,38	0,45	0,42	0,46	0,50	0,44	0,54	0,47	0,53	0,52	0,55
CaO	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,02	0,00
Na ₂ O	0,15	0,18	0,17	0,15	0,19	0,13	0,28	0,19	0,29	0,28	0,26
K ₂ O	9,45	9,57	9,37	9,44	9,41	9,37	9,44	9,42	9,55	9,46	9,28
F	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CI	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Total (% masa)	93,93	94,28	94,37	94,31	93,58	93,93	94,51	94,49	95,73	94,92	94,50
Si	5,696	5,716	5,687	5,665	5,652	5,691	5,627	5,671	5,663	5,653	5,642
AIIV	2,304	2,284	2,313	2,335	2,348	2,309	2,373	2,329	2,337	2,347	2,358
Sum Z	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AIVI	0,189	0,193	0,159	0,160	0,171	0,183	0,215	0,183	0,186	0,208	0,256
Ti	0,366	0,367	0,369	0,348	0,388	0,356	0,373	0,369	0,397	0,387	0,382
Mg	2,971	3,006	3,005	3,091	3,013	3,065	3,086	3,152	3,044	2,984	3,025
Fe ₂ +	2,170	2,097	2,183	2,137	2,110	2,114	2,008	2,000	2,029	2,081	2,001
Ni	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,049	0,058	0,054	0,059	0,066	0,057	0,069	0,060	0,067	0,066	0,070
Sum Y	5,745	5,721	5,770	5,795	5,747	5,774	5,751	5,764	5,723	5,725	5,734
Ca	0,000	0,000	0,000	0,003	0,000	0,000	0,000	0,000	0,000	0,003	0,000
Na	0,043	0,053	0,050	0,043	0,057	0,037	0,082	0,057	0,084	0,082	0,076
к	1,850	1,862	1,826	1,841	1,848	1,830	1,828	1,822	1,827	1,828	1,793
Sum X	1,894	1,915	1,876	1,886	1,905	1,867	1,910	1,879	1,911	1,913	1,869
Total (cationes)	15,638	15,636	15,646	15,681	15,653	15,641	15,660	15,643	15,634	15,638	15,604
XFe	0,42	0,41	0,42	0,41	0,41	0,41	0,39	0,39	0,40	0,41	0,40
XMg	0,58	0,59	0,58	0,59	0,59	0,59	0,61	0,61	0,60	0,59	0,60

5.4. Magnetita

Cristales de magnetita se analizaron en la muestra TCR-376. Los contenidos de Fe³⁺ y Fe²⁺ se calcularon usando la fórmula de Droop (1987). La magnetita es de superficie relativamente homogénea y color gris (figura 31). Su composición química (tabla 6) es homogénea con Fe³⁺ de aproximadamente 11,9 a.p.f.u. y Fe²⁺ también con 11,9 a.p.f.u., con bajos contenidos de Ti (menos de 0,06 a.p.f.u.), Al (menos de 0,14 a.p.f.u.), Cr (menos de 0,016 a.p.f.u.) y Mn (menos de 0,041 a.p.f.u.).

Figura 31. Microfotografía en la que se muestras cristal de magnetita (Mag) analizado en la muestra TCR-376. Imagen de electrones retrodispersados

Tabla 6. Resultados de química mineral de magnetita en la muestra TCR-376

Punto analizado	TCR-376-C1-Mt-1	TCR-376-C1-Mt-2	TCR-376-C1-Mt-3	TCR-376-C7-Mt-1	TCR-376-C7-Mt-2
SiO ₂	0,005	ND	ND	ND	ND
TiO₂	0,269	ND	0,005	0,106	0,0200
Al ₂ O ₃	0,398	0,032	ND	0,089	0,0170
Cr ₂ O ₃	0,045	0,053	0,068	0,045	0,0210
FeO	95,896	97,823	97,434	97,467	98,2790
MnO	0,164	0,052	0,055	0,036	0,0510
MgO	ND	ND	ND	0,024	ND
Total (% masa)	96,777	97,96	97,562	97,767	98,388
Si	0,001	ND	ND	ND	ND
Ti	0,060	ND	0,001	0,023	0,004
AI	0,139	0,011	ND	0,031	0,006
Cr	0,011	0,012	0,016	0,010	0,005
Fe ³⁺	11,863	11,988	11,991	11,956	11,990
Fe ²⁺	11,885	11,975	11,978	11,960	11,982
Mg	ND	ND	ND	0,010	ND
Mn	0,041	0,013	0,014	0,009	0,013
Total (cationes)	24,000	24,000	24,000	24,000	24,000

ND: no detectado

5.5. Ilmenita

La ilmenita también se analizó en la muestra TCR-376. Tiene la superficie más porosa que la magnetita y parece tener alteración, aunque puede presentar también finas lamelas de exsolución. Es de color gris con tonalidad rosa (figura 32). Los resultados se presentan en la tabla 7. Los contenidos de Fe³⁺ y Fe²+ se calcularon usando la fórmula de Droop (1987). La ilmenita de esta roca se caracteriza por tener entre 49,2 y 53,9% de TiO_2 (1,86-2,04 a.p.f.u. de Ti), entre 34,5 y 40% de FeO total (entre 1,40 y 1,48 a.p.f.u. de Fe²⁺ y menos de 0,28 a.p.f.u. o nada de Fe³⁺) y presenta entre 10,7 y 11,9% de MnO (0,45-0,51 a.p.f.u. de Mn), que es una cantidad significativa e indica sustitución del Fe por el Mn. Se puede clasificar como ilmenita con manganeso.

Figura 32. Microfotografía tomada con luz reflejada en microscopio petrográfico, donde se observan cristales de ilmenita (IIm) y magnetita (Mag) analizados en la muestra TCR-376

Tabla 7. Composición química de la ilmenita en la muestra TCR-376

Punto analizado	TCR-376-C7-IIm-1	TCR-376-C7-IIm-2	TCR-376-C7-IIm-3
SiO ₂	0,018	ND	0,011
TiO ₂	49,202	53,997	53,152
Al_2O_3	0,007	0,005	ND
Cr ₂ O ₃	ND	0,009	ND
V ₂ O ₃	0,329	0,325	0,340
FeO	40,010	34,569	34,846
MnO	10,721	11,921	11,449
MgO	0,019	0,027	0,050
CaO	ND	ND	ND
Total	100,306	100,853	99,848
	Cationes calcula	dos a partir de 6 (O)	
Si	0,001	0,000	0,001
Ti	1,860	2,039	2,027
Cr	0,000	0,000	0,000
AI	0,000	0,000	0,000
Fe ³⁺	0,278	0,000	0,000
Fe ²⁺	1,403	1,451	1,477
Mn	0,456	0,507	0,492
Mg	0,001	0,002	0,004
Ca	0,000	0,000	0,000
V	0,013	0,013	0,014
Total	4,000	4,000	4,000

6. Geoquímica

Los análisis geoquímicos se hicieron en el laboratorio del Servicio Geológico Colombiano, en Bogotá. Los de elementos mayores y menores se realizaron con un espectrómetro de fluorescencia de rayos X, FRX, Panalytical Axios Mineral para análisis elemental, configurado con software especializado para materiales geológicos. La cuantificación de los óxidos mayores se realizó en muestra fundida con metaborato y tetraborato de litio, y la cuantificación de elementos menores se llevó a cabo en muestra prensada. Para el análisis de elementos traza se usó un espectrómetro de masas con plasma inductivamente acoplado, ICP-MS, Perkin Elmer Nexion. La disolución de la muestra se hizo mediante ataque por pasos utilizando ácidos inorgánicos fuertes (HF, HNO₃, HClO₄ y HCl), en sistema abierto, empleando distintas rampas de temperatura y tiempos de calentamiento.

Los valores de óxidos mayores se presentan en porcentaje en peso (wt%), mientras que los elementos traza se presentan en partes por millón (ppm). Gran parte de los diagramas geoquímicos se generaron con el uso del GCDKit version 4.0 (Janoušek *et al.*, 2006).

Se llevaron a cabo los análisis químicos en trece muestras de rocas plutónicas correspondientes a monzogranitos, granodioritas y cuarzomonzodioritas del cuerpo principal y se retomaron tres análisis de Van der Lelij (2013) correspondientes a las muestras 10VDL28, 10VDL31 y 10VDL32. De los cuerpos menores y diques se analizaron 12 muestras. Los valores de óxidos mayores se presentan en porcentaje en peso (wt%), mientras que los elementos traza se presentan en partes por millón (ppm).

6.1. Óxidos mayores, elementos traza y de las tierras raras

Los resultados de elementos mayores se presentan en la tabla 8. Los resultados de elementos traza y de las tierras raras de las rocas graníticas se presentan en la tabla 9, y los de cuerpos menores y diques, en la tabla 10.

Tabla 8. Resultados de óxidos mayores del Batolito de Mogotes

IGM	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	MnO	LOI
					Rocas gr	aníticas					
900944	76,17	0,25	12,85	1,38	0,38	0,13	2,75	4,67	0,035	0,57	1,23
900887	74,56	0,01	14,63	1,20	0,04	0,71	3,36	4,48		0,04	0,15
900927	74,56	0,16	14,32	1,06	0,22	1,02	2,48	4,84		0,04	0,69
900965	73,75	0,28	13,79	1,68	0,30	1,34	2,84	5,15	0,057	0,44	0,67
900869	73,36	0,29	13,99	1,63	0,46	1,48	3,47	4,42	0,076	0,66	0,66
900943	73,25	0,29	14,25	1,64	0,28	1,08	2,45	5,25	0,059	0,58	1,30
900966	72,51	0,34	14,21	2,01	0,88	0,67	3,13	4,96	0,092	0,49	1,06
900874	71,62	0,65	15,59	1,71	0,06	0,35	3,56	4,89		0,02	0,58
900962	70,14	0,39	15,27	2,23	0,74	2,17	3,57	4,06	0,130	0,55	1,03
10VDL32*	69,61	0,43	15,33	2,67	0,92	2,62	3,46	3,97	0,16	0,07	0,84
10VDL31*	68,26	0,5	15,01	3,31	1,48	2,74	3,11	3,71	0,17	0,07	1,38
900917	67,21	0,72	16,32	3,49	1,70	1,81	3,02	3,50		0,07	1,20
10VDL28*	64,23	0,61	15,36	4,04	1,91	3,26	3	4,05	0,2	0,08	3,29
900900	61,59	0,46	18,23	4,31	2,95	2,74	3,55	4,22		0,09	1,07
900903	59,23	0,67	17,28	5,89	4,11	2,10	4,53	2,45		0,10	2,24
900902	59,21	0,52	19,51	4,49	3,23	3,51	4,13	3,52		0,09	1,00
					Cuerpos r	menores					
900942	77,24	0,14	12,64	0,62	<0,10	0,24	3,34	5,14	< 0,024	0,29	0,55
900875	74,10	0,11	14,32	1,19	0,02	0,78	3,76	4,72		0,04	0,12
					Rocas de	e dique					
900868	53,12	1,19	16,95	8,03	5,87	8,28	0,09	0,65		0,15	4,79
900915	77,23	0,02	12,64	0,85	0,02	0,53	3,38	4,38		0,04	0,08
900963	77,52	0,10	12,68	0,55	<0,10	0,57	3,61	4,77	< 0,024	399	0,22
900889	74,98	0,23	14,10	1,07	0,02	0,55	3,68	4,40		0,03	0,21
900888	76,44	0,30	13,56	0,87	0,01	0,39	3,32	3,81		0,04	0,17
900901	67,39	0,04	17,42	1,00	0,07	2,52	4,20	5,43		0,02	0,08
900904	74,56	0,04	15,1	0,37	0,01	0,7	4,42	4,26	0,024	203	0,55
900914	76,52	0,06	12,61	1,23	0,07	0,65	3,37	4,52		0,02	0,14
900964	73,75	0,28	13,79	1,51	0,46	1,19	3,54	4,38	0,077	452	0,81
900926	82,47	0,06	11,36	0,65	<0,10	<0,10	0,10	3,36	< 0,024	407	1,78

Las concentraciones de óxidos son presentadas en porcentaje en peso

LOI: pérdida al fuego.* Van der Lelij (2013)

Tabla 9. Resultados de elementos traza y tierras raras en rocas del cuerpo principal del Batolito de Mogotes

IGM	900944	900887	900927	900965	900869	900943	900966	900874	900962	10VDL32*	10VDL31*	900917	10VDL28*	900900	900903	900902
Li	23	8,0	31	23	6,6	20	52	29	17			33		30	32	23
Ве	3,6	3,2	1,9	2,9	3,0	3,7	4,1	2,7	4,2	3,92	4,62	3,9	2,39	3,5	4,0	2,8
Sc	6,2	4,2	6,5	7,1	4,9	6,8	12	6,0	7,5	6,04	9,6	12	10,11	16	20	14
v	10	4,3	13	16	16	16	23	24	26	37	56	50	80	81	103	78
Cr	2,0	1,0	5,1	6,2	1,2	4,6	3,6	1,4	6,3	7	36	32	42	42	49	35
Co	11	12	15	20	11	16	19	15	19	4,28	6,77	21	9,98	21	24	20
Ni	12	0,53	3,7	3,960	2,9	3,8	3,606	4,7	5,468	6,91	25,31	20	28,12	39	35	27
Cu	5,5	5,0	5,0	3,2	4,7	4,9	3,6	5,8	4,8	14,99	7,32	13	11,62	23	34	16
Zn	31	10	24	30	26	28	45	56	36	39	55	50	63	64	83	60
Ga	17	14	14	20	17	20	18	19	19	18,01	19,16	20	19,16	20	20	21
As	2,3	1,7	1,2	2,7	1,6	2,7	2,2	1,7	2,1	6,1	2,93	1,8	1,95	2,7	3,7	2,5
Rb	166	201	173	290	160	352	254	147	177	128,38	113,94	160	139,49	114	91	135
Sr	104	36	157	121	181	190	173	268	420	409,77	429,31	407	429,16	493	635	540
In	0,023	0,014	0,022	0,022	0,018	0,015	0,036	0,029	0,017			0,047		0,053	0,066	0,051
Cs	1,6	1,5	2,6	2,8	1,6	3,7	3,7	2,0	1,3	1,76	1,18	2,0	0,84	1,3	1,6	1,6
Ва	1257	358	1093	1119	1082	1464	1058	1178	1331	985,71	702,57	1093	935,95	1222	874	1212
TI	1,0	1,2	1,1	1,4	0,95	2,6	1,1	0,92	0,85			1,0		0,63	0,51	0,78

IGM	900944	900887	900927	900965	900869	900943	900966	900874	900962	10VDL32*	10VDL31*	900917	10VDL28*	900900	900903	900902
Pb	18	23	16	22	19	19	17	13	19	14,98	14,47	22	12,78	27	9,3	18
Bi	0,06	0,09	0,06	<0,05	1,5	<0,05	0,04	0,13	<0,05	0,04	0,07	0,09	0,05	0,06	0,07	0,06
Th	19	20	20	34	19	22	22	15	19	18,5	22,61	23	18,31	18	18	24
U	3,4	3,8	3,6	2,4	4,0	2,0	5,1	2,4	2,8	3,24	6,08	3,9	2,93	3,2	2,7	4,5
Zr	119	57	99	183	146	164	166	219	186	211,24	196,29	160	216,33	190	242	186
Nb	20	20	11	13	17	15	18	15	18	13,43	14,11	12	11,52	12	15	11
W	36	48	46	72	42	45	58	50	50	0,63	0,27	42	0,39	30	21	32
La	58	19	27	78	40	76	58	47	59	47,44	59,62	59	60,5	55	62	56
Ce	91	43	46	128	71	112	96	81	98	81,08	105,7	111	104,75	106	132	107
Pr	13	5,4	4,4	14	7,4	16	12	9,0	11	8,27	11,08	13	10,79	13	16	13
Nd	42	18	11	44	23	52	39	28	36	29,69	40,31	36	39,27	46	53	42
Sm	7,8	4,2	2,1	9,3	3,9	9,6	7,0	4,8	6,5	4,56	7,16	6,3	6,01	7,3	9,7	7,2
Eu	1,5	0,49	0,85	1,4	0,91	1,9	1,4	1,1	1,6	1,1	1,37	1,4	1,37	1,4	1,6	1,5
Gd	5,9	2,9	1,9	7,1	3,1	8,1	5,3	3,8	4,7	3,15	5,3	4,7	4,31	5,2	6,6	5,1
Tb	1,3	0,67	0,34	1,4	0,56	2,0	1,1	0,63	0,92	0,44	0,79	0,75	0,61	0,90	1,1	0,90
Dy	5,9	3,8	1,7	6,4	3,0	10	4,8	3,4	4,1	2,88	4,72	3,2	3,49	4,3	5,6	4,1
Но	1,2	0,78	0,36	1,2	0,62	2,0	0,99	0,63	0,79	0,55	0,96	0,64	0,72	0,79	1,1	0,80
Er	3,6	2,5	1,2	3,7	2,1	5,8	3,1	2,0	2,5	1,62	2,61	2,0	1,91	2,5	3,3	2,5
Tm	0,50	0,39	0,18	0,45	0,30	0,79	0,41	0,27	0,33	0,23	0,38	0,26	0,27	0,32	0,40	0,31
Yb	3,3	2,8	1,3	2,8	2,1	5,2	2,9	1,8	2,2	1,77	2,74	1,7	1,89	2,0	2,6	2,0
Lu	0,48	0,43	0,22	0,41	0,32	0,73	0,43	0,27	0,32	0,29	0,38	0,27	0,3	0,29	0,37	0,30

La abundancia de elementos traza se reporta en partes por millón (ppm).

* Van der Lelij (2013); Van der Lelij (2013)

Tabla 10. Resultados de elementos traza y tierras raras correspondientes a cuerpos menores y rocas de dique

IGM	900942	900875	900868	900915	900963	900889	900888	900901	900904	900914	900964	900926
Li	7,0	38	30	12	5,2	4,2	8,7	3,5	6,3	9,0	19	86
Be	4,7	3,6	1,6	6,0	4,7	6,4	3,8	5,2	8,6	4,0	2,4	3,6
Sc	10	3,3	32	6,4	5,9	6,5	5,6	1,2	2,0	4,3	8,2	5,2
V	7,2	3,7	197	8,7	6,0	3,1	2,8	12	3,2	7,0	12	1,0
Cr	2,6	16	143	5,5	0,67	0,99	2,3	2,5	1,7	0,92	14	0,30
Co	15	13	38	18	26	14	5,2	18	8,3	23	18	13
Ni	2,4	8,6	67	3,5	0,72	0,62	0,58	1,1	5,0	1,7	6,523	0,90
Cu	9,6	4,8	10,0	4,0	2,7	3,4	5,0	3,9	5,2	3,8	4,8	4,4
Zn	31	13	83	22	15	10	25	6,3	8,2	7,2	33	17
Ga	17	17	24	19	18	18	17	15	19	16	16	16
As	1,9	1,0	3,6	1,8	1,1	0,92	1,9	1,2	0,98	0,83	2,2	1,2
Rb	214	233	31	285	281	274	351	195	271	190	170	229
Sr	72	69	622	40	32	24	6,3	90	56	133	191	11
Cd	0,11	0,11	0,24	0,11	0,12	0,14	0,096	<0,08	0,090	< 0,08	0,088	0,099
In	0,034	0,020	0,084	0,039	0,054	0,019	0,043	0,009	0,012	0,016	0,020	0,081
Cs	1,9	3,8	2,2	11	2,4	3,1	5,6	2,2	3,1	1,6	1,5	5,7
Ba	264	229	141	51	41	14	9,9	68	66	513	1542	67
TI	1,6	1,2	0,19	1,9	1,4	1,6	2,0	0,96	1,5	1,0	0,85	1,4
Pb	5,9	24	8,3	32	31	31	25	32	35	14	9,0	42
Bi	0,25	0,10	0,21	0,39	0,06	0,09	0,17	< 0,05	1,00	0,06	0,07	1,5
Th	26	30	3,4	41	42	44	34	24	1,7	28	13	10
U	5,2	6,3	0,62	6,4	6,0	12	7,3	5,1	2,0	5,3	2,4	6,8
Zr	75	67	239	60	77	84	95	16	10	69	145	45
Nb	22	16	13	16	22	21	46	6	9	15	16	21
W	52	54	22	59	91	55	25	68	33	94	67	46
La	21	25	43	22	19	20	14	6,8	5,9	24	41	19
Ce	33	39	88	39	37	35	32	9,6	8,1	40	73	28
Pr	6,1	4,1	12	4,0	3,9	4,1	4,7	1,1	1,1	4,1	8,4	4,5

IGM	900942	900875	900868	900915	900963	900889	900888	900901	900904	900914	900964	900926
Nd	25	11	48	11	12	12	18	3,8	3,5	9,8	28	13
Sm	6,2	1,6	9,6	1,6	2,2	2,1	5,8	0,81	1,2	1,7	5,3	3,4
Eu	0,63	0,23	1,4	0,17	0,15	0,11	0,09	0,19	0,25	0,45	1,5	0,18
Gd	4,5	1,4	6,6	1,4	1,6	1,7	4,3	0,58	0,78	1,5	4,0	2,6
Tb	1,2	0,21	1,3	0,22	0,35	0,33	1,3	0,15	0,19	0,25	0,86	0,68
Dy	7,3	1,2	7,2	1,2	1,8	1,9	8,5	0,89	1,2	1,3	4,2	4,1
Ho	1,5	0,26	1,3	0,27	0,39	0,43	1,8	0,19	0,22	0,30	0,88	0,89
Er	4,8	0,95	3,8	0,98	1,4	1,5	6,2	0,62	0,67	1,0	2,8	2,7
Tm	0,69	0,15	0,45	0,17	0,24	0,26	0,97	0,10	0,10	0,16	0,39	0,42
Yb	4,5	1,2	2,6	1,4	1,8	2,1	6,6	0,73	0,74	1,3	2,7	3,0
Lu	0,66	0,22	0,33	0,25	0,31	0,36	1,00	0,11	0,11	0,21	0,42	0,44

Abundancia de elementos traza se reporta en partes por millón (ppm)

6.1.1. Análisis de alteración y clasificaciones de todas las muestras

Debido a que la mayor parte de las muestras presentan algún grado de alteración, y con el fin de usar los datos geoquímicos para interpretaciones petrogenéticas, se hizo un análisis de la alteración química de las muestras a partir de dos esquemas. El primero, mediante el uso del diagrama de Hughes (1972), donde se aprecia que casi todas las muestras grafican en el campo del espectro ígneo (figura 33), excepto seis muestras (IGM 900943, 900927, 900965, 900944, 900868 y 900926). El segundo abordaje del análisis se hizo con el diagrama de AI vs. CCPI de Large *et al.* (2001), en el que AI corresponde al índice de alteración de Ishikawa = $100^{*}(MgO+K_2O)/MgO+K_2O+CaO+Na_2O$, y el CCPI, al índice pirita-carbonato-clorita. En este diagrama (figura 34), además de cuatro muestras identificadas en el anterior (IGM 900943, 900944, 900868 y 900926), se identifican como muestras alteradas las siguientes: IGM 900900, 900917, 900966, 900942, 900915, 900963, 900904, 900888 y 900901.

Figura 33. Granitoides del cuerpo principal y de cuerpos menores y diques del Batolito de Mogotes en el diagrama de Hughes (1972)

Cuadrados rojos: monzogranitos, sienogranitos y cuarzomonzonitas; en cuadrados negros, granodioritas, cuarzomonzodioritas, cuarzodioritas y tonalita; cuadros verdes: cuerpos menores; círculos negros: diques jurásicos; círculos azules: diques cretácicos

Figura 34. Diagrama de alteración Al vs. CCPI de Large *et al.* (2001), en el que se muestran las rocas del cuerpo principal, de cuerpos menores y diques del Batolito de Mogotes

Son muestras alteradas las que están por fuera de los campos de riolita, dacita, andesita y basalto (equivalentes volcánicos de granito, granodiorita, tonalita, diorita-gabro). Simbología como en la figura 33

Figura 35. Diagramas TAS de clasificación química en los que se grafican muestras del Batolito de Mogotes A) Clasificación química de rocas plutónicas del cuerpo principal, cuerpos menores y diques del Batolito de Mogotes en diagrama de Middlemost (1985). Cuerpo principal: cuadros rojos (granitos), cuadros negros (granodioritas, monzonitas, cuarzomonzonita). Cuerpos menores: cuadrados verdes. Diques jurásicos: círculos negros. Diques cretácicos: círculos azules. B) Clasificación química de los diques porfídicos de edad Jurásica en el Batolito de Mogotes, en diagrama de Middlemost (1994)

Desde el punto de vista geoquímico, las muestras de los granitoides del cuerpo principal se clasifican en el diagrama de Middlemost (1985), que tiene como variables SiO₂ vs. Na₂O + K₂O, en cuarzomonzonita, cuarzomonzodiorita, granodiorita y granito (figura 35A), la mayoría coincidentes con la clasificación petrográfica. Las rocas graníticas de los cuerpos menores y diques se clasifican químicamente en el campo de los granitos y corresponden a los que petrográficamente se clasificaron como monzogranitos, sienogranitos y granodiorita, exceptuando la muestra IGM900901, que químicamente pertenece al campo de las cuarzomonzonitas, y que petrográficamente se clasificó como un sienogranito. La muestra IGM900868 se clasificó petrográficamente como una microtonalita alterada, y químicamente corresponde a una diorita gabroica (figura 35A). Los diques porfídicos se clasifican químicamente como riolitas (figura 35B).

En los diagramas usados para discriminar las series de rocas, las muestras de rocas plutónicas según el diagramas de SiO₂ vs. K₂O de Peccerillo y Taylor (1971) pertenecen a la serie calco-alcalina alta en K (figura 37 A y B), mientras que los diques en el diagrama de Hastie *et al.* (2007), que fue diseñado para rocas volcánicas alteradas, tres grafican en el campo de la serie calco-alcalina alta en K y un dique cretácico (IGM900868) en la serie calco-alcalina (figura 37B).

Figura 36. Diagramas para discriminar series de rocas y clasificar rocas volcánicas alteradas

A) Muestras del cuerpo principal y diques plutónicos del Batolito de Mogotes en el diagrama SiO₂ vs. K₂O (Peccerillo y Taylor, 1971). Símbolos: cuadrados rojos: granitoides del cuerpo principal; cuadrados negros: granodioritas, monzonitas, cuarzomonzonita del cuerpo principal; círculos negros: diques jurásicos sienograníticos. B) Muestras de diques subvolcánicos en el diagrama Co vs. Th (Hastie *et al.*, 2007). Símbolos: círculos negros: diques jurásicos; círculos azules: diques cretácicos

La composición mineralógica de la mayor parte de las muestras estudiadas (feldespato potásico rosado, presencia de hornblenda, presencia de biotita, sin moscovita primaria, cristales de apatito incluidos en la biotita o en la hornblenda, entre otras) es típica de granitos tipo I y propia de rocas metaluminosas a levemente peraluminosas con un índice de saturación en alúmina (ASI) < 1,1 (Chappell y White, 2001). Al comparar el ASI de las muestras analizadas se observan en varias muestras valores altos, por encima de 1,1 en general, hasta 1,4, y un solo valor de 2,2, que sugieren un aumento de la peraluminosidad por un proceso secundario y no ígneo. El aumento en el contenido de Al_2O_3 se puede deber a la alteración de plagioclasa a moscovita fina y de la biotita a clorita, evidenciadas en la petrografía.

Las muestras con texturas mirmequíticas también presentan ASI altos. Los crecimientos mirmequíticos pueden ser provocados por un proceso metasomático de Ca, Na y K o representar la desgasificación del magma granítico en las etapas finales de cristalización (Castro Dorado, 2015). En cualquiera de los casos, estas muestras no representan el magma original.

Para interpretar el índice de peraluminosidad y determinar la afinidad de las rocas analizadas con granitos tipo-I o tipo-S no se consideraron las muestras alteradas según la interpretación realizada arriba, aquellas con ASI > 1,1, con excepción de la muestra IGM900889 (ASI = 1,19, con granate, fase mineral indicativa de rocas peraluminosas) y las que tienen texturas mirmequíticas.

Las muestras interpretadas como menos alteradas se graficaron en el diagrama de Shand (1943), que sirve para determinar la peraluminosidad de las rocas. La mayor parte de las muestras graficadas tienen un ASI < 1,1 y un carácter levemente peraluminoso (figura 37), excepto la muestra IGM900889, que es más peraluminosa, lo que concuerda con su composición mineralógica. Las rocas exhiben afinidad con granitos tipo-I (figura 38).

6.1.2. Elementos traza en rocas del cuerpo principal Las sumatorias de elementos de las tierras raras ∑REE son superiores a doscientos en once muestras (entre 227 y 303) e inferiores a doscientos en cinco muestras (entre 99 y 183). Los patrones de REE de casi todas las muestras son paralelos y subparalelos y exhiben mayor concentración de tierras raras livianas en comparación con las pesadas, por lo que tienen pendiente negativa, donde las razones (La/Yb)_N varían entre 10 y 23, excep-

Figura 37. Diagrama de alcalinidad-aluminosidad (Shand, 1943) correspondiente a rocas del Batolito de Mogotes

Cuadrados rojos: granitos del cuerpo principal; cuadrados negros: granodioritas, monzonitas, cuarzomonzonita del cuerpo principal; círculos negros: diques jurásicos

Figura 38. Diagrama K₂O vs. Na₂O de Chappell y White (1974) para discriminar entre granitos tipo-I y tipo-S

Cuadrados rojos: granitos del cuerpo principal; cuadrados negros: granodioritas, monzonitas, cuarzomonzonita del cuerpo principal; círculos negros: diques jurásicos

tuando la muestra 900887, que tiene una razón de 4,5, correspondiente con un patrón menos inclinado, y las razones $(Gd/Yb)_N$ varían entre 0,83 y 2,17, con un enriquecimiento en tierras raras livianas (LREE) entre 100 y 250 veces los valores del condrito (figura 39 A, C y D), decreciendo a valores entre 10 y 30 veces los del condrito en la tierras raras pesadas (HREE). Hay un conjunto de tres muestras que son monzogranitos gráficos que exhiben unos patrones un poco diferentes (figura 39B), quizá modificados por los procesos responsables de los intercrecimientos. Las razones de la mayor parte de las muestras presentan anomalía negativa de Eu (Eu/Eu* = 0,43-0,91), que indica fraccionamiento de plagioclasa en la fuente, mientras que solo la muestra IGM 900927 tiene una leve anomalía de Eu, de alrededor de 1,30, que sugiere acumulación de plagioclasa.

En la figura 39A se representan monzogranitos hipidiomórficos (IGM 900944, 900869, 900943 y 900966) con edades entre 198 y 202 Ma. En la figura 39B están los monzogranitos hipidiomórficos con texturas micrográficas locales (IGM 900887, 900965 y 900927), con edad entre 192 y 200 Ma. En la figura 39C se representan monzogranitos (IGM 900874, 900962, 900917 y 10VDL32) y granodioritas (10VDL28, 10VDL31) con edades entre 197 y 204 Ma. Y en la figura 39D están los patrones de muestras de granodiorita, cuarzomonzodiorita y monzogranito con hornblenda (IGM 900900, 900902 y 900903), con edades de 192 a 195 Ma.

Figura 39. Patrón de elementos de las tierras raras normalizadas al condrito de Nakamura (1974) correspondiente a los granitoides del cuerpo principal del Batolito de Mogotes

A) Monzogranitos hipidiomórficos (IGM 900944, 900869, 900943 y 900966). B) Monzogranitos hipidiomórficos con texturas micrográficas locales (IGM 900887, 900965 y 900927). C) Monzogranitos (IGM 900874, 900962, 900917 y 10VDL32) y granodioritas (10VDL28, 10VDL31). D) Granodiorita, cuarzomonzodiorita y monzogranito con hornblenda (IGM 900900, 900902 y 900903)

En los diagramas multielementales (figura 40) normalizados contra el NMORB (Sun y McDonough, 1989) se muestran los patrones de las mismas muestras de la figura 39. Las rocas graníticas en general exhiben patrones muy similares entre sí. Presentan enriquecimiento en los elementos litófilos de radio iónico grande (LILE) con relación al N-MORB tales como Cs, Rb, Th, U, K, y anomalías negativas de elementos de alta intensidad iónica de campo (HFSE), tales como Nb, P y Ti, que indican un origen relacionado con subducción. Leves anomalías negativas de Ba se observan en las muestras IGM 900965 y 900887, mientras todas las muestras exhiben anomalía positiva de Pb.

Figura 40. Diagramas multielementales normalizados al NMORB (Sun y McDonough, 1989) correspondientes a los granitoides del cuerpo principal del Batolito de Mogotes. A) Monzogranitos hipidiomórficos (IGM 900944, 900869, 900943 y 900966). B) Monzogranitos hipidiomórficos con texturas micrográficas locales (IGM 900887, 900965 y 900927). C) Monzogranitos (IGM 900874, 900962, 900917, 10VDL32) y granodioritas (10VDL28, 10VDL31). D) Granodiorita, cuarzomonzodiorita y monzogranito con hornblenda (IGM 900900, 900902 y 900903)

6.1.3. Elementos traza en cuerpos menores y diques

Los patrones de REE de los cuerpos menores de dos muestras (IGM900942 y 900875) difieren entre sí (figura 41 A), lo que sugiere que estos dos cuerpos no son cogenéticos. La muestra IGM900942 tiene un contenido de tierras raras Σ REE de 117, y la IGM900875, de 87. Ambas exhiben enriquecimiento en los LREE con relación a los HREE, siendo que la muestra IGM900942 presenta una razón (La/Yb)_N de 3,12, una razón (Gd/Yb)_N de 0,81 y una anomalía negativa de Eu de 0,36, mientras que en la muestra IGM900875 la razón (La/Yb)_N es de 13,32, la (Gd/Yb)_N es de 0,91, mientras que la anomalía de Eu es de 0,48.

En los diques es posible diferenciar por lo menos tres tipos de patrones de REE, como se muestran en la figura 41 B, C y D. El primer tipo (figura 41B) lo representan cinco muestras, cuya sumatoria de contenidos de los elementos de las tierras raras (∑REE) varía entre 82 y 106. Este tipo de patrón se caracteriza por ser casi plano a enriquecidos en LREE y con forma plana a cóncava en los HREE, tiene (La/Yb), entre 1,46 y 10,27, (Gd/Yb), entre 0,52 y 0,80 y anomalía negativa de Eu muy pronunciada, entre 0,06 y 0,34. El segundo tipo de patrones está representado por cuatro muestras, en las que a la vez es posible distinguir dos subtipos, uno (IGM900964 e IGM900914) con SREE entre 86 y 173, (La/Yb), entre 10 y 12, (Gd/Yb)_N entre 0,95 y 1,19 y leve anomalía de Eu (0,88-0,98), que es más enriquecido en REE que el otro (IGM900901 e IGM900904), que tiene un contenido de tierras raras totales bajo (SREE entre 24 y 26), también un patrón menos enriquecido en LREE con una relación $(La/Yb)_{N}$ entre 5 y 6, $(Gd/Yb)_{N}$ de 0,64 y 0,84 y una leve anomalía de Eu (0,79-0,84). Los cuatro muestran un patrón suavemente cóncavo. El tercer tipo de patrón lo representa una sola muestra, la IGM900868, con una sumatoria de REE de 225, patrón de REE con pendiente negativa, una relación (La/Yb)_N de 11, (Gd/Yb)_N de 2,06 y anomalía negativa de Eu de 0,55.

Figura 41. Patrones de elementos de tierras raras normalizados al condrito de Nakamura (1974), de los cuerpos menores (A) y diques (B, C y D) del Batolito de Mogotes

En los diagramas multielementales normalizados contra el NMORB (Sun y McDonough, 1989), las rocas de los cuerpos menores (figura 42A) tienen patrones parecidos y exhiben enriquecimiento en los LILEs. Tienen anomalías negativas de Nb y Ti relacionadas con un origen en zonas de subducción y anomalías negativas de Ba y positivas de Pb.

Los elementos traza en los diques de sienogranitos y monzogranitos tienen patrones parecidos en la mayor parte de las muestras, con algunas diferencias (figura 42B) en dos de ellas: IGM900904 y 900901. Exhiben enriquecimiento en los LILEs, pero con fuerte anomalía negativa de Ba. Tienen anomalía positiva de Pb. Todas exhiben anomalías negativas de Nb y de Ti, excepto la IGM900889, lo cual sugiere un origen relacionado con subducción. Las muestras IGM900904 y 900901 tienen menores contenidos de La, Ce, Nd, Zr, Sm, Yb y Lu que las otras muestras, de las que se diferencian también porque no presentan anomalía negativa de Sr.

Los elementos traza de la cuarzolatita y la riolita porfídica despliegan patrones multielementales semejantes (figura 42C), con la diferencia de que la muestra IGM 900964 no tiene anomalía negativa de Ba. Están enriquecidos en LILEs y, al igual que los sienogranitos y monzogranitos, registran anomalías negativas de Nb y Ti, que indican un origen relacionado con subducción.

El patrón multielemental del dique de dolerita IGM900868 difiere en forma (figura 42D) de los patrones de los otros diques; sin embargo, también presenta las mismas anomalías de Ba, Pb y las negativas de Nb y Ti; estas dos últimas indican origen relacionado con subducción.

Figura 42. Diagramas multielementales normalizados al NMORB (Sun y McDonough, 1989) correspondientes a los cuerpos menores y diques del Batolito de Mogotes. A) Cuerpos menores (IGM 900942 y 900975). B) Diques de sienogranitos y monzogranitos (IGM 90088, 900926, 900889, 900963, 900915, 900904 y 900901). C) Diques de cuarzolatita (IGM900964) y riolita (IGM900914) portídicas. D) Dique de microtonalita o diorita gabroica (IGM900868)

7. Posición estratigráfica y edad

Hacia el oriente, el Batolito de Mogotes se encuentra limitado por la falla de Bucaramanga. La unidad intruye al Neis de Bucaramanga, el Ortoneis y las formaciones Floresta y Silgará (Ward *et al.*, 1973). En este trabajo se encontraron afloramientos en los que las rocas del Batolito de Mogotes intruyen la formación Silgará al NE de San Joaquín, varios kilómetros más al oeste de lo que aparece en los mapas geológicos de la zona. El flanco occidental de la unidad se encuentra en contacto con las formaciones Silgará y Floresta. Al norte, el batolito se encuentra en contacto con el Monzogranito de Santa Bárbara y con el Granito de Pescadero, sobre el cual Ward *et al.* (1973) mencionan que se ha considerado como parte del Batolito de Mogotes.

Goldsmith *et al.* (1971) interpretan que el Batolito de Mogotes tiene la misma edad que el Granito de Pescadero $(1\,93\,+/-6$ Ma por el método K/Ar en biotita), por considerar que este último hace parte del primero. Esta relación entre el Batolito de Mogotes y el Granito de Pescadero es también sugerida por Ward *et al.* (1973) basándose en la semejanza general de su litología, fases gradacionales y relaciones estratigráficas. Royero y Clavijo (2001) mencionan que existen unos pequeños plutones del Silúrico-Devónico Superior de composición monzonítica que pertenecen "en parte" al Batolito de Mogotes; uno de estos pequeños plutones es la Monzonita de Onzaga, de la que se obtuvo una edad K/Ar de 394 ± 23 Ma (Cordani, comunicación escrita en 1982, en Etayo Serna *et al.*, 1985).

Dataciones realizadas específicamente en muestras del Batolito de Mogotes corresponden a las de Van der Lelij (2013), quien obtuvo tres edades U/Pb en circón en tres muestras del extremo sur de la unidad. Los resultados presentados por este autor se muestran a continuación:

Tabla 11. Edades U-Pb en circón en muestras del Batolito de Mogotes calculadas por Van der Lelij (2013)

Muestra	10VDL28	10VDL31	10VDL32
Este	1139319	1139249	1138599
Norte	1196909	1200504	1202162
Plancha	152	136	136
Roca	Granodiorita	Granodiorita	Granodiorita
Unidad	Granodiorita de Onzaga	Granodiorita de Onzaga	Granodiorita de Mogotes
Edad (Ma)	200,4 ± 0,7	201 ± 0,9	198 ± 0,8

Fuente: Van der Lelij (2013)

En este proyecto se obtuvieron edades U-Pb por LA-ICP-MS (*laser ablation-inductively coupled plasma-mass spectrometry*) en varias muestras del Batolito de Mogotes, cuerpos menores y diques, representativas de los litotipos identificados, y en lo posible se buscó obtener la edad de cada uno de los grupos geoquímicos con patrones de elementos de las tierras raras (REE) semejantes.

Los análisis de este proyecto fueron realizados en dos laboratorios: unos se hicieron en el Laboratorio de Ablación Láser del Servicio Geológico Colombiano, en Bogotá, y otros en el Laboratorio de Estudios Isotópicos del Centro de Geociencias de la Universidad Autónoma de México. Los datos obtenidos en las muestras de circones fueron manipulados en el software Isoplot/Ex 3.75-4.15 (Ludwig, 2012). Con el fin de mejorar el rango de confiabilidad de la edad, se filtraron los datos para descartar los circones con discordancias mayores del 15%, de acuerdo con la relación $[(^{207}Pb/^{235}U-^{206}Pb/^{238}U)/(^{206}Pb/^{238}U)]$, o valores de error mayores de 5% en la mayor parte de las muestras. Otros criterios aplicados a algunas muestras se especifican en la muestra correspondiente. En todos los casos las edades reportadas menores de 800 Ma corresponden a las obtenidas a partir de la relación $^{206}Pb/^{238}U$, mientras que las mayores de 800 Ma son las arrojadas por la relación $^{207}Pb/^{206}Pb$. Los resultados se resumen en la tabla 12.

IGM	N.° campo	Ν	w	Clasificación petrográfica	Edad U-Pb (Ma)	MSWD	Edades heredadas
900962	TCR-376	1231161	1124265	Monzogranito	203 ± 1	2,6	(1000 ± 160, n = 1)
900944	MIA-638	1217144	1126040	Monzogranito	200 ± 2	6,7	(1627 ± 77, n = 1; 1120 ± 79, n = 1; 316,9 ± 6,8, n = 1; 234,4 ± 7,1, n = 1)
900927	LMC-075	1208090	1131045	Monzogranito	196 ± 4	7,2	$(1230 \pm 43, n = 1; 1040-1020 \pm 34, n = 2; 248,5 \pm 10, n = 1)$
901525	AMC-0162	1206436	1137867	Monzogranito deformado	200 ± 1; 189 ± 1	1,0	(1282 ± 36, n = 1; 1069 ± 51, n = 1; 988 ± 38, n = 1; 800 ± 33, n = 1; 680-650, n = 2; 585, n = 2; 513, n = 1;460-420, n = 14; 405-860, n = 40; 927 n = 15; 926-940, n = 7;
						2,0	n = 11, 405-360, n = 10, 353-337, n = 5, 296-249, n = 7, 249-231, n = 5)
900903	GZ-6831	1206394	1140363	Cuarzomonzodiorita deformada	194 ± 1	1,9	$(905 \pm 25, n = 1; 287, 7 \pm 8, 8, n = 1; 268, 3 \pm 7, 6, n = 1)$
900942	MIA-636 (*)	1230947	1122841	Monzogranito micrográfico	205 ± 3	13	(1316 ± 76, n = 1; 571,7 ± 6, n = 1)
900875	AMC-0144(*)	1202313	1136936	Sienogranito aplítico	202 ± 2	4,6	(435 ± 6,7, n = 1)
900926	LMC-071	1222482	1122453	Dique de cuarzolatita hidrotermalizada			(520 ± 22, n = 2; 486 ± 18, n = 1)
	TCR-380	1207654	1129709	Dique básico en cuarzomonzonita	191 ± 4	4,2	$\begin{array}{l}(923\text{-}851,n=4;448\text{-}432,n=4;399\text{-}391,n=2;330\text{-}302,n\\ \qquad \qquad =3;267,n=1;215,n=1)\end{array}$
900868	AMC-0136A	1238967	1123996	Dique de microtonalita	108 ± 2	4,1	$(1335 \pm 40, n = 1; 1154 \pm 35, n = 1; 250 \pm 10, n = 1; 221 \pm 8, n = 1)$
900901	GZ-6829B	1204364	1140288	Dique de sienogranito	99 ± 2	1,6	(214 ± 7; 207 ± 7; 199 ± 6, n = 2)

Tabla 12. Resumen edades U-Pb en circón de monzogranitos, granodioritas, cuerpos menores (*) y diques del Batolito de Mogotes

MSWD (mean square weighted deviation) que en español es media cuadrática de desviaciones ponderadas

7.1. Edades de las rocas del cuerpo principal

La muestra TCR-376 fue colectada en el camino La Palma-Chicamocha, hacia la parte septentrional del Batolito de Mogotes. Los circones de esta muestra son euhedrales a subhedrales, de forma prismática corta y larga, siendo más comunes los prismáticos cortos, la mayoría de color rosado pálido, algunos amarillo pálido y otros incoloros; casi todos presentan inclusiones. Los tamaños varían entre 70 y 300 micras, si bien predomina el rango situado entre 100 y 180 micras. La muestra fue analizada en el Laboratorio de Estudios Isotópicos del Centro de Geociencias de la Universidad Autónoma de México. Los resultados isotópicos se encuentran en el anexo 1.1. En imágenes de catodoluminiscencia (CL) los circones más grandes muestran zonación oscilatoria (figura 43), mientras que los cristales de entre 100 y 120 µm son más homogéneos.

Figura 43. Imagen de catodoluminiscencia de circón fechado en la muestra TCR-376

Exceptuando dos valores, uno de un circón heredado de ~900 Ma y otro que tuvo posiblemente pérdida de Pb a los ca. 90 Ma, los datos se agrupan en el límite Jurásico-Triásico (figura 44A) principalmente entre 208 y 193 Ma; hay un solo valor de 211 Ma. La edad media ponderada de esta muestra es de 203 ± 1 Ma (figura 44B), con un MSWD de 2,6.

La mayor parte de los puntos analizados exhiben razones Th/U por encima de 0,6 y cercanos a 1 (figura 45), que corroboran el carácter ígneo de los circones (Rubatto, 2002).

Los resultados de elementos de las tierras raras de esta muestra están en el anexo 2.1. En el diagrama de patrones de elementos de las tierras raras de los circones (figura 46) se aprecia que la mayor parte son paralelos y subparalelos, con anomalías positivas de Ce y negativas de Eu semejantes a los patrones de los circones ígneos; algunos patrones muestran enriquecimiento en las tierras raras livianas (LREE), que puede deberse a que en dicho punto fue analizada alguna microinclusión de un mineral rico en LREE, por ejemplo, monacita. De acuerdo con los contenidos de Pb y Th (figura 47), los circones de la muestra TCR-376 son de un granito tipo-I.

La muestra MIA-638 hace parte del cuerpo principal y fue colectada en la vía Mogotes-Los Manzanos, en el sector centro-occidental del batolito. Los circones son de euhedrales achatados a prismáticos cortos, con pirámides poco desarrolladas y, en algunos casos, ovoidales, transparentes, de tonalidad parda tenue. Los circones del montaje son superiores a 200 mm en su dimensión mayor; los ovoidales son los de mayor tamaño. La muestra fue analizada en el Laboratorio de Estudios Isotópicos del Centro de Geociencias de la Universidad Autónoma de México; los resultados de los análisis isotópicos se pueden consultar en el anexo 1.2. Esta muestra presenta algunos circones heredados cuyas edades se resumen en la tabla 12, mientras que la mayoría de los datos se agrupan en el límite Triásico-Jurásico (figura 48A), y van desde 215 hasta 188 Ma. La edad media obtenida es de 200 \pm 2 (figura 48B), con MSWD de 6,7.

Figura 44. Resultados geocronológicos de la muestra TCR-376. A) Concordia Tera-Wasserburg que muestra los resultados U-Pb en circón de la muestra TCR-376. B) Edad media ponderada de la muestra

Figura 45. Diagrama de relación Th/U vs. edad en circones de la muestra TCR-376

Figura 46. Patrones de REE normalizados contra el condrito de McDonough y Sun (1995) correspondientes a los circones de la muestra TCR-376

Figura 47. Diagrama Pb vs. Th de Wang et al. (2012) correspondiente a la muestra TCR-376

Figura 48. A) Concordia Tera-Wasserburg que muestra los resultados U-Pb. B) Edad media de la muestra MIA-638

Figura 49. Diagrama de relación Th/U vs. edad en circones de la muestra MIA-638

Figura 50. A) Patrones de REE normalizados contra el condrito de McDonough y Sun (1995) de la muestra MIA-638. B) Diagrama Pb vs. Th de Wang et al. (2012) correspondiente a circones de la muestra MIA-638

Los circones de la muestra MIA-638 exhiben razones Th/U por encima de 0,4, siendo la mayor parte próxima a 1 o superior (figura 49), característica de circones ígneos. Los contenidos de los elementos de las tierras raras en los circones de esta muestra se presentan en el anexo 2.2. En términos generales, los patrones de REE son paralelos a subparalelos entre sí (figura 50A), y son parecidos a los patrones de circones ígneos con anomalía positiva de Ce y negativa de Eu, exceptuando los de algunos análisis que cruzan los anteriores y uno que muestra enriquecimiento en LREE. En la figura 50B, usada para inferir la afinidad de los circones con tipo de granitoides, se aprecia que una parte de los resultados grafica en el campo de los granitos tipo I, mientras que otra parte no se ubica en ningún campo específico.

La muestra LMC-075 es del cuerpo principal y fue colectada en la carretera Mogotes-vereda El Gaital, hacia el sector suroccidental del batolito. Los circones son euhedrales prismáticos alargados y cortos, de tonalidad parduzca. Exhiben tamaños de 70 x 200 μ m, 90 x 150 μ m, principalmente, y en menor cantidad de 50 x 120 μ m. La muestra fue analizada en el Laboratorio de Ablación Láser del Servicio Geológico Colombiano, en Bogotá. En CL, gran parte de los circones exhibe zonación oscilatoria (figura 51).

Los resultados isotópicos se muestran en el anexo 1.3. En esta muestra se descartaron del análisis también los resultados con discordancias inversas menores de -6% y con error mayor o igual a 5%. La muestra presenta varios resultados de circones heredados (tabla 12). El resto de datos se agrupan en el límite Triásico-Jurásico y en el Jurásico temprano (figura 52A), entre 220 y 181 Ma, con una edad promedio de 196 ± 4 Ma (figura 52B) y un MSWD de 7,2.

Figura 51. Imágenes de catodoluminiscencia de circones fechados de la muestra LMC-075

Figura 52. A) Concordia Tera-Wasserburg que muestra los resultados U-Pb en circón de muestra LMC-075. B) Edad media de la muestra

Las razones Th/U de cuatro de los circones heredados son inferiores a 0,3. Los circones con resultados del límite Triásico-Jurásico y del Jurásico temprano exhiben razones Th/U por encima de 0,4, casi todos próximos a 1 y por encima de 1 (figura 53), razones típicas de circones ígneos.

La muestra AMC-0162 fue colectada en la carretera San Joaquín-San Cayetano. Los circones son abundantes en la muestra, y se hallan varias poblaciones según las formas. La predominante es entre prismática y acicular con elongación aproximada de 0,27; le sigue la población de cristales achatados largos con elongación de 0,5, y finalmente la población de tallos cortos y largos (*long and short stalky*). Son limpios, transparentes y de tonalidad rosa pálido. Los tamaños predominantes son de 60 x 220 µm. La muestra fue analizada en el Laboratorio de Ablación Láser del Servicio Geológico Colombiano, en Bogotá. En CL, la mayor parte de los circones exhibe zonación oscilatoria (figura 54); algunos presentan núcleos heredados con estructura homogénea y más luminiscente (figura 54). Otros presentan bordes de luminiscencia más baja en comparación con los de las áreas zonadas.

Figura 53. Diagrama de relación Th/U vs. Edad en circones de la muestra LMC-075

Figura 54. Imágenes de catodoluminiscencia en circones de la muestra AMC-0162 y resultados de edades en varios puntos

Se hicieron medidas en 195 puntos en total. Los resultados están en el anexo 1.4. En la interpretación de esta muestra no se consideraron en los resultados precámbricos con discordancias mayores a 5% y errores mayores de 9%. También se descartaron de la interpretación los puntos con contenidos de U mayores de 10.000 ppm. Los resultados aceptados se exhiben en la figura 55. Los resultados de herencia se listan en la tabla 12 y se muestran en la figura 56. La muestra contiene algunas herencias del Meso y Neoproterozoico, abundantes herencias desde el Ordovícico Tardío hasta el Carbonífero Temprano (Mississipiano), y en menor cantidad herencias del Pérmico hasta el Triásico Medio. En esta muestra, similar a lo observado en otras de monzogranitos, se obtuvieron resultados continuos en un rango amplio de edades, desde 225 hasta 183 Ma (figura 57), la mayor parte concordantes, y dos datos más jóvenes, de 177 y 173 Ma, discordantes (figura 57). En general, se aprecia una variación continua de núcleo a borde de edades más antiguas a más jóvenes.

Figura 55. Diagrama de la concordia Wetherill correspondiente a los resultados aceptados de la muestra AMC-0162

Figura 56. Diagrama de densidad de probabilidad de las edades heredadas correspondiente a la muestra AMC-0162 En los granos con edades Triásico-Jurásicas es posible distinguir en las imágenes de CL tres zonas texturales, así: en el centro de cristales, áreas que tienden a ser homogéneas de tonalidad gris, sin zonación reconocible (zona 1); en dirección a los bordes, áreas con zonación donde se aprecia alternancia de tonos de gris (zona 2), casi siempre rodeadas de manera transicional por un borde en ocasiones homogéneo y, en otras, con zonación, y en general de color gris más oscuro (zona 3). La zona 1 se interpreta como antecristales, mientras que la zona 2 corresponde al principal evento de cristalización de circón, y la zona 3 puede representar el evento final de cristalización de la roca o un área donde hubo pérdida de Pb por metamictización de los bordes del circón.

El análisis del diagrama de densidad de probabilidad (figura 58) sugiere tres grupos de edades, por la presencia de dos picos suaves y un pico bien pronunciado en la curva.

Se obtuvieron tres edades a partir de los tres grupos de zonas identificados en los circones, aunque el límite entre estos no fue absolutamente claro. El primer grupo está conformado por los valores situados entre 222 y 206 Ma, que se observan principalmente en centros de cristales donde no hay zonación oscilatoria o en borde de circones con núcleos heredados antiguos. Este grupo tiene una edad promedio de 211 ± 1 Ma (figura 59A) con un MSWD de 1,4, y correspondería a la edad de antecristales que representarían un primer evento de cristalización del cuerpo o un primer pulso magmático. El segundo grupo estaría representado por los resultados

Figura 57. Concordia Tera-Wasserburg con datos de la muestra AMC-0162 entre 225 y 183 Ma y dos valores discordantes de 177 y 173 Ma

Figura 58. Diagrama de densidad de probabilidad correspondiente a los resultados en circones ígneos del Triásico Tardío-Jurásico Temprano

B

C

Figura 59. Edades promedio ponderadas obtenidas en las tres zonas identificadas de los circones triásico-jurásicos de las muestra AMC-0162

situados entre 205 y 194 Ma, que se hallan en partes con zonación oscilatoria, y su edad promedio es de 200 ± 1 Ma (figura 59B), con un MSWD de 1. Esta es la edad del pico principal y es la del principal evento de cristalización. Por último, los resultados entre 194 y 183, que se hallan en los bordes de los cristales, en áreas con o sin zonación, de luminiscencia más baja, arrojan una edad promedio de 189 ± 1 Ma, con un MSWD de 2 (figura 59C), edad que correspondería al último pulso magmático, o a la cristalización final de la roca o a un evento de pérdida de Pb.

La interpretación de la relación Th/U vs. edad se hizo por grupos, así (figura 60): los cuadros naranja representan circones con edades entre 219 y 206 Ma, los círculos representan circones con edades entre 206 y 194 Ma, y los triángulos grises representan circones con edades entre 194 y 183 Ma. Esta relación permite interpretar que los tres grupos tienen razones Th/U por debajo de 1, zona en la que no hay diferencia entre grupos. Los grupos 1 y 2 tienen, además, razones entre 1,5 y 2,5; el grupo 2 tiene las razones más altas, pues llega casi a 4, y el grupo 3, las razones más bajas, todas por debajo de 1,5.

La muestra GZ-6831 es del cuerpo principal, pero de la zona donde predominan granodioritas y cuarzomonzodioritas, y fue colectada en la carretera San Joaquín-Las Tapias-El Carmen, en el sector suroriental del cuerpo. Los circones son euhedrales prismáticos alargados, transparentes, de tonalidad rosa pálido. Predominan los cristales con tamaños que rondan los 80 x 260 µm, y en menor proporción se encuentran más finos, de

Figura 60. Relaciones Th/U vs. edad en los circones de la muestra AMC-0162 con edades entre 219 y 183 Ma

60 x 145 μm. La muestra fue analizada en el Laboratorio de Ablación Láser del Servicio Geológico Colombiano, en Bogotá. Los resultados se encuentran en el anexo 1.5. En CL, la mayor parte de los circones exhibe zonación oscilatoria (figura 61).

En la interpretación de las dataciones se descartaron aquellos resultados con porcentajes de discordancia mayores del 10%. La mayor parte de los datos concordantes pueden datarse entre 204 y 185 Ma (figura 62A). Los análisis arrojaron una edad media de 194 ± 1 Ma (figura 62B), con una MSWD de 1,9, que corresponde a la edad de cristalización ígnea.

Las razones Th/U de los circones con edades menores de 220 Ma son mayores de 0,5, casi todos cercanos y superiores a 1 (figura 63).

Figura 61. Imágenes de catodoluminiscencia de circones fechados de la muestra GZ-6831

Figura 62. Resultados geocronológicos de la muestra GZ-6831. A) Concordia Tera-Wasserburg que muestra los resultados U-Pb en circón. B) Edad media de la muestra GZ-6831

Figura 63. Diagrama de relación Th/U vs. edad correspondiente a circones de la muestra GZ-6831

7.2. Edades en cuerpos menores y diques

La muestra MIA-636 es de un cuerpo menor diferente del Batolito de Mogotes y fue colectada en la vía Aratoca-desvío La Palma, en el sector de Tempranito, en el lado oriental de la porción septentrional del batolito. Los circones de esta muestra son euhedrales prismáticos cortos y largos, hasta tabulares, con la superficie impregnada de óxidos y, en general, muy fracturados. Varían de incoloros a café pálido. Los circones tienen tamaños de 70 x 150 µm, 40 x 85 µm, y escasos cristales de mayor tamaño que pueden alcanzar hasta 85 x 280 µm. La muestra fue analizada en el Laboratorio de Estudios Isotópicos del Centro de Geociencias de la Universidad Autónoma de México. Los resultados isotópicos se presentan en el anexo 1.6. En imágenes de catodoluminiscencia (CL) se insinúan zonaciones en los circones que van desde sectorial a oscilatoria (figura 64).

Los resultados concordantes se agrupan entre 220 y 195 Ma (figura 65A), que arrojan una edad promedio de 205 ± 3 Ma (figura 65B) y un MSWD de 13, interpretada como la edad de cristalización. Las razones Th/U en general son mayores de 0,5 y están alrededor de 1 (figura 66).

Figura 64. Imágenes de catodoluminiscencia de circones fechados en la muestra MIA-636

Figura 65. Resultados geocronológicos de la muestra MIA-636. A) Concordia Tera-Wasserburg que muestra los resultados U-Pb en circón. B) Edad media de la muestra MIA-636

Figura 66. Diagrama de relación Th/U vs. edad en circones de la muestra MIA-636

Los resultados de elementos de las tierras raras en circones se muestran en el anexo 2.3. La mayor parte de los patrones de REE son paralelos a subparalelos (figura 67A), semejantes a los de circones ígneos con anomalía positiva de Ce y negativa de Eu. Algunos son más enriquecidos en LREE y muestran un patrón más plano en este sector de REE, que puede deberse al análisis de microinclusiones de un mineral rico en LREE, posiblemente monacita. Hay un patrón que muestra una anomalía negativa de Eu más pronunciada, y corresponde al del circón heredado de 1.300 Ma. En el diagrama de Wang *et al.* (2012), casi todos los análisis de los circones grafican en el campo de los granitos tipo I (figura 67B).

Figura 67. A) Patrones de REE normalizados contra el condrito de McDonough y Sun (1995) de circones de la muestra MIA-636). B) Diagrama Pb vs. Th de Wang et al. (2012) correspondiente a circones de la muestra MIA-636

La muestra AMC-0144 también fue interpretada como perteneciente a un cuerpo menor del Batolito de Mogotes. La muestra fue colectada en la vía San Joaquín-Onzaga, sector de Los Trapiches, en la porción suroccidental del cuerpo. Los circones de la muestra son euhedrales prismáticos bipiramidales y aciculares, transparentes e incoloros. Algunos tienen finas inclusiones y/o impregnaciones de opacos. Los tamaños predominantes son de $130 \times 210 \mu m y 55 \times 280 \mu m$, y en menor cantidad de $45 \times 90 \mu m$ a $70 \times 145 \mu m$. La muestra fue analizada en el Laboratorio de Estudios Isotópicos del Centro de Geociencias de la Universidad Autónoma de México. Los resultados isotópicos se pueden consultar en el anexo 1.7. En imágenes de catodoluminiscencia (CL), los circones presentan zonación que va de oscilatoria a bandeada (figura 68).

Figura 68. Imágenes de catodoluminiscencia de circones fechados de la muestra AMC-0144

Los resultados concordantes se agrupan entre 210 y 195 Ma (figura 69A). La edad promedio es de 202 ± 2 Ma (figura 69), con un MSWD de 4,6. Las razones Th/U están por encima de 0,5, y la mayor parte próxima a 1 y por encima de 1 (figura 70), lo que sugiere la naturaleza ígnea de los circones. Los resultados de elementos de las tierras raras en circones se presentan en el anexo 2.4. Los patrones de REE también son parecidos a los de circones ígneos con anomalía positiva de Ce y negativa de Eu (figura 71A), exceptuando una muestra que exhibe enriquecimiento en LREE. Hay algunas muestras que presentan bajísimos contenidos de La.

Figura 69. Resultados geocronológicos de la muestra AMC-0144. A) Concordia Tera-Wasserburg que muestra los resultados U-Pb en circón. B) Edad media de la muestra AMC-0144

Figura 70. Diagrama de relación Th/U vs. edad en circones de la muestra AMC-0144

Figura 71. A) Patrones de REE normalizados contra el condrito de McDonough y Sun (1995). B) Diagrama Pb vs. Th de Wang et al. (2012) correspondiente a circones de la muestra AMC-0144

La muestra LMC-071 es un dique de cuarzolatita en límite con latita, según clasificación petrográfica, con fuerte alteración hidrotermal, que fue colectado en la carretera Aratoca-El Uvo-Alto Los Machacadores, en la porción occidental del batolito, un poco hacia la parte norte. Los circones de esta muestra son euhedrales prismáticos, alargados, de tonalidad parduzca, con algunas fracturas internas. Su tamaño predominante es de 40-60 x 140 μ m, y en menor cantidad de 38 x 95 μ m. La muestra fue analizada en el Laboratorio de Ablación Láser del Servicio Geológico Colombiano, en Bogotá. Los resultados isotópicos se encuentran en el anexo 1.8. No se dispone de imágenes de catodoluminiscencia de los circones de esta muestra. Dado que la mayor parte de los datos presentan discordancias muy elevadas, para la interpretación se consideraron aquellos con discordancias menores al 50%, que al dibujarlos en el gráfico de las concordias resultaron discordantes, exceptuando dos circones heredados. Esta discordancia puede deberse a pérdida de Pb o entrada de Pb común al sistema. Los contenidos de U en casi todos los puntos analizados son muy altos, por encima de 2.700 ppm, y en el gráfico de U vs. edad (figura 72) se ve una tendencia de correlación en la que los circones con más altos contenidos de U son los que arrojan edades más jóvenes. Por los altos contenidos de U, que probablemente dañaron la estructura del mineral y provocaron la pérdida de Pb y la entrada de contaminantes con Pb común, se concluye que los circones de esta muestra son metamícticos y no son apropiados para obtener una edad de cristalización de la muestra.

Figura 72. Diagrama U vs. edad correspondiente a los resultados en circones de la muestra LMC-071

El rango de edades, excluyendo los heredados, varía entre 122 y 199 Ma (no tiene significado geológico). Si se considera que las edades más antiguas, es decir, las que están alrededor de los 200 Ma, son las que menos Pb perdieron, y gráficamente se hace una línea que pase en medio de la nube de esos puntos discordantes, y esta línea se prolonga hasta que intercepte la curva de la discordia, se observa que la intercepción está entre 190 y 200 Ma (figura 73), valores coincidentes en términos amplios con el rango de edades obtenido en las otras muestras del cuerpo principal. Es muy importante anotar que esta información solo da una idea de la posible edad de la muestra, pero no representa edades absolutas de la misma, y por lo tanto esta edad no se puede interpretar como la edad de cristalización de la roca, porque los circones están muy alterados y los resultados fueron muy discordantes.

Figura 73. Diagramas Tera-Wasserburg correspondientes a la muestra LMC-071

La muestra TCR-380 corresponde a un dique dentro de monzogranito. El dique es de color oscuro, por lo que se interpreta como de composición máfica, y por encontrarse saprolitizado no se le hizo sección delgada. La muestra fue colectada en la carretera Mogotes-vereda El Gaital. Los circones de la muestra son cristales euhedrales a subhedrales; predominan los de forma prismática corta sobre los de forma larga, algunos muy redondeados; hay incoloros y algunos con tonalidad lila, casi todos con inclusiones. Presentan tamaños entre 70 y 200 micrómetros. La muestra fue analizada en el Laboratorio de Ablación Láser del Servicio Geológico Colombiano, en Bogotá. Los resultados isotópicos se exponen en el anexo 1.9. En las imágenes de catodoluminiscencia algunos exhiben zonación oscilatoria, y otros, en parches (figura 74).

Figura 74. Imágenes de catodoluminiscencia de circones fechados de la muestra TCR-380
Después de descartar los resultados con porcentajes de discordancia mayores del 10% se observa que hay un grupo representativo cuyas edades están entre los 200 y 190 Ma, varias edades heredadas, algunas concordantes y otras discordantes, desde 215 hasta 924 Ma, y dos resultados con edades jóvenes de alrededor de 75 Ma, uno concordante y el otro discordante. El significado de estos dos resultados más jóvenes no se conoce. La interpretación de la edad de la muestra se basa en el grupo de datos que varían entre 200 y 190 Ma. En el diagrama de la concordia Tera-Wasserburg se aprecia que varios son discordantes y que existe una agrupación a 200 Ma y otra a 190 Ma (figura 75A); sin embargo, como no hay criterios que permitan decir que corresponden a dos poblaciones diferentes, se consideran todos en conjunto, y así se obtiene una edad media de 191 ± 3 Ma y un MSWD de 4,2 (figura 75B), que se interpreta como la edad de cristalización de esta roca.

Las razones Th/U de los circones heredados muestran valores próximos a 0,1 y valores próximos, pero menores de 1 (figura 76), lo que sugiere que hay circones heredados tanto ígneos como metamórficos. Estas razones, en gran parte de los circones considerados en la edad, son mayores de 1 y, exceptuando un resultado, todos son mayores de 0,5. Este caso sugiere que se trata de circones ígneos.

Figura 75. A) Concordia Tera-Wasserburg que muestra los resultados U-Pb en circón que se interpretan como los de cristalización. B) Edad media de la muestra TCR-380

Figura 76. Diagrama de relación Th/U vs. edad en circones de la muestra TCR-380

La muestra AMC-0136A es de un dique de microtonalita alterada dentro de un monzogranito, encontrado en el sector norte del batolito. Los circones en la muestra son escasos y se caracterizan por aparecer en cristales euhedrales prismáticos cortos, de transparentes ---con tonalidad rosa tenue- a translúcidos con tonalidad —amarillenta—, por tinción con óxidos de hierro; hay varios que corresponden a fragmentos de cristales. Algunos tienen inclusiones de opacos; otros cuantos, fracturas internas. Los tamaños varían desde 60 x 110 µm, pasando por 90 x 150 µm, hasta 100 x 200 µm. La muestra fue analizada en el Laboratorio de Ablación Láser del Servicio Geológico Colombiano, en Bogotá. Se hicieron veintiséis ablaciones. En CL, casi todos muestran una zonación irregular y pocos exhiben zonación concéntrica. En general, tienen una luminiscencia baja (figura 77).

Los resultados se exponen en el anexo 1.10; los datos de herencia están resumidos en la tabla 12. La mayor parte de los resultados se sitúan entre 114 y 94 Ma (figura 78A), de los cuales trece datos arrojan una edad promedio de 108 ± 2 Ma y un MSWD de 4,1 (figura 78B), que se interpreta como la edad de cristalización de la muestra. Las razones Th/U correspondientes a los resultados cretácicos son en general mayores de 0,2, y predominan los datos entre 0,2 y 0,7 (figura 79).

Figura 77. Imágenes de catodoluminiscencia de circones fechados de la muestra AMC-0136A

Figura 78. Resultados geocronológicos de la muestra AMC-0136A. A) Concordia Tera-Wasserburg que muestra los resultados U-Pb en circón. B) Edad media de la muestra AMC-0136A

Figura 79. Diagrama de relación Th/U vs. Edad en circones de la muestra AMC-0136A

Figura 80. Imágenes de catodoluminiscencia de circones fechados de la muestra GZ-6829B

La muestra GZ-6829B corresponde a un dique de sienogranito colectado en la carretera San Joaquín-Tapias, intruido en un monzogranito con hornblenda o en una granodiorita.

Los circones de la muestra son euhedrales prismáticos cortos, transparentes, con tonalidad rosa tenue. Algunos tienen inclusiones de finas agujas y otras que parecen fluidas, y algunos tienen fracturas internas. Su tamaño varía desde 50 x 60 μ m hasta 100 x 180 μ m, si bien predominan los de 70 x 120 μ m. La imagen de catodoluminiscencia no es buena, pero da para observar que los circones muestran zonas irregulares y pocos exhiben zonación oscilatoria en sus bordes. La muestra fue analizada en el Laboratorio de Ablación Láser del Servicio Geológico Colombiano, en Bogotá. Se hicieron un total de 31 ablaciones. Los resultados se exponen en el anexo 1.11; los datos de herencia están resumidos en la tabla 12. Se observan valores de edades heredadas Triásico-Jurásicas y valores concordantes cretácicos (figura 81A) que arrojaron una edad promedio de 99 ± 2 Ma (figura 81B) y un MSWD de 1,6, que se interpreta como la edad de cristalización. Las razones Th/U varían entre 0,2 y 0,5 en los circones cretácicos, y por encima de 0,5, principalmente entre 1,5 y 2, en los circones heredados triásico-jurásicos (figura 82).

Figura 81. Resultados geocronológicos de la muestra GZ-6829B. A) Concordia Tera-Wasserburg que muestra los resultados U-Pb en circón. B) Edad media de la muestra GZ-6829B

Figura 82. Diagrama de relación Th/U vs. edad en circones de la muestra GZ-6829B. Cuadros naranja: circones heredados; círculos rellenos azules: datos cretácicos

7.3. Interpretación de las variaciones de edades triásico-jurásicas

Al observar los resultados de las edades promedio de las diferentes muestras (se resumen en la tabla 1 2) y las dos figuras siguientes (83 y 84) se aprecia que la mayor parte de las muestras exhibe una distribución amplia en el tiempo, principalmente entre 205 y 1 90 Ma. Los valores de MSWD de casi todas las edades obtenidas son altos, lo que indica dispersión alta y que las edades no son precisas. Esta dispersión se debe probablemente al registro de varios procesos geológicos. Sin embargo, no es posible profundizar en la interpretación, debido a que de algunas muestras no se dispone de buenas imágenes de CL y a que no se conocen los lugares exactos donde se realizaron las ablaciones.

Miller, Matzel, Miller, Burgess y Miller (2007) plantean que si las edades se extienden a lo largo de la concordia, pero con algunas superposiciones de las elipses individuales de errores, se obtiene una dispersión alta que se puede deber a varios factores: 1) pérdida de plomo; 2) análisis de circón magmático junto con un componente menor de circón heredado del fundido; 3) la incorporación de xenocristales, o 4) el reciclaje de antecristales solidificados en etapas iniciales o parcialmente solidificados en el sistema magmático. La dispersión alta está expresada por valores de MSWD > 1, normalmente mayores de 2, lo que indica, siempre y cuando la pérdida de plomo sea insignificante, que los circones no pudieron haber cristalizado todos al mismo tiempo, a pesar de su semejanza en edad. En estos casos no es fácil asignar una edad única como edad de cristalización de la roca.

Figura 83. Diagramas de densidad de probabilidad para las edades triásico-jurásicas de las rocas del cuerpo principal del Batolito de Mogotes

Figura 84. Diagramas de densidad de probabilidad para las edades triásico-jurásicas de rocas de cuerpos menores (MIA-636 y AMC-0144) y dique (TCR-380) en el Batolito de Mogotes

De acuerdo con los datos de todas las muestras, el proceso de cristalización del Batolito de Mogotes empezó aproximadamente entre los 220 y 215 Ma (antecristales), y fue un proceso prolongado de cristalización, con un posible evento principal ocurrido alrededor de los 205-200 Ma. Los datos de dos muestras (GZ-6831 y AMC-0162) de baja dispersión sugieren que la cristalización final de las rocas del Batolito de Mogotes ocurrió hacia los 190 Ma, o al menos el de estas rocas. La edad de un dique máfico (TCR-380) se dató en aproximadamente 190 Ma, si bien también tiene registro de edades cercanas a los 200 Ma.

Otra alternativa para explicar los circones más jóvenes de la muestra AMC-0162 es que el evento de cristalización fue el de aproximadamente 200 Ma, mientras que las edades más jóvenes pueden haber resultado de pérdida de Pb por metamictización de los bordes de los circones.

8. Correlación

El Batolito de Mogotes fue correlacionado con la cuarzomonzonita de Santa Bárbara por Ward *et al.* (1973) y con el Granito de Pescadero por Goldsmith *et al.* (1971) y Ward *et al.* (1973).

El Batolito de Mogotes es correlacionable en composición litológica, química, edad y posición tectónica con otros plutones de edades triásico-jurásicas que afloran en el Macizo de Santander, presentados en esta publicación, entre los que se encuentra el Monzogranito de Santa Bárbara —antes Cuarzomonzonita de Santa Bárbara— (Ward *et al.*, 1973; Rodríguez *et al.*, 2018), el granito de Pescadero (Ward *et al.*, 1973; Zapata *et al.*, 2016), el Monzogranito de Rionegro —antes Batolito de Rionegro— (Ward *et al.*, 1973; Arango *et al.*, 2016). Difiere parcialmente del Monzogranito de La Corcova —antes Cuarzomonzonita de La Corcova— (Ward *et al.*, 1973; Rodríguez *et al.*, 2016), este último compuesto por rocas con características de granito tipo-S, como son la presencia de feldespato potásico de color blanco, moscovita y biotita, escasa hornblenda y presencia de ilmenita y el hecho de ser peraluminosos, rasgos comunes en plutones altamente diferenciados, según Chappell y White (2001).

Al comparar las edades de los pulsos encontrados en el Batolito de Mogotes y las edades en diques y cuerpos menores asociados, algunos de estos pulsos resultan comunes a otros plutones del Macizo de Santander, lo que sugiere que se trata de un magmatismo multipulsos que formó a cada plutón.

De acuerdo con la información geocronológica U-Pb de Van der Lelij (2013) y todas las edades presentadas en este trabajo, los plutones triásico-jurásicos del Macizo de Santander son más antiguos que los del valle superior del Magdalena, que presentan edades entre 182 y 169 Ma (Rodríguez *et al.*, 2018); por lo tanto, los plutones de ambos lugares no son correlacionables.

9. Génesis

Los monzogranitos presentan una mineralogía característica de granitoides tipo I, como son la presencia de feldespato potásico rosado, biotita parda, escasa hornblenda y presencia de magnetita, común en plutones altamente diferenciados, según Chappell y White (2001). Asimismo, desde el punto de vista geoquímico, grafican en el campo de los granitos tipo I (figura 38).

Otro criterio que indica que los granitos son de tipo I es el de la relación Pb vs. Th, donde gran parte de los circones grafican en el campo de los granitos tipo I (figuras 47, 50B, 67B y 71B). Por otro lado, la química mineral obtenida en un cristal de biotita, relacionada a un monzogranito de la facies principal del batolito, se asocia a rocas de series calcoalcalinas orogénicas (figura 30).

En el diagrama SiO_2 vs. Rb/Zr (figura 85), las muestras se ubican en el campo de los granitos de arco volcánico y granitos tardíos o poscolisionales.

Tanto los patrones de REE como las variaciones en las edades sugieren que el batolito fue resultado de varios pulsos magmáticos, posiblemente en un ambiente de arco magmático de margen continental.

Con relación a la génesis de los cuerpos menores y diques, las rocas de ambos tipos grafican en el campo de las rocas volcánicas de arco (figura 86A). En el diagrama

Figura 85. Diagrama de SiO₂ vs. Rb/Zr de Harris et al. (1986). Símbolos: cuadrados rojos: monzogranitos, sienogranitos y cuarzomonzonitas; en cuadrados negros, granodioritas, cuarzomonzodioritas, cuarzodioritas y tonalita

de Harris *et al.* (1986) pertenecen al campo de granitos de arco volcánico tardi o posorogénico (figura 86B).

Los diques cretácicos tienen características químicas diferentes de las que predominan en las rocas jurásicas. La muestra IGM900868, de composición diorítica o tonalítica, arrojó una edad de 108 Ma, y en todos los diagramas grafica en campos diferentes de aquellos en que grafican las otras. Por otro lado, la muestra IGM900901, que es un sienogranito, reportó una edad de ca. 99 Ma, y también grafica separada de las otras muestras.

Figura 86. Diagramas de discriminación de ambiente tectónico correspondientes a rocas de cuerpos menores y diques del Batolito de Mogotes. A) Diagrama de Pearce (2008), correspondiente a rocas de arco y rocas de corteza oceánica. B) Diagrama de SiO2 vs. Rb/Zr de Harris *et al.* (1986). Símbolos: cuadrados verdes: cuerpos menores; círculos negros: diques jurásicos plutónicos; círculos rojos: diques jurásicos subvolcánicos; círculos azules: diques cretácicos

10. Recursos minerales

Los recursos minerales potenciales identificados en el Batolito de Mogotes corresponden a materiales de construcción, específicamente piedras ornamentales (Ingeominas, 2001).

Las alteraciones hidrotermales de sericitización, argilización y cloritización sugieren potencial de mineralizaciones metálicas, pero a la fecha no se han identificado anomalías químicas que indiquen la presencia de estas mineralizaciones.

Conclusiones

El Batolito de Mogotes está compuesto principalmente de monzogranitos y, en menor proporción, de granodioritas. También contiene cuerpos menores de composición semejante a la masa principal y es atravesado por diques principalmente félsicos y, en menor cantidad, intermedios a máficos. Los monzogranitos consisten de feldespato potásico, cuarzo, plagioclasa oligoclasa hasta andesina, biotita y magnetita, y pueden también contener ilmenita. Las granodioritas tienen, además, anfíbol. La composición del feldespato potásico, determinada ópticamente y por química mineral, es de ortosa y ortosa pertítica, y la composición de las plagioclasas, según el método de Michel-Lévy, varía entre oligoclasa An_{28} y andesina An_{38} , mientras que la química mineral mostró un rango más amplio en la composición, desde albita An_9 a andesina An_{31} .

Los diques félsicos son monzogranitos y sienogranitos, y los intermedios a máficos son granodiorita, tonalita y andesita.

La mayor parte de las muestras exhiben meteorización y/o alteración hidrotermal moderada a alta, en la que la plagioclasa se ha alterado a sericita, el feldespato potásico a arcillas, y la biotita a clorita. En algunas muestras se observa crecimiento mirmequítico posterior a la textura alotriomórfica inequigranular, que probablemente es el resultado de un metasomatismo potásico.

La composición química de roca total de las rocas no alteradas, o con leve alteración, indica que el Batolito de Mogotes es un plutón subalcalino de la serie calco-alcalina alta en K, levemente peraluminoso, generado en un ambiente relacionado con subducción, probablemente en un arco volcánico continental. Los cuerpos menores y los diques muestran características químicas semejantes a las de las rocas del cuerpo principal, excepto el dique de microtonalita (IGM90868), que es de la serie calcoalcalina.

Tanto la litogeoquímica como el contenido de elementos traza de los circones indican que las rocas son granitos tipo I.

En un monzogranito del cuerpo principal del Batolito de Mogotes se hallaron abundantes herencias del Paleozoico, que van desde el Ordovícico Superior hasta el Carbonífero Temprano (Mississipiano) y del Pérmico, y en menor cantidad del Meso-Neoproterozoico y del Triásico. El resto de muestras del cuerpo principal, los cuerpos menores y los diques jurásicos mostraron escasas herencias del Meso-Neoproterozoico y del Paleozoico y Triásico. El dique cretácico de microtonalita (108 Ma) mostró dos valores heredados del Mesoproterozoico y dos del Triásico, mientras que el dique cretácico de sienogranito (99 Ma) mostró tres edades heredadas del Triásico Tardío.

Las edades ígneas de las rocas del cuerpo principal se ubican principalmente entre los 205 y los 190 Ma. La mayor parte de las edades muestran alta dispersión, y solo dos muestras (GZ-6831 y AMC-0162) evidencian dispersión relativamente baja, que apunta a una cristalización final del batolito hacia los 190 Ma, así que las edades más antiguas, que llegan hasta los 220 Ma, podrían considerarse antecristales formados en una etapa más temprana del magmatismo.

Los cuerpos menores tienen edades U-Pb en circón principalmente entre 205 y 202 Ma, y también muestran edades más antiguas, próximas a los 210 Ma. Hay diques jurásicos cuyas edades de cristalización oscilan alrededor de los 190 Ma, y otros cretácicos con edades de aproximadamente 108 y 99 Ma. Estos últimos diques indican una actividad magmática cretácica en el Macizo de Santander que es poco conocida. Las variaciones composicionales y los rangos de edades obtenidas por el método U-Pb en circón sugieren que el Batolito de Mogotes es un plutón compuesto y que se generó a partir de diferentes pulsos magmáticos. Las abundantes herencias del Paleozoico, y en menor proporción del Meso-Neoproterozoico, en las rocas monzograníticas, sugieren un aporte importante de corteza continental en el magma que dio origen al Batolito de Mogotes.

El Batolito de Mogotes es correlacionable con el Monzogranito de Rionegro, el Monzogranito Santa Bárbara y el Granito de Pescadero, y parcialmente correlacionable con el Monzogranito de La Corcova, situado en el Macizo de Santander; en cambio, no es correlacionable con los plutones del Valle Superior del Magdalena, por ser más antiguo que aquellos.

Referencias

- Abdel-Rahman, A. F. M. (1994). Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. *Journal of Petrology*, 35 (2), 525-541. https://doi. org/10.1093/petrology/35.2.525.
- Arango, M. I., Rodríguez, G., Zapata, G. y Correa M., A. M. (2016). Catálogo de unidades litoestratigráficas de Colombia. Monzogranito de Rionegro, cordillera Oriental, departamento Santander. Medellín: Servicio Geológico Colombiano.
- Cardona, A. (2003). Correlações entre fragmentos do embasamento Pre-Mesozoico da terminação setentrional dos Andes colombianos, com base em dados isotópicos e geocronológicos (tesis de maestría), Universidade de São Paulo.
- Castro Dorado, A. (2015). *Petrografía de rocas ígneas y metamórficas*. Madrid: Ediciones Paraninfo.
- Cediel, F. (1969). Geología del Macizo de Floresta. En Primer Congreso Colombiano de Geología. Memoria. Bogotá.
- Chappell, B. W. y White, A. J. (2001). Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48 (4), 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x.
- Chappell, B. W. y White, A. J. R. (1974). Two contrasting granite types. *Pacific Geology*, 8 (2), 173-174.
- Clavijo, J. (1994). Mapa geológico generalizado de Norte de Santander. Escala 1:250.000. Mapa interno. Bucaramanga: Ingeominas.

- Cordani, U. G., Cardona, A., Jiménez, D. M., Liu, D. y Nutran, A. P. (2005). Geochronology of Proterozoic basement inliers from the Colombian Andes: Tectonic history of remnants from a fragmented Grenville belt. Londres: Geological Society. https://doi. org/10.1144/GSL.SP.2005.246.01.13.
- Droop, G. T. R. (1987). A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. *Mineralogical Magazine*, 51 (361), 431-435. https://doi.org/10.1180/minmag.1987.051.361.10.
- Etayo Serna, F., Barrero, D., Lozano, H., Espinosa, A., González, H., Orrego, A., Ballesteros, I., Forero, H., Ramírez, C., Zambrano Ortiz, F., Duque Caro, H., Vargas, R., Núñez, A., Álvarez, J., Ropaín, C., Cardozo, E., Galvis, N., Sarmiento, L., Alberts, J. P., Case, J. E., Singer, D. A., Bowen, R. W., Berger, B. R., Cox, D. P. y Hodges, C. A. (1985). *Mapa de terrenos geológicos de Colombia*. Publicaciones Geológicas Especiales del Ingeominas 14, Bogotá: Ingeominas.
- García, C. y Ríos, C. (1999). *Metamorfismo y metalogenia asociada del Macizo de Santander, cordillera Oriental, Colombia.* Informe final del Proyecto de Investigación 1102-05-083-95. Bucaramanga: Colciencias-Universidad Industrial de Santander.
- Goldsmith, R., Marvin, R. F. y Mehnert, H. H. (1971). *Radiometric ages in the Santander Massif, Eastern Cordillera, Colombian Andes.* U. S. Geological Survey Professional Paper 750-D, D44-D49.
- Harris, N. B. W., Pearce, J. A. y Tindle, A. G. (1986). Geochemical characteristics of collision zone magmatism. En M. P. Coward y A. C. Ries (eds.), *Collision tectonics* (pp. 67-81). Special publication 19. London: Geological Society of London. http://dx.doi.org/10.10.11144/GSL.SP.1986.019.01.04.
- Hastie, A. R., Kerr, A. C., Pearce, J. A. y Mitchell, S. F. (2007). Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. *Journal of Petrology*, 48 (12), 2341-2357. https://doi. org/10.1093/petrology/egm062.
- Hughes, C. J. (1972). Spilites, keratophyres and the igneous spectrum. *Geological Magazine*, 109 (6), 513-527. https://doi.org/10.1017/S0016756800042795.

- Ingeominas. (2001). *Mapa de recursos minerales de Colombia. Materiales de construcción. Plancha 5-06. Escala 1:500.000.* Bogotá: Ingeominas.
- International Subcommision on Stratigraphic Classification. (1987). Stratigraphic classification and nomenclature of igneous and metamorphic rock bodies. *Geological Society America Bulletin* 99 (3), 440-442. https://doi.org/10.1130/0016-7606(1987)99<440:S-CANOI>2.0.CO;2.
- International Subcommision on Stratigraphic Classification. (1994). International stratigraphic guide: A guide to stratigraphic classification, terminology and procedure (2.^a ed.). Amos Salvador (ed.). Boulder: The International Union of Geological Sciences y Geological Society of America.
- Janoušek, V., Farrow, C. M. y Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing geochemical data toolkit (GCDkit). *Journal of Petrology*, 47 (6), 1255-1259. https://doi.org/10.1093/petrology/egl013.
- Large, R. R., Gemmel, J. B., Paulick, H. y Huston, D. L. (2001). The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. *Economic Geology*, 96 (5), 957-971. https://doi.org/10.2113/ gsecongeo.96.5.957.
- Leal-Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes: A tectono-magmatic approach (tesis de doctorado). Universitat de Barcelona, España.
- Ludwig, K. R. (2012). User's manual for Isoplot 3.75-4.15. A geochronological toolkit Microsoft Excel. Special publication n.° 5. Berkeley Geochronology Center.
- Mantilla Figueroa, L. C., Bissig, T., Cottle, J. M. y Hart, C. J. (2012). Remains of early Ordovician mantle-derived magmatism in the Santander Massif (Colombian Eastern Cordillera). *Journal of South American Earth Sciences*, 38, 1-12. https://doi.org/10.1016/j. jsames.2012.03.001.
- Mantilla Figueroa, L. C., Bissig, T., Valencia. V. y Hart, C. (2013). The magmatic history of the Vetas-California mining district, Santander Massif Eastern Cordillera, Colombia. *Journal of South American Earth Sciences*, 45, 235-249. https://doi.org/10.1016/j.jsames.2013.03.006.
- Mantilla-Figueroa, L. C., García-Ramírez, C. A. y Valencia, V. A. (2016). Propuesta de escisión de la deno-

minada 'Formación Silgará' (Macizo de Santander, Colombia), a partir de edades U-Pb en circones detríticos. *Boletín de Geología*, 38 (1), 33-50. https:// doi.org/10.18273/revbol.v38n1-2016002.

- McDonough, W. F. y Sun, S. S. (1995). The composition of the Earth. *Chemical Geology*, 120 (3), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4.
- Middlemost, E. A. K. (1985). *Magmas and magmatic rocks*. London: Longman.
- Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. *Earth-Science Reviews*, 37 (3-4), 215-224. https://doi.org/10.1016/0012-8252(94)90029-9.
- Miller, J. S., Matzel, J. E., Miller, C. F., Burgess, S. D. y Miller, R. B. (2007). Zircon growth and recycling during the assembly of large, composite arc plutons. *Journal of Volcanology and Geothermal Research*, 167 (1-4), 282-299. https://doi.org/10.1016/j.jvolgeores.2007.04.019.
- Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. *Geochimical et Cosmochimical Acta*, 38 (5), 757-775. https://doi.org/10.1016/0016-7037(74)90149-5.
- Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. *Lithos*, 100 (1-4), 14-48. https://doi.org/10.1016/j. lithos.2007.06.016.
- Peccerillo, A. y Taylor, S. R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. *Contributions to Mineralogy and Petrology*, 58 (1), 63-81. https://doi. org/10.1007/BF00384745.
- Restrepo, J. J y Toussaint, J. F. (1989). Terrenos alóctonos en los Andes colombianos: explicación de algunas paradojas. *V Congreso Colombiano de Geología*. Bucaramanga.
- Restrepo, J. J., Ordóñez Carmona, O., Armstrong, R. y Pimentel, M. (2011). Triassic metamorphism in the northern part of the Tahamí Terrane of the Central Cordillera of Colombia. *Journal of South American Earth Sciences*, 32 (4), 497-507. https://doi. org/10.1016/j.jsames.2011.04.009.
- Restrepo, P. A. (1995). Late Precambrian to early Mesozoic tectonic evolution of the Colombian Andes, based on new geochronological, geochemical and

isotopic data (tesis de Ph. D.). The University of Arizona.

- Restrepo-Pace, P., Ruiz, J., Gehrels, G. y Cosca, M. (1997). Geochronology and Nd isotopic data of the Grenville-age rocks in the Colombian Andes: New constraints for Late Proterozoic-Early Paleozoic paleocontinental reconstructions of the Americas. *Earth and Planetary Science Letters*, 150 (3-4), 427-441. https://doi.org/10.1016/S0012-821X(97)00091-5.
- Rieder, M., Cavazzini, G., D'Yakonov, Y., Frank Kamenetskii, V., Gottardi, G., Guggenheim, S., Koval, P. W., Müller, G., Neiva, A. M. R., Radoslovich, E. W., Robert, J.-L., Sassi, F. P., Takeda, H., Weiss, Z. y Wones, D. R. (1998). Nomenclature of the micas. *Clays and Clay Minerals*, 46 (5), 586-595. https://doi.org/10.1346/CCMN.1998.0460513.
- Rodríguez, G., Arango, M. I., Zapata, G. y Bermúdez, J. G. (2018). Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes. *Journal of South American Earth Sciences*, 81, 10-30. https://doi.org/10.1016/j.jsames.2017.10.012.
- Rodríguez, G., Correa M., A. M., Zapata, G. y Arango, M. I. (2016). Catálogo de unidades litoestratigráficas de Colombia. Monzogranito de La Corcova. Medellín: Servicio Geológico Colombiano.
- Rodríguez, G., Zapata, G., Arango, M. I. y Correa M., A. M. (2018). *Catálogo de unidades litoestratigráficas de Colombia. Monzogranito de Santa Bárbara*. Medellín: Servicio Geológico Colombiano.
- Royero, J. M. y Clavijo, J. (2001). Mapa geológico generalizado del departamento de Santander. Escala 1:300.000. Memoria explicativa. Bogotá: Ingeominas.
- Rubatto, D. (2002). Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. *Chemical Geology*, 184 (1-2), 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2.
- Shand, S. J. (1943). Eruptive rocks: Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. New York: John Wiley & Sons.
- Smith, J. V. y Brown, W. L. (1988). *Feldspar minerals*. I. *Crystal structures, physical, chemical and microtextural properties* (2.^a ed.). Berlin: Springer-Verlag.

- Streckeisen, A. (1978). Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks; recommendation and suggestions. *Neues Jahrbuch für Mineralogie*, 134, 1-14.
- Streckeisen, A. L. (1974). Classification and nomenclature of plutonic rocks recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. *Geologische Rundschau*, 63 (2), 773-785. https:// doi.org/10.1007/BF01820841.
- Sun, S. S. y Mcdonough, W. S. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Special Publications 42. London: Geological Society.
- Travis, R. B. (1955). *Classification of rocks*, vol. 50. Golden: Colorado School of Mines.
- Urueña Suárez, C. L. (2014). Metamorfismo, exhumación y termocronología del Neis de Bucaramanga (Macizo de Santander, Colombia) (tesis de maestría). Universidad Nacional de Colombia.
- Van der Lelij, R. (2013). Reconstructing North-Western Gondwana with implications for the evolution of the Iapetus and Rheic Oceans: A geochronological, thermochronological and geochemical study (tesis de doctorado). Université de Genève.
- Vargas, R., Arias, A., Jaramillo, L. y Téllez, N. (1976a). Geología del cuadrángulo I-13, Málaga. Bogotá: Ingeominas.
- Vargas, R., Arias, A., Jaramillo, L. y Téllez, N. (1976b). Mapa geológico del cuadrángulo I-13, Soatá. Escala 1:100.000. Bogotá: Ingeominas.
- Vargas, R., Arias, A., Jaramillo, L. y Téllez, N. (1976c). Plancha 136 Málaga, escala 1:100.000. Bogotá: Ingeominas.

- Vargas, R., Arias, A., Jaramillo, L. y Téllez, N. (1981). Geología del cuadrángulo I-13, Málaga. *Boletin Geológico*, 24 (3), 1-76.
- Vargas, R., Arias, A., Jaramillo, L. y Téllez, N. (1984). Geología de la Plancha 136 Málaga. Mapa, escala: 1:100.000. Versión digital 2009. Bogotá: Ingeominas.
- Vargas, R., Arias, A., Jaramillo, L. y Téllez, N. (1987). Geología de la Plancha 152 Soatá. Mapa, escala: 1:100.000. Versión digital 2009. Bogotá: Ingeominas.
- Wang, Q., Zhu, D. C., Zhao, Z. D., Guan, Q., Zhang, X. Q., Sui, Q. L., Chu Hu, Z. y Mo, X. X. (2012). Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. *Journal of Asian Earth Sciences*, 53, 59-66. https://doi.org/10.1016/j. jseaes.2011.07.027.
- Ward, D. E., Goldsmith, R., Cruz, J., Téllez, N. y Jaramillo, L. (1977). Mapa geológico de San Gil y Málaga (parte de los cuadrángulos I-12 y I-13), Colombia. Escala: 1:100.000. Bogotá: Ingeominas.
- Ward, D., Goldsmith, R., Cruz, J. y Restrepo, A. (1973). Geología de los cuadrángulos H-12 Bucaramanga y H-13 Pamplona, departamento de Santander. *Bo-letín Geológico*, 21 (1-3), 1-132.
- Whitney, D. L. y Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. *American Mineralogist*, 95 (1), 185-187. https://doi.org/10.2138/ am.2010.3371.
- Zapata, G., Correa M, A. M., Rodríguez, G. y Arango, M. I. (2016). Catálogo de unidades litoestratigráficas de Colombia. Granito de Pescadero. Medellín: Servicio Geológico Colombiano.

ANEXOS

Anexo 1. Resultados de geocronología U-Pb en circón de muestras del Batolito de Mogotes

Anexo 1.1. Resultados isotópicos U-Pb en circón de la muestra TCR-376

Punto	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Correlación de errores	²⁰⁸ Pb/ ²³² Th	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ
Zircon-002	437,8	610	0,43	0,0522	0,0024	0,2440	0,0110	0,0343	0,0008	0,29	0,0120	0,0005	217,3	5,1	222,8	8,8	280,0	100,0
Zircon-004	162,2	232,6	0,60	0,0480	0,0042	0,2170	0,0180	0,0332	0,0009	-0,24	0,0098	0,0005	210,3	5,4	199,0	15,0	100,0	170,0
Zircon-006	468	437	0,79	0,0507	0,0030	0,2240	0,0120	0,0321	0,0008	0,19	0,0099	0,0005	203,8	5,1	205,0	10,0	250,0	130,0
Zircon-142	230	150,7	0,66	0,6550	0,0240	10,4200	0,6500	0,1167	0,0051	0,29	0,2940	0,0180	711,0	29,0	2472,0	53,0	4634,0	56,0
Zircon-145	323,4	254,3	0,79	0,0746	0,0064	0,3610	0,0330	0,0357	0,0007	0,02	0,0139	0,0009	226,0	4,5	312,0	24,0	1000,0	170,0
Zircon-152	23,87	24,52	1,03	0,0469	0,0088	0,1970	0,0340	0,0307	0,0019	-0,15	0,0107	0,0010	195,0	12,0	177,0	29,0	-70,0	350,0
Zircon-154	225	187	0,83	0,1820	0,0630	1,0000	11,0000	0,0390	0,0920	0,86	0,0300	0,3700	250,0	410,0	710,0	440,0	2670,0	170,0
Zircon-160	326	514	1,58	0,1860	0,0110	0,9640	0,0590	0,0379	0,0008	0,49	0,0192	0,0010	239,6	5,1	685,0	31,0	2676,0	87,0
Zircon-164	645	715	1,11	0,1005	0,0047	0,4370	0,0240	0,0322	0,0007	0,04	0,0131	0,0008	204,1	4,6	368,0	16,0	1623,0	82,0
Zircon-143	120,9	51,5	0,43	0,0497	0,0059	0,1000	0,0130	0,0146	0,0005	0,19	0,0046	0,0004	93,3	3,0	96,0	12,0	100,0	240,0
Zircon- 158	491	560	1,14	0,0487	0,0027	0,2070	0,0120	0,0303	0,0004	0,06	0,0095	0,0004	192,6	2,6	190,8	9,7	150,0	130,0
Zircon-150	467	513	1,10	0,0502	0,0028	0,2150	0,0110	0,0309	0,0005	0,15	0,0095	0,0004	196,4	3,0	197,1	9,1	200,0	120,0
Zircon-008	283	293	0,61	0,0515	0,0039	0,2220	0,0150	0,0311	0,0008	0,17	0,0095	0,0005	197,1	5,3	203,0	12,0	250,0	150,0
Zircon-148	164,1	389	2,37	0,0494	0,0038	0,2140	0,0170	0,0314	0,0008	0,12	0,0102	0,0005	199,5	4,8	199,0	14,0	160,0	170,0
Zircon-161	498	588	1,18	0,0512	0,0025	0,2180	0,0110	0,0315	0,0006	0,39	0,0098	0,0005	199,9	3,7	202,3	9,0	230,0	100,0
Zircon-146	347,4	258,2	0,74	0,0496	0,0035	0,2220	0,0150	0,0316	0,0006	0,08	0,0102	0,0005	200,5	4,0	203,0	13,0	200,0	150,0
Zircon-005	1242	3570	1,01	0,0497	0,0023	0,2174	0,0085	0,0316	0,0005	0,09	0,0096	0,0004	200,7	3,1	199,6	7,1	170,0	100,0
Zircon-009 TCR-376	965	1486	0,03	0,0495	0,0025	0,2149	0,0095	0,0317	0,0006	0,07	0,0099	0,0004	200,8	3,7	197,4	8,0	160,0	110,0
Zircon-159	373,6	521	1,39	0,0502	0,0030	0,2200	0,0120	0,0317	0,0006	0,01	0,0098	0,0005	201,1	3,6	203,0	10,0	180,0	140,0
Zircon-007	836	1826	0,88	0,0510	0,0023	0,2235	0,0087	0,0317	0,0006	0,20	0,0100	0,0004	201,4	3,4	205,5	7,4	230,0	110,0
Zircon-162	351,9	413,9	1,18	0,0503	0,0033	0,2190	0,0140	0,0318	0,0006	0,10	0,0103	0,0005	201,7	3,6	200,0	11,0	180,0	140,0
Zircon-165	130,4	169,9	1,30	0,0503	0,0046	0,2150	0,0190	0,0320	0,0008	0,04	0,0102	0,0005	202,8	4,7	199,0	16,0	170,0	200,0
Zircon-151	355,6	277,5	0,78	0,0518	0,0033	0,2260	0,0140	0,0320	0,0005	0,05	0,0100	0,0005	202,9	3,4	206,0	11,0	280,0	130,0
Zircon-163	420	619	1,47	0,0489	0,0028	0,2150	0,0130	0,0320	0,0006	0,24	0,0102	0,0006	203,0	3,6	198,0	11,0	130,0	130,0
Zircon-003	224	169,6	1,13	0,0522	0,0033	0,2330	0,0130	0,0321	0,0007	0,05	0,0099	0,0005	203,5	4,1	212,0	11,0	290,0	140,0
Zircon-147	268,9	176,5	0,66	0,0489	0,0032	0,2160	0,0130	0,0321	0,0005	0,03	0,0104	0,0006	203,6	3,3	198,0	11,0	160,0	140,0
Zircon-001 TCR-376	847	2224	2,63	0,0510	0,0022	0,2230	0,0087	0,0321	0,0006	0,14	0,0096	0,0004	203,9	3,9	204,3	7,2	228,0	99,0
Zircon-155	365,1	298,1	0,82	0,0502	0,0029	0,2210	0,0120	0,0323	0,0006	0,25	0,0104	0,0005	204,7	3,5	202,0	10,0	210,0	120,0
Zircon-156	347	361	1,04	0,0498	0,0031	0,2230	0,0120	0,0323	0,0008	0,09	0,0105	0,0006	205,1	4,7	203,8	9,9	160,0	120,0
Zircon-144	118	71,5	0,61	0,0491	0,0053	0,2180	0,0230	0,0325	0,0008	0,15	0,0099	0,0006	206,2	4,9	204,0	19,0	140,0	210,0
Zircon-149	326	545	1,67	0,0530	0,0086	0,2350	0,0410	0,0326	0,0007	0,07	0,0100	0,0013	206,6	4,2	214,0	29,0	330,0	190,0
Zircon-153	633	902	1,42	0,0523	0,0029	0,2370	0,0130	0,0326	0,0006	0,23	0,0104	0,0006	207,1	3,9	215,0	11,0	320,0	120,0
Zircon-141 TCR-376	333,4	300,1	0,90	0,0500	0,0031	0,2250	0,0130	0,0327	0,0005	0,10	0,0101	0,0005	207,6	3,1	207,0	11,0	170,0	130,0
Zircon-166	223,5	360,7	1,61	0,0516	0,0035	0,2380	0,0160	0,0334	0,0007	0,28	0,0110	0,0005	211,5	4,4	216,0	14,0	270,0	160,0
Zircon-157	344,9	236,6	0,69	0,0727	0,0087	1,4500	0,1600	0,1462	0,0026	0,12	0,0462	0,0050	880,0	15,0	911,0	54,0	1.000,0	160,0

Anexo 1.2. Resultados isotópicos U-Pb en circón de la muestra MIA-638

Punto	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Correlación de errores	208Pb/232Th	±2σ	206Pb/238U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ
Zircon-087	212	488	2,3	0,0571	0,0064	0,246	0,035	0,0312	0,0011	0,35373	0,01019	0,00067	198	6,6	223	26	460	170
Zircon-92	195	33,6	0,2	0,0733	0,0033	1,695	0,068	0,169	0,0028	0,02316	0,0553	0,0031	1.006	15	1005	25	1.012	89
Zircon-101	607	1.720	2,8	0,0519	0,0025	0,2119	0,0096	0,02956	0,00051	0,31085	0,00932	0,00045	187,8	3,2	195	8,4	280	110
Zircon-075	1.340	600	0,4	0,0531	0,0024	0,2127	0,0098	0,0299	0,00061	0,294	0,00985	0,00052	189,9	3,8	195,6	8,2	340	110
Zircon-100	1.590	7.300	4,6	0,0506	0,0022	0,2145	0,0086	0,0306	0,00053	0,24678	0,00958	0,00045	194,3	3,3	197,2	7,4	215	93
Zircon-99	497	1.370	2,8	0,0491	0,0034	0,213	0,013	0,03072	0,00069	0,080363	0,00945	0,00049	195,1	4,3	196	11	180	140
Zircon-102	1.910	4.430	2,3	0,0514	0,0023	0,2173	0,0095	0,03076	0,00053	0,12823	0,01012	0,00052	195,3	3,3	199,5	7,9	250	100
Zircon-078	1.550	3.800	2,5	0,0524	0,0024	0,2251	0,0095	0,03094	0,00048	0,093194	0,00915	0,00045	196,4	3	205,9	7,9	347	99
Zircon-080	278	271	1,0	0,0515	0,0027	0,219	0,011	0,03112	0,0006	0,31837	0,01003	0,00051	197,6	3,8	203,5	9,6	270	120
Zircon-074	490	2.010	4,1	0,0507	0,0032	0,214	0,013	0,03122	0,00069	0,31491	0,00988	0,00048	198,2	4,3	197	11	220	120
Zircon-084	135	127	0,9	0,0547	0,004	0,232	0,016	0,03127	0,00069	0,077785	0,01059	0,00057	198,5	4,3	211	13	320	160
Zircon-088	234	262	1,1	0,0556	0,0037	0,234	0,014	0,03131	0,00071	0,28357	0,01031	0,00056	198,7	4,4	213	11	400	140
Zircon-95	1.980	2.930	1,5	0,0501	0,0021	0,2179	0,0084	0,03146	0,0005	0,38178	0,00959	0,00047	199,7	3,1	200,1	7	192	94
Zircon-086	1.990	7.070	3,6	0,05	0,0021	0,2171	0,0086	0,03147	0,00051	0,16859	0,00974	0,00046	199,7	3,2	199,4	7,2	197	94
Zircon-93	266	596	2,2	0,0539	0,004	0,23	0,017	0,0318	0,00071	0,13311	0,01007	0,00049	201,8	4,5	213	14	370	170
Zircon-082	570	1.660	2,9	0,0528	0,0031	0,229	0,014	0,0319	0,001	0,068801	0,0101	0,0013	202,3	6,4	209	11	310	130
Zircon-072	271	208	0,8	0,052	0,0032	0,227	0,013	0,03185	0,00067	0,32383	0,01002	0,00055	202,8	4,2	209	11	260	130
Zircon-073	1.040	2.410	2,3	0,0525	0,0033	0,226	0,016	0,032	0,00082	0,5818	0,01005	0,0007	203	5,1	207	13	310	130
Zircon-071 MIA-638	4.030	1890	0,5	0,0503	0,0019	0,2201	0,0086	0,03204	0,00059	0,69264	0,01001	0,00049	203,3	3,7	201,9	7,1	204	93
Zircon-083	590	510	0,9	0,053	0,0029	0,233	0,013	0,03208	0,0007	0,021129	0,01018	0,00055	203,5	4,4	213	10	320	130
Zircon-085	313	334	1,1	0,051	0,0032	0,226	0,014	0,03212	0,00067	0,12214	0,01049	0,00059	203,8	4,2	209	11	230	140
Zircon-090	930	1.740	1,9	0,0516	0,0025	0,225	0,011	0,03215	0,00052	0,25775	0,01034	0,0005	204	3,2	206,8	8,6	250	110
Zircon-077	380	640	1,7	0,0514	0,0027	0,227	0,013	0,03221	0,00074	0,38277	0,01001	0,0005	204,4	4,6	207	11	290	130
Zircon-94	492	670	1,4	0,0505	0,0027	0,228	0,012	0,03234	0,00068	0,038382	0,01036	0,0006	205,2	4,2	208,6	9,8	250	120
Zircon-103 MIA-638	435	560	1,3	0,0508	0,003	0,228	0,013	0,03251	0,0007	0,028205	0,01057	0,00057	206,2	4,4	208	10	220	130
Zircon-081	349	520	1,5	0,0515	0,0037	0,235	0,017	0,0334	0,00069	0,027739	0,01065	0,00076	211,8	4,3	214	14	240	150
Zircon-97	1.500	208	0,1	0,0511	0,0034	0,236	0,016	0,03349	0,00079	0,093892	0,01034	0,00069	212,3	4,9	215	12	250	150
Zircon-96	551	634	1,2	0,0506	0,0031	0,239	0,013	0,03389	0,0008	0,0024094	0,01062	0,00056	214,8	5	217	11	220	130
Zircon-076	511	1.310	2,6	0,0545	0,0029	0,277	0,016	0,037	0,0012	0,048592	0,0127	0,0011	234,4	7,1	248	13	380	110
Zircon-091	410	6	0,0	0,0541	0,0033	0,374	0,021	0,0504	0,0011	0,061183	0,0157	0,0038	316,9	6,8	322	16	360	140
Zircon-089	462	304	0,7	0,0643	0,0028	0,737	0,047	0,0831	0,0038	0,50541	0,01528	0,00084	514	23	560	30	760	99
Zircon-98	560	31,8	0,1	0,0771	0,0031	1,941	0,074	0,1835	0,0033	0,28229	0,0556	0,0034	1.086	18	1.095	26	1.120	79
Zircon-079	279	110	0,4	0,0996	0,0041	3,2	0,13	0,2371	0,0043	0,45209	0,0856	0,0042	1.371	23	1.456	30	1.627	77

Anexo 1.3. Resultados isotópicos U-Pb en circón de la muestra LMC-075

										Correlación	Edad 206Pb/238U		Edad 207Pb/235U		Edad 207Pb/206Pb	
Punto	U (ppm)	Th (ppm)	Th/U	207 Pb/200 Pb	±2σ	207 Pb/238U	±2σ	200Pb/200U	±2σ	de errores	(Ma)	±2σ	(Ma)	±2σ	(Ma)	±2σ
LMC-075-51	676,00	761,00	1,13	0,05470	0,00330	0,2200	0,0150	0,02872	0,00058	0,5523	181,41	6,54	199,00	12,00	380,00	110,00
LMC-075-26	1.714,00	1.866,00	1,09	0,05540	0,00130	0,2227	0,0056	0,02876	0,00036	0,3786	181,50	5,91	203,60	4,60	414,00	52,00
LMC-075-52	690,00	646,00	0,94	0,04850	0,00220	0,1967	0,0091	0,02878	0,00039	0,2421	183,19	6,03	181,60	7,60	127,00	85,00
LMC-075-44	228,40	384,00	1,68	0,05510	0,00400	0,2350	0,0220	0,02924	0,00056	0,6538	184,57	6,57	200,00	13,00	260,00	120,00
LMC-075-47	417,00	573,00	1,37	0,05020	0,00230	0,2079	0,0099	0,02949	0,00048	0,2871	187,27	6,41	192,30	8,30	204,00	89,00
LMC-075-46	1.430,00	718,00	0,50	0,10860	0,00630	0,4780	0,0360	0,02955	0,00061	0,7802	174,03	7,06	388,00	24,00	1.710,00	110,00
LMC-075-22	272,00	507,00	1,86	0,05160	0,00240	0,2095	0,0097	0,02966	0,00044	0,2407	188,01	6,29	192,50	8,20	242,00	92,00
LMC-075-20	582,00	1.069,00	1,84	0,05510	0,00230	0,2290	0,0098	0,02971	0,00039	0,3869	187,51	6,18	208,20	8,00	412,00	85,00
LMC-075-32	467,00	1.078,00	2,31	0,05860	0,00280	0,2330	0,0110	0,02985	0,00040	0,2549	187,56	6,26	211,20	8,60	480,00	95,00
LMC-075-25	80,30	113,00	1,41	0,04670	0,00470	0,1950	0,0200	0,02990	0,00082	0,0439	190,67	7,82	178,00	17,00	0,00	160,00
LMC-075-49	498,00	359,00	0,72	0,04690	0,00280	0,1960	0,0120	0,02991	0,00055	0,0779	190,69	6,54	179,70	9,90	40,00	110,00
LMC-075-5	2.330,00	13.900,00	5,97	0,05160	0,00110	0,2055	0,0060	0,02993	0,00055	0,6523	189,71	6,52	190,20	5,20	260,00	46,00
LMC-075-45	338,90	382,10	1,13	0,05130	0,00230	0,2157	0,0097	0,03010	0,00038	0,2044	190,85	6,29	198,20	8,20	220,00	86,00
LMC-075-21	1.202,00	5.270,00	4,38	0,06490	0,00240	0,2740	0,0110	0,03019	0,00041	0,4781	188,18	6,34	245,10	9,00	751,00	78,00
LMC-075-43	466,00	789,00	1,69	0,05130	0,00320	0,2080	0,0140	0,03030	0,00076	0,3280	192,10	7,77	192,00	11,00	250,00	120,00
LMC-075-18	2.750,00	4.190,00	1,52	0,04960	0,00180	0,2116	0,0090	0,03054	0,00069	0,4988	194,02	7,14	194,40	7,60	190,00	78,00
LMC-075-48	1.256,00	1.660,00	1,32	0,05150	0,00180	0,2221	0,0078	0,03062	0,00043	0,2466	194,06	6,41	203,00	6,50	256,00	74,00
LMC-075-12	127,10	258,70	2,04	0,05000	0,00360	0,2150	0,0160	0,03077	0,00052	0,1307	195,37	6,58	200,00	13,00	230,00	130,00
LMC-075-16	268,00	208,00	0,78	0,04950	0,00270	0,2120	0,0110	0,03093	0,00050	0,1343	196,50	6,55	193,20	9,50	170,00	100,00
LMC-075-10	1.255,00	3.190,00	2,54	0,05040	0,00110	0,2168	0,0046	0,03110	0,00032	0,3055	197,34	6,22	198,90	3,90	208,00	45,00
LMC-075-29	296,00	270,00	0,91	0,06200	0,00320	0,2650	0,0140	0,03132	0,00050	0,4059	195,87	6,61	238,00	12,00	620,00	110,00
LMC-075-42	259,00	291,00	1,12	0,04800	0,00230	0,2060	0,0100	0,03132	0,00048	0,2051	199,32	6,55	192,00	8,90	158,00	92,00
LMC-075-2	758,00	354,00	0,47	0,04770	0,00280	0,2030	0,0120	0,03140	0,00051	0,1024	199,90	6,55	187,60	9,90	110,00	110,00
LMC-075-23	337,00	616,00	1,83	0,04900	0,00190	0,2155	0,0085	0,03148	0,00038	0,1831	200,08	6,48	197,50	7,00	155,00	73,00
LMC-075-41	244.00	246.00	1.01	0.04730	0.00280	0.2020	0.0120	0.03159	0.00060	0.1214	201.19	7.17	187.00	9.90	100.00	110.00
LMC-075-34	217.00	93.00	0.43	0.04910	0.00310	0.2090	0.0130	0.03196	0.00063	0.2084	203.07	7.18	193.00	11.00	150.00	110.00
LMC-075-4	437.00	608.00	1.39	0.04920	0.00240	0.2130	0.0110	0.03215	0.00050	0.2867	204.24	7.16	196.00	8.80	162.00	92.00
LMC-075-6	538.00	1.390.00	2.58	0.13120	0.00650	0.5670	0.0270	0.03219	0.00049	0.0564	183.72	7.60	458.00	17.00	2,079,00	91.00
LMC-075-27	50.10	34.90	0.70	0.04930	0.00630	0.2130	0.0260	0.03223	0.00097	0.0718	204.72	8.51	187.00	22.00	100.00	210.00
LMC-075-9	377.00	407.00	1.08	0.05120	0.00220	0.2225	0.0094	0.03241	0.00053	0.2228	205.37	7 16	204.40	7 70	248.00	82.00
LMC-075-28	274.00	378.00	1.38	0.04500	0.00280	0.2020	0.0130	0.03242	0.00073	0.2718	207.01	7 79	185.00	11.00	20.00	120.00
LMC-075-7	3,360,00	5 390 00	1.60	0.05960	0.00100	0.2638	0.0055	0.03246	0.00047	0.5698	203 54	6.57	237.80	4 40	581.00	38.00
LMC-075-53	130.20	133 50	0.96	0.05750	0.00730	0.2530	0.0300	0,00240	0.00120	0,0030	200,04	10.35	223,00	24.00	410.00	240.00
LMC-075-39	939.00	525.00	0,30	0.05140	0,00160	0,2300	0,00073	0,03265	0,00120	0,0003	204,34	6.56	223,00	6.00	260.00	65.00
LMC-075-24	533.00	974.00	1.93	0,03140	0.00560	0,5200	0,0073	0,03203	0,00042	0,0000	197 73	8.40	461.00	19.00	2.00,00	79.00
LMC 075 20	1 620 00	1 121 00	0.70	0,12020	0,00300	0,000	0,00055	0,03207	0,00073	0,46067	200.04	7 15	104.20	4 70	161.00	51.00
LINC-075-39	1.020,00	0.40.00	1.00	0,04910	0,00120	0,2114	0,0055	0,03291	0,00057	0,4020	209,04	7,15	194,20	4,70	181,00	110.00
LINC-075-17	5 440 00	848,00	1,02	0,07410	0,00400	0,3520	0,0210	0,03302	0,00050	0,3099	203,25	7,28	300,00	15,00	970,00	51.00
LIVIC-075-3	5.410,00	2.1200,00	3,92	0,06110	0,00140	0,2736	0,0068	0,03365	0,00034	0,1671	210,53	0,01	245,20	5,40	621,00	51,00
LMC-075-8	1.560,00	4.770,00	3,06	0,05500	0,00190	0,2529	0,0089	0,03390	0,00038	0,3161	213,70	6,59	228,30	7,20	403,00	76,00
LMC-075-36	419,00	345,90	0,83	0,04730	0,00240	0,2070	0,0110	0,03390	0,00054	0,1649	215,74	7,18	190,60	9,00	84,00	95,00
LMC-075-37	154,20	160,00	1,04	0,05020	0,00370	0,2180	0,0160	0,03392	0,00065	0,0679	215,10	7,82	203,00	13,00	210,00	130,00
LMC-075-31	131,00	76,50	0,58	0,06470	0,00450	0,2990	0,0210	0,03422	0,00062	0,1171	213,09	7,86	261,00	16,00	690,00	140,00
LMC-075-19	318,00	46,73	0,15	0,05050	0,00280	0,2430	0,0140	0,03483	0,00059	0,3449	220,72	7,81	219,00	12,00	200,00	110,00
LMC-075-11	157,00	151,50	0,96	0,11810	0,00500	0,5770	0,0260	0,03511	0,00070	0,4470	203,87	8,34	458,00	17,00	1.915,00	77,00
LMC-075-35	756,00	552,00	0,73	0,05040	0,00210	0,2300	0,0110	0,03539	0,00080	0,4967	224,26	8,41	209,20	9,30	198,00	86,00
LMC-075-30	415,00	414,00	1,00	0,06410	0,00360	0,3060	0,0170	0,03585	0,00087	0,1854	223,30	9,05	272,00	14,00	680,00	120,00
LMC-075-14	412,00	525,00	1,27	0,09170	0,00700	0,4620	0,0380	0,03690	0,00130	0,3101	221,79	10,45	397,00	25,00	1.450,00	150,00
LMC-075-40	734,00	1.210,00	1,65	0,05530	0,00390	0,2850	0,0230	0,03950	0,00110	0,5007	248,47	10,30	252,00	17,00	380,00	130,00
LMC-075-13	756,00	234,00	0,31	0,22800	0,01800	1,3300	0,1400	0,04180	0,00220	0,7130	206,46	17,20	838,00	61,00	3.020,00	130,00
LMC-075-33	1.035,00	939,00	0,91	0,08270	0,00280	1,0960	0,0970	0,10140	0,00800	0,9262	606,18	50,26	738,00	48,00	1.259,00	65,00
LMC-075-50	1.530,00	563,00	0,37	0,07962	0,00096	1,9300	0,0360	0,17320	0,00230	0,7447	1.022,55	33,91	1.090,00	12,00	1.183,00	24,00
LMC-075-1	714,00	216,20	0,30	0,07730	0,00160	1,8130	0,0420	0,17580	0,00190	0,3960	1.040,14	33,51	1.047,00	15,00	1.119,00	42,00
LMC-075-15	246,00	75,80	0,31	0,08050	0,00150	2,3300	0,0560	0,20980	0,00340	0,6803	1.228,81	42,90	1.232,00	18,00	1.209,00	38,00

Anexo 1.4. Resultados isotópicos U-Pb en circón de la muestra AMC-0162

Punto	U (ppm)	Th (ppm)	Th/U	207Pb/206Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	206Pb/238U	±2σ	Correlación	Edad 206Pb/238U	±2σ	Edad 207Pb/235U	±2σ	Edad	±2σ
AMC-0162-	3.950.00	329.00	0.08	0.05280	0.00210	0.2007	0.0086	0.02715	0.00058	0.3666	(Ma) 172.0	3.7	(Ma) 185.60	7.30	207 Pb/208 Pb (Ma) 298.00	79.00
113 AMC-0162-1	967.00	88.70	0.09	0.05880	0.00530	0.2350	0.0300	0.02779	0.00064	0.2119	174.7	4.2	201.00	16.00	400.00	140.00
AMC-0162-	3.460.00	218.80	0.06	0.05150	0.00210	0.2020	0.0100	0.02887	0.00074	0.4064	183.1	4.7	185.10	8.60	258.00	74.00
37 AMC-0162-	10 550 00	5 228 00	0.50	0.04990	0.00120	0 2056	0.0066	0.02905	0.00080	0.6758	184.6	5.0	189 10	5 50	184.00	48.00
106 AMC-0162-	5 590 00	1 641 00	0.29	0.04980	0.00120	0 1983	0.0056	0.02913	0.00068	0 4904	185.1	4.3	183.20	4.80	179.00	49.00
146 AMC-0162-	4.041.00	1 579.00	0,20	0.05080	0.00150	0,1000	0,0060	0.02010	0.00071	0,5000	194.7	4,0	184.00	5.90	222.00	61.00
156 AMC-0162-	4.041,00	000.00	0,39	0,05080	0,00150	0,2002	0,0009	0,02910	0,000/1	0,5280	104,7	4,5	104,90	5,60	223,00	70.00
12 AMC-0162-	2.063,00	229,00	0,11	0,05150	0,00190	0,2065	0,0084	0,02928	0,00047	0,2476	185,0	3,0	190,00	7,10	254,00	76,00
84 AMC-0162-	6.200,00	3.810,00	0,61	0,05050	0,00150	0,2049	0,0070	0,02925	0,00059	0,5313	185,7	3,7	188,40	5,80	215,00	61,00
112 AMC-0162-	7.920,00	1.492,00	0,19	0,04850	0,00150	0,2028	0,0072	0,02931	0,00070	0,5260	186,5	4,4	186,60	6,10	137,00	63,00
26 AMC-0162-	5.190,00	674,00	0,13	0,05170	0,00150	0,2047	0,0076	0,02937	0,00075	0,6192	186,2	4,7	189,10	6,30	258,00	61,00
102 AMC:0162	5.330,00	3.590,00	0,67	0,04950	0,00250	0,2010	0,0130	0,02944	0,00092	0,2993	187,1	5,8	183,00	10,00	179,00	95,00
18	3.350,00	591,00	0,18	0,05190	0,00190	0,2080	0,0086	0,02947	0,00067	0,3726	186,8	4,2	191,80	7,10	281,00	75,00
AMC-0162-7	3.892,00	615,00	0,16	0,05220	0,00140	0,2096	0,0074	0,02954	0,00072	0,6607	187,1	4,5	193,70	6,10	274,00	56,00
21 AMC:0162	9.090,00	9.630,00	1,06	0,05090	0,00120	0,2051	0,0069	0,02960	0,00082	0,7349	187,8	5,2	189,50	5,70	229,00	48,00
96 AMC 0162	1.6340,00	2.294,00	0,14	0,05061	0,00090	0,2132	0,0067	0,02974	0,00073	0,8001	188,7	4,6	195,50	5,50	217,00	39,00
160	3.212,00	312,40	0,10	0,04970	0,00170	0,1972	0,0077	0,02973	0,00069	0,4521	188,9	4,4	181,70	6,50	182,00	68,00
AMC-0162- 77	10.420,00	12.300,00	1,18	0,05010	0,00130	0,2070	0,0082	0,02981	0,00089	0,3354	189,3	5,6	189,90	6,70	189,00	53,00
AMC-0162- 81	5.810,00	3.600,00	0,62	0,05090	0,00160	0,2115	0,0083	0,02991	0,00081	0,5437	189,7	5,1	193,60	6,90	228,00	65,00
AMC-0162- 150	2.740,00	360,00	0,13	0,05010	0,00170	0,2039	0,0080	0,02993	0,00076	0,5636	190,1	4,8	187,30	6,70	193,00	65,00
AMC-0162- 119	5.900,00	1.485,00	0,25	0,04920	0,00150	0,2042	0,0077	0,02992	0,00085	0,5189	190,2	5,4	188,30	6,50	157,00	62,00
AMC-0162- 179	1.990,00	2.280,00	1,15	0,04990	0,00270	0,2130	0,0130	0,03010	0,00086	0,4342	191,2	5,4	193,00	11,00	170,00	100,00
AMC-0162- 45	3.050,00	1.066,00	0,35	0,05150	0,00170	0,2112	0,0077	0,03015	0,00060	0,4356	191,1	3,8	194,10	6,40	253,00	67,00
AMC-0162- 88	8.200,00	10.370,00	1,26	0,04900	0,00120	0,2061	0,0062	0,03017	0,00080	0,5719	191,8	5,0	190,40	5,20	142,00	48,00
AMC-0162- 142	4.490,00	207,40	0,05	0,05230	0,00150	0,2104	0,0072	0,03017	0,00064	0,4726	191,0	4,0	193,40	6,00	300,00	61,00
AMC-0162- 100	6.090,00	981,00	0,16	0,05030	0,00170	0,2107	0,0077	0,03025	0,00079	0,4939	192,0	5,0	193,10	6,40	203,00	68,00
AMC-0162-	1.880,00	407,00	0,22	0,05500	0,00270	0,2150	0,0110	0,03026	0,00093	0,4491	191,0	5,8	195,50	9,10	347,00	87,00
AMC-0162-	9.060,00	11.030,00	1,22	0,05012	0,00090	0,2116	0,0067	0,03034	0,00092	0,8354	192,6	5,8	194,10	5,60	202,00	39,00
AMC-0162-	3.440,00	325,00	0,09	0,05010	0,00140	0,2101	0,0075	0,03041	0,00064	0,5532	193,1	4,0	193,60	6,30	206,00	58,00
AMC-0162-	6.150,00	1.058,00	0,17	0,05090	0,00130	0,2158	0,0078	0,03046	0,00087	0,7141	193,2	5,5	197,40	6,40	226,00	52,00
AMC-0162-	3.276,00	3.020,00	0,92	0,05180	0,00200	0,2204	0,0098	0,03052	0,00083	0,4283	193,4	5,2	200,60	8,10	273,00	78,00
AMC-0162-	6.860,00	1.136,00	0,17	0,05000	0,00130	0,2078	0,0068	0,03056	0,00075	0,5904	194,0	4,7	191,80	5,60	181,00	54,00
AMC-0162-	2.630.00	535.00	0.20	0.05220	0.00210	0.2180	0.0110	0.03061	0.00086	0.5110	193.8	5.4	199.30	9.10	263.00	78.00
64 AMC-0162-5	1.226.00	1.821.00	1.49	0.05280	0.00260	0.2160	0.0120	0.03067	0.00096	0.4150	194.1	6.0	197.00	10.00	283.00	94.00
AMC-0162-	2.970,00	735,00	0,25	0,05180	0,00160	0,2125	0,0089	0,03060	0,00094	0,5744	193,9	5,9	195,60	7,50	267,00	65,00
AMC-0162-	5.180.00	2.550.00	0.49	0.04890	0.00160	0.2096	0.0089	0.03068	0.00086	0.5481	195.1	5.4	191.80	7.40	153.00	62.00
185 AMC-0162-	4,700.00	704.00	0.15	0.05040	0.00130	0.2120	0.0077	0.03074	0.00085	0.6682	195.1	5.4	194.70	6.40	205.00	52.00
42 AMC-0162-	6,951 00	780.00	0.11	0.04840	0.00120	0.2092	0,0068	0,03078	0,00081	0.6223	195.8	5.1	192.00	5.70	132.00	52.00
123 AMC-0162-	4,020.00	2,580.00	0.64	0.05160	0.00140	0.2173	0,0088	0,03073	0,00091	0.6639	194.7	5.7	199.50	7.30	253.00	57.00
14 AMC-0162-	4 630 00	782.00	0.17	0.05110	0.00140	0.2119	0.0082	0.03081	0.00080	0,6030	105.4	5.6	195.10	6.90	233.00	58.00
170 AMC-0162-	10 650 00	0 700 00	0,17	0,03110	0,00140	0,2110	0,0002	0,03001	0,00005	0,0939	105.0	5,0	200.20	7.00	192.00	46.00
91 AMC-0162-	0.001.00	9.720,00	0,91	0,04960	0,00170	0,2100	0,0000	0,03084	0,00090	0,6052	195,9	5.0	200,30	7,00	162,00	40,00
127 AMC-0162-	3.001,00	876,00	0,24	0,04940	0,00170	0,2096	0,0079	0,03086	0,00083	0,5201	196,1	5,2	192,70	6,70	161,00	66,00
149 AMC-0162-	3.610,00	1.648,00	0,46	0,05030	0,00120	0,2092	0,0072	0,03086	0,00088	0,6417	195,9	5,5	193,00	6,00	215,00	52,00
128 AMC-0162-	3.280,00	1.754,00	0,53	0,05030	0,00170	0,2135	0,0092	0,03090	0,00089	0,5787	196,1	5,6	195,70	7,50	191,00	66,00
158 AMC-0162-	2.491,00	1.613,00	0,65	0,05190	0,00180	0,2174	0,0096	0,03090	0,00080	0,5434	195,7	5,0	198,10	7,90	266,00	70,00
110	5.220,00	4.630,00	0,89	0,05000	0,00200	0,2180	0,0100	0,03094	0,00087	0,5170	196,4	5,5	198,70	8,20	192,00	78,00
172	7.390,00	9.020,00	1,22	0,04860	0,00110	0,2023	0,0074	0,03094	0,00094	0,7416	196,8	5,9	187,20	6,30	138,00	48,00
103	1.153,00	2.340,00	2,03	0,05240	0,00410	0,2270	0,0190	0,03090	0,00110	0,3138	195,6	7,0	210,00	16,00	270,00	140,00
AIVIG-0162- 126	5.440,00	4.000,00	0,74	0,05250	0,00140	0,2230	0,0092	0,03098	0,00096	0,7579	196,1	6,0	204,50	7,70	300,00	57,00
AMC-0162- 164	3.077,00	424,60	0,14	0,05100	0,00170	0,2117	0,0079	0,03098	0,00072	0,4593	196,4	4,5	195,00	6,70	229,00	67,00
AMC-0162- 114	13.200,00	15.980,00	1,21	0,04920	0,00100	0,2169	0,0070	0,03105	0,00086	0,7342	197,3	5,4	198,90	5,90	154,00	42,00

Punto	II (nnm)	Th (nnm)	Th/II	207Ph/206Ph	+2σ	207 Ph/23511	+2σ	206Ph/23811	+2σ	Correlación	Edad 206Pb/238U	+2σ	Edad 207Pb/235U	+2σ	Edad	+2σ
AMC-0162-	0 (pp)	7 700 00								de errores	(Ma)		(Ma)		²⁰⁷ Pb/ ²⁰⁶ Pb (Ma)	
189	9.500,00	7.720,00	0,81	0,04950	0,00120	0,2132	0,0072	0,03110	0,00088	0,7142	197,6	5,5	195,80	6,10	173,00	49,00
AMIC-0162- 74	4.700,00	849,00	0,18	0,04960	0,00160	0,2107	0,0091	0,03111	0,00096	0,6293	197,6	6,0	192,70	7,60	163,00	64,00
AMC-0162- 165	7.210,00	4.880,00	0,68	0,04920	0,00110	0,2080	0,0077	0,03111	0,00092	0,7585	197,7	5,8	190,90	6,40	162,00	46,00
AMC-0162- 133	1.435,00	1.547,00	1,08	0,05020	0,00250	0,2130	0,0110	0,03107	0,00089	0,4050	197,2	5,6	194,60	9,60	201,00	93,00
AMC-0162-	4.660,00	3.310,00	0,71	0,05080	0,00130	0,2190	0,0084	0,03130	0,00100	0,7289	198,5	6,3	199,90	6,90	231,00	53,00
AMC-0162-	8.120.00	1.111.00	0.14	0.05050	0.00130	0.2190	0.0079	0.03129	0.00081	0.7041	198.5	5.1	200.50	6.50	225.00	53.00
30 AMC-0162-	4 700 00	12 670 00	0.95	0.05140	0.00160	0.0008	0.0000	0.02120	0.00100	0.7409	108.4	6.2	202.20	8.20	252.00	65.00
73 AMC-0162-	4.790,00	13.670,00	2,00	0,05140	0,00100	0,2220	0,0099	0,03130	0,00100	0,7423	190,4	0,3	203,20	0,20	253,00	05,00
125	2.480,00	613,00	0,25	0,04900	0,00230	0,2090	0,0120	0,03131	0,00094	0,4086	199,0	5,9	191,00	9,50	131,00	86,00
180	6.340,00	781,00	0,12	0,04980	0,00110	0,2154	0,0062	0,03131	0,00068	0,6025	198,8	4,3	198,30	5,10	185,00	48,00
49	4.242,00	825,00	0,19	0,04990	0,00130	0,2152	0,0074	0,03135	0,00079	0,6342	199,0	5,0	197,90	6,20	186,00	54,00
68	5.219,00	3.547,00	0,68	0,04910	0,00130	0,2124	0,0077	0,03136	0,00093	0,6620	199,3	5,9	195,60	6,40	158,00	53,00
AMC-0162- 186	5.630,00	10.350,00	1,84	0,04880	0,00130	0,2124	0,0076	0,03138	0,00094	0,6528	199,5	5,9	194,50	6,40	140,00	55,00
AMC-0162- 33	6.340,00	5.650,00	0,89	0,04970	0,00130	0,2122	0,0076	0,03144	0,00095	0,6401	199,7	6,0	195,40	6,40	187,00	54,00
AMC-0162- 147	2.658,00	790,00	0,30	0,05060	0,00170	0,2144	0,0079	0,03144	0,00075	0,4423	199,4	4,7	196,60	6,60	218,00	67,00
AMC-0162- 65	3.877,00	13.580,00	3,50	0,04910	0,00150	0,2146	0,0084	0,03148	0,00093	0,6654	200,1	5,9	197,30	7,00	159,00	60,00
AMC-0162-	2.799,00	345,00	0,12	0,04970	0,00190	0,2149	0,0082	0,03146	0,00048	0,2744	199,8	3,1	197,00	6,80	183,00	74,00
AMC-0162-	2.361,00	2.380,00	1,01	0,05190	0,00180	0,2213	0,0093	0,03155	0,00092	0,5486	199,8	5,8	202,20	7,70	257,00	68,00
AMC-0162-	5.130.00	744.00	0.15	0.04880	0.00170	0.2150	0.0100	0.03157	0.00089	0.5711	200.7	5.6	196.40	8.30	144.00	69.00
192 AMC-0162-	1 314 00	3 100 00	2 36	0.05100	0.00260	0.2130	0.0120	0.03157	0.00081	0.3672	200.1	5.1	196.00	10.00	239.00	99.00
56 AMC-0162-	0.440.00	0.100,00	0.70	0,00100	0,00200	0,2100	0.0070	0.00107	0,00001	0,0072	000 7	5,1		5.00	170.00	50,00
188 AMC-0162-	9.110,00	6.390,00	0,70	0,04940	0,00120	0,2200	0,0070	0,03160	0,00080	0,6717	200,7	5,0	201,00	5,80	179,00	52,00
71 AMC-0162-	5.580,00	585,00	0,10	0,05150	0,00150	0,2221	0,0077	0,03161	0,00079	0,5725	200,3	5,0	202,70	6,30	266,00	60,00
20 AMC-0162-	8.430,00	3.970,00	0,47	0,05010	0,00130	0,2171	0,0088	0,03160	0,00110	0,7536	200,6	6,9	200,60	7,60	193,00	53,00
118 AMC-0162-	4.740,00	3.500,00	0,74	0,05000	0,00150	0,2238	0,0088	0,03165	0,00091	0,5655	200,9	5,7	203,70	7,20	194,00	62,00
154	2.100,00	2.320,00	1,10	0,05260	0,00200	0,2200	0,0110	0,03160	0,00100	0,5286	199,9	6,3	201,50	9,20	295,00	76,00
22	2.925,00	2.873,00	0,98	0,05210	0,00220	0,2230	0,0100	0,03166	0,00092	0,4463	200,4	5,8	202,30	8,50	258,00	82,00
AMC-0162- 89	4.810,00	5.640,00	1,17	0,04840	0,00160	0,2184	0,0091	0,03167	0,00090	0,5804	201,4	5,7	199,20	7,50	126,00	64,00
AMC-0162- 194	2.900,00	1.280,00	0,44	0,04920	0,00250	0,2140	0,0130	0,03168	0,00094	0,3478	201,3	5,9	196,00	11,00	188,00	95,00
AMC-0162- 135	955,00	1.471,00	1,54	0,04760	0,00300	0,2090	0,0150	0,03174	0,00094	0,3561	202,1	6,0	190,00	12,00	70,00	110,00
AMC-0162- 124	3.040,00	5.500,00	1,81	0,05080	0,00190	0,2220	0,0100	0,03179	0,00091	0,5264	201,6	5,7	203,10	8,60	210,00	74,00
AMC-0162-	788,00	2.440,00	3,10	0,04820	0,00360	0,2050	0,0150	0,03180	0,00100	0,2538	202,3	6,4	188,00	13,00	120,00	130,00
AMC-0162-	9.280.00	8.240.00	0.89	0.04990	0.00120	0.2185	0.0076	0.03188	0.00095	0.6740	202.4	6.0	200.80	6.30	190.00	49.00
AMC-0162-	4 310 00	1 290 00	0.30	0.05050	0.00190	0 2220	0.0110	0.03193	0.00099	0 5462	202.5	6.2	203 50	8.60	210.00	75.00
195 AMC-0162-	3 167 00	3 000 00	0.95	0.04910	0.00180	0.2191	0.0097	0.03190	0.00100	0.5973	202,0	6.2	200,00	7.90	161.00	71.00
75 AMC-0162-	4.004.00	3.000,00	0,95	0,04910	0,00100	0,2101	0,0007	0,00104	0,00100	0,5573		5.0	200,00	7,50	140.00	07,00
76 AMC-0162-	4.024,00	3.560,00	0,88	0,04870	0,00160	0,2194	0,0086	0,03194	0,00092	0,5534	203,0	5,8	200,70	7,10	149,00	67,00
157 AMC-0162-	2.890,00	4.760,00	1,65	0,04800	0,00170	0,2072	0,0092	0,03197	0,00096	0,5335	203,4	6,1	189,80	7,70	112,00	69,00
61 AMC=0162=	4.300,00	531,40	0,12	0,05040	0,00120	0,2215	0,0076	0,03203	0,00082	0,7142	203,2	5,2	202,60	6,20	212,00	49,00
46	5.540,00	21.820,00	3,94	0,04960	0,00130	0,2184	0,0077	0,03208	0,00080	0,6358	203,7	5,0	201,10	6,40	167,00	53,00
163	1.210,00	2.350,00	1,94	0,05140	0,00300	0,2200	0,0140	0,03209	0,00093	0,3587	203,3	5,9	199,00	11,00	210,00	110,00
AMC-0162- 16	6.950,00	584,00	0,08	0,05700	0,00190	0,2498	0,0085	0,03220	0,00110	0,6129	202,6	6,9	226,60	6,90	454,00	68,00
AMC-0162- 83	6.670,00	4.560,00	0,68	0,05010	0,00140	0,2214	0,0090	0,03210	0,00100	0,5953	203,7	6,3	202,20	7,30	199,00	57,00
AMC-0162- 173	5.950,00	5.940,00	1,00	0,04920	0,00140	0,2198	0,0083	0,03221	0,00092	0,5984	204,6	5,8	201,10	6,90	163,00	56,00
AMC-0162- 190	4.520,00	572,00	0,13	0,05080	0,00160	0,2293	0,0092	0,03224	0,00086	0,5890	204,4	5,4	208,20	7,50	225,00	64,00
AMC-0162- 36	6.820,00	4.107,00	0,60	0,04750	0,00110	0,2061	0,0067	0,03225	0,00093	0,7109	205,3	5,9	189,90	5,60	83,00	45,00
AMC-0162-6	1.278,00	3.220,00	2,52	0,05260	0,00260	0,2300	0,0120	0,03224	0,00083	0,4257	203,9	5,2	209,00	10,00	286,00	96,00
AMC-0162-	10.820,00	9.710,00	0,90	0,04914	0,00099	0,2119	0,0078	0,03240	0,00110	0,7787	205,8	6,9	194,10	6,50	158,00	42,00
AMC-0162-	5.460,00	7.860,00	1,44	0,04930	0,00150	0,2216	0,0095	0,03250	0,00100	0,6795	206,4	6,3	201,70	7,80	161,00	59,00
AMC-0162-	4.820.00	2.890.00	0.60	0,04960	0,00130	0,2212	0,0082	0,03249	0,00088	0.6760	206.3	5.5	202.30	6.80	181.00	53.00
50 AMC-0162-	4.180.00	8,240.00	1.97	0.04890	0.00150	0.2162	0.0084	0.03250	0.00090	0.6148	206.5	5.7	198.00	7.00	151.00	60.00
39 AMC-0162-	4 090 00	3 710 00	0.01	0.04950	0.00200	0.2160	0.0100	0.03260	0.00110	0.5620	200,0	6.0	107.60	0.40	152.00	80.00
193 AMC-0162-	4.080,00	10,000,000	0,91	0.04850	0,00200	0.0400	0.0000	0,03200	0,00110	0,0039	201,2	0,9	197,00	9,40	102,00	64.00
35 AMC-0162-	3.770,00	12.000,00	2,08	0,04990	0,00150	0.45.00	0,0090	0,03261	0,00096	0,0042	207,0	0,0	200,30	1,40	1/9,00	01,00
98	4.315,00	//1,00	0,18	0,09800	0,00640	0,4540	0,0270	0,03260	0,00042	0,1000	194,6	3,0	3/1,00	18,00	1.410,00	130,00

Punto	LI (npm)	Th (ppm)	Th/U	²⁰⁷ Ph/ ²⁰⁶ Ph	+2σ	207Pb/235U	+2σ	206Ph/238U	+2σ	Correlación	Edad 206Pb/238U	+2σ	Edad 207Pb/235U	+2σ	Edad	+2σ
AMC-0162-			0.05						0.00005	de errores	(Ma)	120	(Ma)		207Pb/206Pb (Ma)	17.00
121 AMC-0162-	7.540,00	397,00	0,05	0,04950	0,00110	0,2249	0,0080	0,03262	0,00095	0,7269	207,1	6,0	204,80	6,60	165,00	47,00
134	847,00	1.128,00	1,33	0,06690	0,00540	0,3100	0,0290	0,03260	0,00110	0,5806	202,5	6,9	263,00	21,00	600,00	140,00
104	2.060,00	2.595,00	1,26	0,04570	0,00290	0,2110	0,0150	0,03269	0,00085	0,2962	208,5	5,4	193,00	12,00	10,00	110,00
AMC-0162- 178	3.680,00	2.760,00	0,75	0,05180	0,00180	0,2310	0,0110	0,03270	0,00100	0,6161	207,0	6,3	210,60	9,10	248,00	71,00
AMC-0162- 24	1.304,00	2.050,00	1,57	0,06510	0,00480	0,2950	0,0250	0,03274	0,00098	0,4164	203,9	6,2	259,00	20,00	710,00	150,00
AMC-0162- 23	1.225,00	2.100,00	1,71	0,05710	0,00500	0,2520	0,0240	0,03270	0,00110	0,5377	205,7	7,0	217,00	18,00	380,00	140,00
AMC-0162-	7.220,00	7.480,00	1,04	0,05090	0,00140	0,2206	0,0080	0,03285	0,00098	0,6466	208,2	6,2	201,30	6,60	216,00	57,00
AMC-0162-	3.440,00	4.910,00	1,43	0,05040	0,00190	0,2290	0,0100	0,03293	0,00080	0,4571	208,8	5,0	207,50	8,20	211,00	72,00
AMC-0162-	8.580.00	10.280.00	1.20	0.04950	0.00110	0.2301	0.0084	0.03300	0.00110	0.8035	209.5	6.9	210.70	6.90	176.00	45.00
85 AMC-0162-	8 900 00	6 560 00	0.74	0.04940	0.00130	0.2260	0.0093	0.03300	0.00100	0 7403	209.5	63	205.40	7 70	158.00	53.00
105 AMC-0162-	1 704 00	1 100 00	0.67	0.04900	0.00210	0.2270	0.0120	0.03300	0.00110	0,6039	200,6	6.0	206.00	10.00	163.00	81.00
43 AMC-0162-	1.734,00		0,07	0,04300	0,00210	0,2270	0,0120	0,00000	0,00110	0,0030	203,0	0,9	200,00	10,00	100,00	01,00
176	2.640,00	299,00	0,11	0,05070	0,00250	0,2290	0,0120	0,03313	0,00065	0,3920	210,0	4,1	210,20	9,90	196,00	91,00
AMC-0162-9 AMC-0162-	6.510,00	13.360,00	2,05	0,04960	0,00120	0,2240	0,0078	0,03320	0,00100	0,7082	210,7	6,3	205,30	6,50	170,00	49,00
51 AMC-0162-	1.735,00	1.700,00	0,98	0,05340	0,00260	0,2390	0,0130	0,03335	0,00089	0,3499	210,7	5,6	217,00	10,00	317,00	95,00
19	8.320,00	12.230,00	1,47	0,05180	0,00140	0,2341	0,0090	0,03330	0,00110	0,7419	210,8	6,9	212,20	7,30	279,00	56,00
17 17	5.180,00	2.240,00	0,43	0,05140	0,00170	0,2310	0,0120	0,03340	0,00150	0,7608	211,5	9,4	208,60	9,60	234,00	65,00
AMC-0162- 40	8.090,00	8.560,00	1,06	0,04960	0,00110	0,2257	0,0087	0,03340	0,00120	0,7672	212,0	7,5	206,00	7,10	176,00	47,00
AMC-0162- 52	3.370,00	8.300,00	2,46	0,04940	0,00190	0,2230	0,0110	0,03351	0,00096	0,4708	212,7	6,1	203,80	9,10	170,00	74,00
AMC-0162- 90	6.590,00	6.800,00	1,03	0,05170	0,00160	0,2350	0,0100	0,03350	0,00110	0,6478	212,1	6,9	213,60	8,50	260,00	61,00
AMC-0162-	6.540,00	6.390,00	0,98	0,04880	0,00150	0,2205	0,0091	0,03340	0,00130	0,6258	212,2	8,2	201,70	7,60	149,00	60,00
AMC-0162-	2.020,00	2.350,00	1,16	0,08130	0,00810	0,4600	0,0740	0,03370	0,00170	0,9854	205,5	10,5	321,00	36,00	900,00	170,00
AMC-0162-	6.910,00	4.170,00	0,60	0,05340	0,00140	0,2540	0,0140	0,03370	0,00150	0,8718	212,9	9,4	228,00	11,00	325,00	57,00
AMC-0162-	6.980,00	1.226,00	0,18	0,05160	0,00120	0,2250	0,0100	0,03370	0,00150	0,7493	213,3	9,4	204,50	8,00	255,00	48,00
AMC-0162-	4.410.00	3.440.00	0.78	0.04950	0.00140	0.2208	0.0092	0.03380	0.00120	0.5424	214.5	7.5	201.10	7.50	167.00	58.00
AMC-0162-	3.040.00	5.600.00	1.84	0.04980	0.00170	0.2280	0.0100	0.03370	0.00130	0.5757	213.8	8.2	207.60	8.50	192.00	64.00
59 AMC-0162-	3 940 00	534.00	0.14	0.05070	0.00160	0.2270	0.0100	0.03400	0.00120	0.6234	215.5	7.5	206.10	8 50	223.00	65.00
168 AMC-0162-	2 590 00	1 500 00	0,14	0.04870	0.00170	0.0176	0.0007	0.03400	0.00120	0.5077	216,0	6.0	100.10	8 10	122.0,00	67.00
145 AMC-0162-	4.000.00	705.00	0,44	0,04070	0,00170	0,2170	0,0007	0,00440	0,00100	0,5277	015.5	0,5	000.00	10,10	010.00	70.00
70 AMC-0162-	4.360,00	735,00	0,17	0,05280	0,00200	0,2710	0,0280	0,03410	0,00190	0,9530	215,5	11,9	228,00	0.70	310,00	70,00
107 AMC-0162-	16.610,00	2.422,00	0,15	0,05500	0,00120	0,2680	0,0120	0,03420	0,00110	0,8736	215,6	6,9	241,00	9,70	406,00	50,00
182 AMC-0162-	3.650,00	209,00	0,06	0,04990	0,00180	0,2352	0,0096	0,03414	0,00058	0,3850	216,6	3,7	213,70	7,80	177,00	72,00
95	3.710,00	4.830,00	1,30	0,04880	0,00210	0,2300	0,0120	0,03410	0,00110	0,4826	216,6	6,9	208,20	9,80	142,00	81,00
115	2.970,00	6.720,00	2,26	0,09800	0,01100	0,5500	0,0860	0,03450	0,00150	0,8501	205,8	9,3	392,00	46,00	1.130,00	190,00
109	11.820,00	3.175,00	0,27	0,05120	0,00110	0,2470	0,0110	0,03450	0,00130	0,8265	218,5	8,1	225,20	8,80	241,00	48,00
AMC-0162- 82	4.420,00	5.270,00	1,19	0,05270	0,00200	0,2490	0,0130	0,03470	0,00100	0,5134	219,3	6,3	226,00	10,00	272,00	74,00
AMC-0162- 166	852,00	1.211,00	1,42	0,05090	0,00350	0,2420	0,0170	0,03500	0,00067	0,1985	221,7	4,3	216,00	14,00	220,00	130,00
AMC-0162-4	5.005,00	1.139,00	0,23	0,05230	0,00110	0,2580	0,0120	0,03540	0,00140	0,8742	223,8	8,8	231,70	9,60	298,00	47,00
AMC-0162-8	2.370,00	3.110,00	1,31	0,06550	0,00330	0,3210	0,0220	0,03560	0,00110	0,7375	221,4	6,8	277,00	16,00	700,00	100,00
AMC-0162- 38	8.290,00	5.500,00	0,66	0,05010	0,00130	0,2476	0,0075	0,03654	0,00088	0,6359	231,5	5,5	224,80	6,10	196,00	51,00
AMC-0162- 130	4.920,00	1.198,00	0,24	0,05190	0,00110	0,2631	0,0078	0,03657	0,00088	0,6631	231,2	5,5	236,20	6,30	270,00	47,00
AMC-0162- 136	4.640,00	1.767,00	0,38	0,05060	0,00120	0,2509	0,0086	0,03670	0,00100	0,6521	232,4	6,3	227,20	7,00	215,00	49,00
AMC-0162-	569,00	79,40	0,14	0,05970	0,00450	0,3060	0,0270	0,03780	0,00130	0,3170	236,6	8,2	265,00	20,00	510,00	150,00
AMC-0162-	918,00	113,70	0,12	0,05160	0,00280	0,2740	0,0170	0,03930	0,00110	0,4197	248,4	6,9	244,00	13,00	200,00	100,00
AMC-0162-	2.611,00	379,00	0,15	0,15040	0,00630	0,8270	0,0360	0,03962	0,00078	0,4458	219,8	4,7	609,00	20,00	2.338,00	73,00
AMC-0162-	2.350,00	588,00	0,25	0,05070	0,00230	0,2810	0,0200	0,03990	0,00200	0,7173	252,4	12,5	246,00	15,00	225,00	87,00
AMC-0162-	959.00	32.10	0.03	0.05140	0.00390	0.3060	0.0270	0.04270	0.00200	0.4549	269.6	12.5	262.00	20.00	230.00	130.00
92 AMC-0162-	6.590.00	1,921.00	0.29	0.05180	0.00130	0.3040	0.0190	0.04340	0.00260	0.9003	273.9	16.2	264.00	14.00	266.00	53.00
29 AMC-0162-	6 150 00	2 502 00	0.42	0.05222	0.00000	0.3150	0.0220	0.0/3/0	0.00280	0.9577	279.7	17.4	275.00	17.00	288.00	39.00
137 AMC-0162-	260.00	11.00	0.04	0.06200	0.00600	0.4000	0.0410	0.04440	0.00110	0.0060	076.0	7.4	392.00	29.00	590.00	190.00
138 AMC-0162-	440.00	00.00	0,04	0,00300	0,00020	0.05.40	0.0010	0.04440	0.00110	0,0300	210,2	7,1	200,00	20,00	340.00	140.00
139 AMC-0162-	440,00	93,60	0,21	0,05500	0,00460	0,3540	0,0340	0,04600	0,00150	0,2762	288,9	9,4	303,00	24,00	340,00	140,00
79 AMC-0162-	8.600,00	4.250,00	0,49	0,05269	0,00098	0,3500	0,0240	0,04730	0,00290	0,9576	297,8	18,0	304,00	18,00	307,00	41,00
181 AMC-0162	7.320,00	3.989,00	0,54	0,05280	0,00110	0,3860	0,0200	0,05380	0,00270	0,8922	338,0	16,7	329,00	15,00	313,00	44,00
140	416,00	177,50	0,43	0,05070	0,00370	0,3630	0,0300	0,05370	0,00170	0,2634	338,2	10,6	312,00	22,00	180,00	130,00

Punto	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	206Pb/238U	±2σ	Correlación de errores	Edad ²⁰⁶ Pb/ ²³⁸ U (Ma)	±2σ	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	±2σ	Edad 207Pb/206Pb (Ma)	±2σ
AMC-0162- 53	2.490,00	1.087,00	0,44	0,05380	0,00140	0,4030	0,0190	0,05540	0,00230	0,7738	347,4	14,2	341,00	14,00	341,00	54,00
AMC-0162- 63	6.280,00	3.517,00	0,56	0,05396	0,00095	0,4110	0,0210	0,05580	0,00270	0,9267	349,8	16,6	345,00	15,00	356,00	38,00
AMC-0162- 27	8.010,00	4.122,00	0,51	0,05470	0,00120	0,4170	0,0240	0,05660	0,00300	0,9189	354,4	18,5	350,00	17,00	374,00	48,00
AMC-0162- 108	16.940,00	12.790,00	0,76	0,05418	0,00091	0,4330	0,0240	0,05740	0,00310	0,9465	359,6	19,1	362,00	17,00	363,00	37,00
AMC-0162- 28	6.340,00	3.390,00	0,53	0,05520	0,00110	0,4570	0,0280	0,06020	0,00340	0,9222	376,4	20,9	374,00	19,00	406,00	46,00
AMC-0162-	2.220,00	1.237,00	0,56	0,05400	0,00150	0,4470	0,0190	0,06070	0,00230	0,7266	380,0	14,2	370,00	13,00	341,00	56,00
AMC-0162-	6.560,00	3.165,00	0,48	0,05460	0,00110	0,4660	0,0250	0,06070	0,00300	0,8963	379,7	18,4	383,00	17,00	391,00	43,00
AMC-0162-	6.300,00	3.460,00	0,55	0,05430	0,00100	0,4670	0,0240	0,06080	0,00290	0,8964	380,5	17,8	388,00	17,00	380,00	42,00
AMC-0162-	5.610,00	4.350,00	0,78	0,05510	0,00110	0,4550	0,0200	0,06170	0,00260	0,8693	385,6	16,0	381,00	14,00	401,00	46,00
AMC-0162-	4.830,00	3.886,00	0,80	0,05400	0,00120	0,4620	0,0210	0,06330	0,00270	0,8736	395,9	16,6	384,00	14,00	356,00	48,00
AMC-0162-	3.680,00	2.240,00	0,61	0,05420	0,00110	0,4910	0,0250	0,06460	0,00290	0,8737	403,8	17,8	407,00	17,00	361,00	46,00
AMC-0162-	3.160,00	1.660,00	0,53	0,05790	0,00130	0,5100	0,0190	0,06490	0,00200	0,7611	403,8	12,2	416,00	13,00	499,00	49,00
AMC-0162-	5.340,00	4.429,00	0,83	0,05670	0,00100	0,5120	0,0210	0,06490	0,00230	0,8714	404,4	14,1	415,00	14,00	463,00	41,00
AMC-0162-	3.910,00	4.320,00	1,10	0,05610	0,00110	0,5210	0,0190	0,06750	0,00220	0,7771	420,6	13,5	425,00	12,00	458,00	45,00
AMC-0162-	2.208,00	2.236,00	1,01	0,05460	0,00160	0,5270	0,0200	0,07010	0,00200	0,6133	437,3	12,3	428,00	13,00	367,00	64,00
AMC-0162-	5.910,00	4.331,00	0,73	0,05478	0,00099	0,5420	0,0210	0,07060	0,00230	0,8596	440,3	14,1	442,00	14,00	403,00	41,00
93 AMC-0162-	2.059,00	2.394,00	1,16	0,05470	0,00160	0,5260	0,0210	0,07100	0,00210	0,6751	442,7	12,9	429,00	14,00	388,00	59,00
AMC-0162-	5.300.00	5.050.00	0.95	0.05650	0.00110	0.5660	0.0190	0.07090	0.00200	0.7691	441.2	12.2	452.00	12.00	456.00	45.00
AMC-0162-	6.270,00	5.410,00	0,86	0,05520	0,00120	0,5440	0,0170	0,07150	0,00200	0,7568	445,5	12,2	445,00	12,00	405,00	47,00
191 AMC-0162-	1.668.00	1.742.00	1.04	0.05660	0.00160	0.5530	0.0220	0.07260	0.00250	0.6468	451.5	15.2	447.00	15.00	456.00	61.00
15 AMC-0162-	3.089.00	2.610.00	0.84	0.05640	0.00120	0.5670	0.0180	0.07280	0.00190	0.7369	452.8	11.6	455.00	12.00	465.00	47.00
48 AMC-0162-	3 616 00	2 551 00	0.71	0.05630	0.00120	0.5610	0.0180	0.07270	0.00210	0.7869	452.2	12.8	455.00	12.00	458.00	47.00
11 AMC-0162-3	4.150.00	2.564.00	0.62	0.05740	0.00100	0.5730	0.0210	0.07320	0.00260	0.8829	454.7	15.8	459.00	13.00	493.00	38.00
AMC-0162-	4.233.00	3.060.00	0.72	0.05580	0.00120	0.5660	0.0200	0.07370	0.00220	0.7869	458.6	13.4	457.00	13.00	435.00	47.00
31 AMC-0162-	3.940.00	710.00	0.18	0.06340	0.00160	0.7570	0.0830	0.08350	0.00800	0.9682	513.4	48.1	536.00	46.00	694.00	53.00
AMC-0162-	2.190.00	1.070.00	0.49	0.07440	0.00170	0.9810	0.0490	0.09490	0.00400	0.8602	574.0	23.6	683.00	26.00	1.048.00	46.00
66 AMC-0162-	1.470.00	802.00	0.55	0.06530	0.00240	0.8890	0.0660	0.09550	0.00530	0.8178	584.0	31.6	627.00	36.00	783.00	77.00
120 AMC-0162-	3,290.00	3.040.00	0.92	0.06900	0.00230	1.0000	0.1200	0.09600	0.01000	0.9714	584.3	59.3	660.00	61.00	841.00	72.00
67 AMC-0162-	4.678.00	1.967.00	0.42	0.07880	0.00140	1.0780	0.0440	0.09880	0.00300	0.8859	593.8	17.6	737.00	22.00	1.159.00	35.00
152 AMC-0162-	34.60	0.38	0.01	0.06600	0.03200	0.7200	0.3500	0.10330	0.00650	0.1119	629.8	45.5	810.00	140.00	-950.00	600.00
94 AMC-0162-	2 320 00	453.00	0.20	0.06300	0.00170	0.9550	0.0910	0.10680	0.00910	0.9463	652.9	54.1	636.00	48.00	682.00	55.00
144 AMC-0162-2	1.040.00	407.00	0.39	0.06590	0.00190	1.0080	0.0630	0.11230	0.00550	0.8325	683.2	32.5	691.00	32.00	782.00	60.00
AMC-0162-	5.500,00	2.650,00	0,48	0,06450	0,00210	1,2500	0,1500	0,12100	0,01300	0,9760	735,7	76,7	709,00	68,00	728,00	71,00
AMC-0162-	2.300.00	959.00	0.42	0.06700	0.00160	1.2150	0.0920	0.12720	0.00890	0.9552	770.0	52.2	753.00	48.00	809.00	50.00
41 AMC-0162-	752.00	275.00	0.37	0.06810	0.00200	1.2030	0.0700	0.13230	0.00570	0.8540	798.8	33.4	827.00	31.00	849.00	64.00
148 AMC-0162-	1.990.00	286.00	0.14	0.09510	0.00420	2.5300	0.3500	0.16800	0.02100	0.9844	974.9	117.7	1.080.00	110.00	1.488.00	89.00
69 AMC-0162-	500.00	387.00	0,77	0,12360	0,00620	3,0400	0,2500	0,16380	0,00790	0,8386	919.1	43.4	1.359.00	67,00	1.955.00	92,00
116 AMC-0162-	3,370.00	4,180.00	1.24	0.07230	0.00130	1.6210	0.0740	0.16280	0.00700	0.9090	971.4	40.3	974.00	28.00	988.00	38.00
13 AMC-0162-	718.00	317.00	0.44	0.07570	0.00190	1,9450	0.0710	0.18850	0.00580	0.6835	1.114.5	33.1	1.094.00	25.00	1.069.00	51.00
72 AMC-0162-	1.002.00	349.00	0.35	0.08490	0.00170	2,4800	0.1600	0.20500	0.01200	0.9434	1.195.7	67.5	1.264.00	48.00	1.317.00	41.00
132 AMC-0162-	1 718 00	1 940 00	1 13	0.08400	0.00150	2 4860	0.0770	0.21470	0.00570	0.7674	1 251 5	32.1	1 262 00	22.00	1 282 00	36.00
184 AMC-0162-	2 600 00	1 920 00	0.74	0.00900	0.00310	3 2700	0.2700	0.22600	0.01700	0.9731	1 202 5	93.8	1 311 00	89.00	1 562 00	70.00
32			0,74	0,00000	0,00010	0,2700	0,2700	0,22000	0,01700	0,0701	02,0	00,0		55,00		,

Anexo 1.5. Resultados isotópicos U-Pb en circón de la muestra GZ-6831

Punto	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Correlación de errores	Edad 206Pb/238U (Ma)	±2σ	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	±2σ	Edad 207Pb/206Pb (Ma)	±2σ
GZ-6831-37	1.180,00	728,00	0,62	0,05070	0,00110	0,1931	0,0043	0,02842	0,00024	0,3138	180,43	5,07	179,50	3,70	212,00	45,00
GZ-6831-42	578,00	407,00	0,70	0,05110	0,00160	0,2024	0,0064	0,02948	0,00028	0,1561	187,00	5,33	187,90	5,40	229,00	63,00
GZ-6831-33	389,00	455,00	1,17	0,05100	0,00220	0,2024	0,0089	0,02952	0,00032	0,1298	187,27	5,40	186,40	7,40	231,00	84,00
GZ-6831-43	617,00	564,00	0,91	0,05100	0,00170	0,1995	0,0065	0,02949	0,00028	0,1909	187,08	5,27	186,30	5,50	228,00	67,00
GZ-6831-34	715,00	1.374,00	1,92	0,05370	0,00140	0,2101	0,0052	0,02954	0,00024	0,1503	186,77	5,19	193,50	4,40	344,00	55,00
GZ-6831-45	440,00	261,00	0,59	0,05340	0,00210	0,2127	0,0084	0,02981	0,00028	0,1300	188,53	5,34	197,00	6,90	307,00	80,00
GZ-6831-41	373,00	296,80	0,80	0,05160	0,00210	0,2080	0,0083	0,02994	0,00031	0,1079	189,77	5,46	191,80	6,90	251,00	82,00
GZ-6831-5	843,00	435,00	0,52	0,05150	0,00150	0,2146	0,0064	0,03003	0,00032	0,3519	190,36	5,45	197,30	5,40	260,00	60,00
GZ-6831-14	1.173,00	2.880,00	2,46	0,06150	0,00380	0,2490	0,0150	0,03008	0,00039	0,0511	188,30	5,67	223,00	12,00	520,00	110,00
GZ-6831-2	637,00	633,10	0,99	0,05130	0,00180	0,2163	0,0076	0,03023	0,00032	0,1410	191,66	5,52	197,90	6,30	235,00	71,00
GZ-6831-31	435,00	419,00	0,96	0,05520	0,00320	0,2250	0,0150	0,03024	0,00034	0,6274	190,80	5,60	198,00	10,00	282,00	88,00
GZ-6831-9	790,00	1.310,00	1,66	0,05040	0,00170	0,2093	0,0073	0,03028	0,00029	0,1347	192,19	5,45	193,50	6,00	220,00	69,00
GZ-6831-18	880,00	1.085,00	1,23	0,05180	0,00170	0,2151	0,0077	0,03029	0,00034	0,3627	191,92	5,57	196,80	6,40	281,00	67,00
GZ-6831-26	474,00	497,00	1,05	0,05010	0,00190	0,2056	0,0079	0,03034	0,00031	0,1208	192,64	5,52	189,80	6,70	212,00	77,00
GZ-6831-39	129,30	176,50	1,37	0,04700	0,00320	0,1930	0,0120	0,03036	0,00048	0,0142	193,51	6,00	176,00	11,00	50,00	110,00
GZ-6831-36	408,00	363,00	0,89	0,05070	0,00200	0,2066	0,0086	0,03042	0,00029	0,2029	193,00	5,46	191,70	7,10	228,00	80,00
GZ-6831-32	722,00	1.350,00	1,87	0,05350	0,00160	0,2165	0,0066	0,03046	0,00026	0,4188	192,58	5,39	199,30	5,50	328,00	61,00
GZ-6831-21	459,00	374,00	0,81	0,04770	0,00210	0,1975	0,0085	0,03050	0,00033	0,0373	194,22	5,60	182,50	7,10	96,00	83,00
GZ-6831-44	426,00	661,00	1,55	0,05210	0,00210	0,2085	0,0080	0,03050	0,00037	0,1244	193,17	5,64	191,80	6,80	266,00	79,00
GZ-6831-8	325,10	313,60	0,96	0,05090	0,00230	0,2150	0,0096	0,03057	0,00036	0,0867	193,89	5,65	196,20	8,00	241,00	89,00
GZ-6831-16	738,00	823,00	1,12	0,05430	0,00230	0,2240	0,0100	0,03065	0,00035	0,1793	193,58	5,64	204,30	8,40	365,00	88,00
GZ-6831-46	436,00	315,00	0,72	0,05460	0,00210	0,2285	0,0090	0,03068	0,00037	0,1713	193,69	5,70	208,90	7,40	397,00	80,00
GZ-6831-13	429,00	404,00	0,94	0,05150	0,00310	0,2110	0,0120	0,03070	0,00045	0,1000	194,56	5,92	194,00	10,00	230,00	110,00
GZ-6831-29	631,00	807,00	1,28	0,05130	0,00150	0,2125	0,0061	0,03071	0,00027	0,2003	194,68	5,45	195,50	5,00	242,00	60,00
GZ-6831-10	576,00	517,00	0,90	0,05590	0,00220	0,2337	0,0090	0,03072	0,00032	0,1243	193,63	5,58	212,50	7,50	395,00	80,00
GZ-6831-24	348,00	299,00	0,86	0,05200	0,00240	0,2160	0,0100	0,03074	0,00037	0,1197	194,69	5,72	197,70	8,30	280,00	92,00
GZ-6831-19	672,00	388,00	0,58	0,05400	0,00190	0,2249	0,0078	0,03081	0,00037	0,0975	194,65	5,70	205,00	6,40	349,00	69,00
GZ-6831-6	310,00	198,80	0,64	0,04880	0,00230	0,2047	0,0096	0,03092	0,00038	0,2111	196,60	5,79	188,20	8,00	133,00	89,00
GZ-6831-35	456,00	907,00	1,99	0,05880	0,00210	0,2440	0,0092	0,03096	0,00035	0,3187	194,42	5,69	220,40	7,50	530,00	73,00
GZ-6831-7	248,00	142,80	0,58	0,04790	0,00280	0,2000	0,0120	0,03103	0,00041	0,1207	197,51	5,92	182,80	9,90	90,00	110,00
GZ-6831-11	639,00	549,00	0,86	0,05520	0,00250	0,2350	0,0110	0,03103	0,00035	0,1687	195,73	5,71	212,70	8,80	400,00	92,00
GZ-6831-40	258,00	217,00	0,84	0,05080	0,00250	0,2103	0,0098	0,03107	0,00043	0,0428	197,06	5,90	193,90	8,30	248,00	97,00
GZ-6831-15	771,00	944,00	1,22	0,05320	0,00200	0,2235	0,0083	0,03119	0,00028	0,0757	197,22	5,58	204,20	6,90	294,00	76,00
GZ-6831-22	481,00	542,00	1,13	0,05100	0,00220	0,2151	0,0090	0,03121	0,00035	0,1157	197,89	5,71	197,10	7,40	230,00	82,00
GZ-6831-27	2.970,00	1.1730,00	3,95	0,05464	0,00091	0,2281	0,0049	0,03139	0,00035	0,6730	198,12	5,75	208,40	4,10	398,00	37,00
GZ-6831-1	459,00	473,00	1,03	0,05230	0,00220	0,2287	0,0097	0,03144	0,00036	0,1746	199,01	5,77	208,50	8,20	286,00	87,00
GZ-6831-23	255,00	172,10	0,67	0,05220	0,00310	0,2240	0,0130	0,03151	0,00044	0,1367	199,47	6,04	203,00	11,00	270,00	110,00
GZ-6831-4	410,00	559,00	1,36	0,06510	0,00300	0,2930	0,0160	0,03159	0,00057	0,4727	196,77	6,37	259,00	12,00	789,00	98,00
GZ-6831-17	510,00	591,00	1,16	0,05340	0,00260	0,2260	0,0110	0,03158	0,00038	0,0655	199,61	5,91	206,50	8,80	327,00	94,00
GZ-6831-3	184,00	198,00	1,08	0,04670	0,00440	0,2000	0,0190	0,03159	0,00059	0,1011	201,34	6,48	193,00	15,00	100,00	150,00
GZ-6831-25	534,00	459,00	0,86	0,04960	0,00190	0,2122	0,0083	0,03172	0,00036	0,1871	201,44	5,84	194,70	7,00	176,00	77,00
GZ-6831-12	301,00	259,70	0,86	0,05910	0,00390	0,2490	0,0160	0,03202	0,00047	0,1230	200,93	6,18	231,00	13,00	510,00	130,00
GZ-6831-20	588,00	546,00	0,93	0,04930	0,00190	0,2255	0,0094	0,03467	0,00051	0,2843	220,05	6,40	207,80	7,80	167,00	76,00
GZ-6831-38	457,00	51,70	0,11	0,05240	0,00140	0,3028	0,0080	0,04254	0,00053	0,3189	268,30	7,63	267,70	6,20	292,00	54,00
GZ-6831-30	383,00	360,00	0,94	0,05270	0,00180	0,3200	0,0120	0,04568	0,00073	0,4443	287,72	8,86	282,60	9,60	285,00	69,00
GZ-6831-28	562,00	253,00	0,45	0,07050	0,00120	1,4280	0,0270	0,15090	0,00120	0,2802	904,68	25,18	902,00	11,00	936,00	35,00

Anexo 1.6. Resultados isotópicos U-Pb en circón de la muestra MIA-636

Punto	U (ppm	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Correlación de errores	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ
Zircon-99	430	2.570	5,98	0,0722	0,0047	0,2310	0,0170	0,0221	0,0015	0,5588	0,0009	140,8	9,7	210,0	14,0	970,0	140,0
Zircon-071	178	132	0,74	0,0645	0,0073	0,3570	0,0350	0,0397	0,0010	0,0693	0,0007	250,8	6,1	315,0	25,0	690,0	200,0
Zircon-085	315	140	0,44	0,0876	0,0034	1,4510	0,0870	0,1199	0,0048	0,9021	0,0034	729	28,0	909,0	37,0	1.366,0	76,0
Zircon-075	164	230	1,40	0,0630	0,0064	0,2480	0,0220	0,0290	0,0008	0,0924	0,0006	184,1	5,1	223,0	18,0	690,0	210,0
Zircon-93	165	216	1,31	0,0630	0,0120	0,2940	0,0600	0,0348	0,0007	0,1009	0,0010	220,5	4,5	264,0	41,0	710,0	290,0
Zircon-079	22,6	20,3	0,90	0,0670	0,0120	0,2800	0,0480	0,0320	0,0019	0,0261	0,0014	205	12,0	242,0	38,0	710,0	380,0
Zircon-076	149	145	0,97	0,0548	0,0048	0,2550	0,0210	0,0324	0,0007	0,0183	0,0005	205,2	4,6	235,0	17,0	420,0	190,0
Zircon-082	526	458	0,87	0,0578	0,0034	0,2610	0,0160	0,0327	0,0005	0,0993	0,0005	207,2	3,0	235,0	12,0	490,0	120,0
Zircon-081	186	135	0,73	0,0566	0,0040	0,2510	0,0170	0,0316	0,0007	0,0490	0,0005	200,4	4,1	227,0	14,0	480,0	150,0
Zircon-95	258	530	2,05	0,0571	0,0052	0,2350	0,0220	0,0301	0,0006	0,1677	0,0004	191,3	3,6	213,0	17,0	480,0	160,0
Zircon-084	136	100	0,74	0,0510	0,0050	0,2600	0,1300	0,0360	0,0110	0,1207	0,0010	226	64,0	231,0	78,0	230,0	180,0
Zircon-102 MIA-636	730	48,9	0,07	0,0713	0,0026	1,5080	0,0590	0,1509	0,0023	0,3432	0,0020	906	13,0	933,0	25,0	962,0	72,0
Zircon-088	360	400	1,11	0,0511	0,0035	0,2210	0,0160	0,0311	0,0004	0,0291	0,0004	197,6	2,6	204,0	12,0	240,0	140,0
Zircon-94	916	755	0,82	0,0504	0,0022	0,2210	0,0100	0,0314	0,0003	0,1240	0,0004	199,1	1,8	202,8	8,7	200,0	100,0
Zircon-078	204	198	0,97	0,0520	0,0045	0,2270	0,0180	0,0315	0,0007	0,0607	0,0005	199,7	4,2	206,0	15,0	260,0	180,0
Zircon-090	176	159	0,90	0,0520	0,0038	0,2310	0,0180	0,0317	0,0007	0,2342	0,0005	201	4,3	212,0	14,0	300,0	140,0
Zircon-97	182	212	1,16	0,0524	0,0043	0,2290	0,0190	0,0317	0,0006	0,0388	0,0005	201,2	4,0	208,0	16,0	230,0	170,0
Zircon-98	168	188	1,12	0,0524	0,0039	0,2340	0,0240	0,0318	0,0018	0,1633	0,0005	202	11,0	212,0	19,0	270,0	160,0
Zircon-100	45,6	47,1	1,03	0,0537	0,0060	0,2390	0,0270	0,0319	0,0011	0,0948	0,0007	202,1	6,8	215,0	22,0	290,0	240,0
Zircon-101	171	126	0,74	0,0480	0,0042	0,2130	0,0180	0,0320	0,0007	0,0554	0,0006	202,8	4,5	195,0	15,0	60,0	180,0
Zircon-069	103	96	0,93	0,0531	0,0053	0,2370	0,0200	0,0320	0,0008	0,0793	0,0006	202,9	4,7	215,0	17,0	310,0	180,0
Zircon-92	854	379	0,44	0,0521	0,0025	0,2310	0,0110	0,0322	0,0004	0,0594	0,0005	204,1	2,6	211,0	9,2	270,0	110,0
Zircon-072	781	682	0,87	0,0514	0,0023	0,2320	0,0110	0,0324	0,0005	0,0034	0,0004	205,3	3,1	211,2	9,4	240,0	100,0
Zircon-96	1.550	1.360	0,88	0,0501	0,0023	0,2260	0,0120	0,0325	0,0010	0,0550	0,0006	206	6,2	207,0	10,0	190,0	100,0
Zircon-089	359	326	0,91	0,0484	0,0028	0,2220	0,0140	0,0327	0,0005	0,1441	0,0005	207,3	2,9	203,0	11,0	120,0	130,0
Zircon-083	98	132	1,35	0,0506	0,0054	0,2330	0,0250	0,0329	0,0011	0,1120	0,0006	208,9	6,6	210,0	20,0	200,0	220,0
Zircon-070	465	424	0,91	0,0498	0,0034	0,2240	0,0150	0,0329	0,0007	0,0479	0,0004	208,9	4,1	205,0	12,0	160,0	140,0
Zircon-068 MIA-636	104	87	0,84	0,0486	0,0055	0,2300	0,0240	0,0332	0,0011	0,0592	0,0007	210,3	6,6	208,0	20,0	130,0	220,0
Zircon-091	214	205	0,96	0,0528	0,0039	0,2430	0,0180	0,0337	0,0006	0,3887	0,0005	213,5	4,0	220,0	15,0	280,0	160,0
Zircon-080	58,6	56,1	0,96	0,0515	0,0062	0,2380	0,0280	0,0337	0,0010	0,1111	0,0008	213,8	6,4	214,0	23,0	210,0	240,0
Zircon-074	590	409	0,69	0,0528	0,0028	0,2480	0,0160	0,0339	0,0008	0,0781	0,0006	214,8	5,0	225,0	13,0	330,0	120,0
Zircon-087	1.000	609	0,61	0,0493	0,0022	0,2310	0,0110	0,0339	0,0003	0,0978	0,0004	215,1	1,9	210,6	9,0	150,0	100,0
Zircon-077	302	313	1,04	0,0490	0,0029	0,2370	0,0150	0,0345	0,0005	0,0205	0,0005	219,4	2,9	216,0	12,0	150,0	120,0
Zircon-073	464	109	0,23	0,0665	0,0027	0,8490	0,0390	0,0927	0,0010	0,3952	0,0018	571,7	6,0	623,0	21,0	833,0	83,0
Zircon-086	151	80,3	0,53	0,0849	0,0032	2,6500	0,1200	0,2253	0,0048	0,7164	0,0029	1.309	25,0	1.314,0	34,0	1.316,0	76,0

Anexo 1.7. Resultados isotópicos U-Pb en circón de la muestra AMC-0144

Punto	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Correlación de errores	²⁰⁸ Pb/ ²³² Th	±2σ	206Pb/238U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ
Zircon-007	680	570	0,84	0,1143	0,0092	0,3370	0,0460	0,0228	0,0016	0,43	0,0084	0,0010	146,0	10,0	290,0	30,0	1810,0	130,0
Zircon-009	293	266	0,91	0,0744	0,0054	0,2970	0,0200	0,0301	0,0006	-0,14	0,0105	0,0005	191,1	3,6	263,0	15,0	1040,0	130,0
Zircon-011	360	350	0,97	0,1370	0,0110	0,6720	0,0620	0,0358	0,0015	0,42	0,0175	0,0014	226,8	9,2	520,0	39,0	2170,0	130,0
Zircon-021	578	890	1,54	0,0472	0,0024	0,2110	0,0110	0,0324	0,0004	0,17	0,0098	0,0004	205,2	2,6	194,4	9,4	60,0	110,0
Zircon-022	188	155	0,82	0,0620	0,0043	0,2790	0,0190	0,0327	0,0006	-0,13	0,0113	0,0006	207,5	3,5	249,0	15,0	620,0	150,0
Zircon-034	392	332	0,85	0,0721	0,0078	0,3110	0,0390	0,0316	0,0006	-0,14	0,0118	0,0009	200,3	4,0	274,0	27,0	960,0	160,0
Zircon-002	610	28	0,05	0,0668	0,0091	0,3000	0,1700	0,0332	0,0096	0,42	0,0440	0,0420	210,0	58,0	270,0	100,0	800,0	200,0
Zircon-025	230	232	1,01	0,0638	0,0050	0,2820	0,0220	0,0318	0,0006	0,33	0,0109	0,0007	201,9	3,9	254,0	17,0	710,0	160,0
Zircon-001 AMC-	335	269	0,80	0,0498	0,0025	0,2120	0,0110	0,0314	0,0005	0,20	0,0100	0,0005	199,1	3,2	194,9	9,3	200,0	110,0
Zircon-008	274	268	0,98	0,0489	0,0033	0,2210	0,0150	0,0330	0,0006	0,15	0,0104	0,0005	209,0	4,0	204,0	12,0	140,0	140,0
Zircon-013	410	269	0,66	0,0501	0,0036	0,2070	0,0150	0,0299	0,0006	0,23	0,0088	0,0006	189,6	3,9	191,0	13,0	220,0	150,0
Zircon-014	295	286	0,97	0,0520	0,0029	0,2290	0,0120	0,0323	0,0006	0,08	0,0101	0,0005	205,0	3,7	209,0	10,0	270,0	120,0
Zircon-015	369	344	0,93	0,0494	0,0032	0,2140	0,0130	0,0318	0,0005	0,06	0,0101	0,0004	201,6	3,4	198,0	11,0	180,0	140,0
Zircon-016	326	575	1,76	0,0485	0,0033	0,2120	0,0140	0,0317	0,0006	0,03	0,0098	0,0004	201,1	3,7	195,0	12,0	140,0	150,0
Zircon-017	234	198	0,85	0,0498	0,0038	0,2290	0,0170	0,0327	0,0006	0,12	0,0104	0,0005	207,2	3,5	208,0	14,0	230,0	160,0
Zircon-019	1.700	1.300	0,76	0,0533	0,0061	0,2320	0,0300	0,0315	0,0009	0,01	0,0107	0,0006	199,7	5,5	211,0	24,0	270,0	200,0
Zircon-020	148	105,8	0,71	0,0504	0,0038	0,2300	0,0180	0,0328	0,0008	0,26	0,0106	0,0006	208,2	5,1	214,0	14,0	250,0	150,0
Zircon-023	368	302	0,82	0,0490	0,0027	0,2150	0,0120	0,0317	0,0004	0,01	0,0101	0,0004	201,0	2,8	197,7	9,7	150,0	110,0
Zircon-024	496	750	1,51	0,0524	0,0033	0,2270	0,0140	0,0310	0,0005	0,25	0,0097	0,0004	197,1	3,2	207,0	11,0	310,0	140,0
Zircon-026	530	539	1,02	0,0505	0,0027	0,2260	0,0120	0,0320	0,0005	0,02	0,0097	0,0004	202,9	3,3	208,0	10,0	230,0	120,0
Zircon-027	454	532	1,17	0,0483	0,0027	0,2130	0,0120	0,0317	0,0006	0,07	0,0098	0,0004	201,3	3,6	196,0	10,0	100,0	120,0
Zircon-028	312	233	0,75	0,0517	0,0034	0,2310	0,0150	0,0327	0,0005	0,02	0,0104	0,0005	207,3	3,2	210,0	12,0	240,0	140,0
Zircon-029	724	920	1,27	0,0503	0,0024	0,2170	0,0110	0,0313	0,0004	0,35	0,0096	0,0004	198,8	2,4	198,9	9,5	210,0	100,0
Zircon-030	401	406	1,01	0,0492	0,0033	0,2140	0,0130	0,0310	0,0007	0,20	0,0098	0,0004	196,7	4,4	197,0	11,0	170,0	130,0
Zircon-031	371	267	0,72	0,0498	0,0028	0,2140	0,0140	0,0315	0,0007	0,34	0,0101	0,0004	199,6	4,2	198,0	11,0	180,0	120,0
Zircon-032	388	274	0,71	0,0510	0,0029	0,2270	0,0130	0,0321	0,0006	0,06	0,0100	0,0005	203,8	3,6	209,0	11,0	240,0	120,0
Zircon-033	346	323	0,93	0,0517	0,0037	0,2260	0,0160	0,0313	0,0006	0,07	0,0101	0,0004	198,8	3,6	206,0	13,0	260,0	140,0
Zircon-035 AMC-	569	738	1,30	0,0508	0,0028	0,2270	0,0120	0,0329	0,0007	0,06	0,0102	0,0004	208,8	4,4	207,0	10,0	230,0	110,0
Zircon-018	510	320	0,63	0,0547	0,0031	0,5190	0,0320	0,0696	0,0011	0,10	0,0216	0,0011	435,0	6,7	423,0	22,0	380,0	140,0

Anexo 1.8. Resultados isotópicos U-Pb en circón de la muestra LMC-071

							_			Correlación	Edad 206Pb/238U	-	Edad 207Pb/235U	-	Edad	
Punto	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	206Pb/238U	±2σ	de errores	(Ma)	±2σ	(Ma)	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb (Ma)	±2σ
LMC-071-68	12.000,00	5.960,00	0,50	0,36430	0,00690	0,5470	0,0120	0,01101	0,00038	0,7460	42,43	3,49	440,30	7,30	3754,00	31,00
LMC-071-73	20.920,00	12.080,00	0,58	0,31400	0,00520	0,5510	0,0120	0,01265	0,00021	0,6128	53,90	3,49	444,60	7,50	3540,00	26,00
LMC-071-47	14.710,00	7.410,00	0,50	0,24980	0,00320	0,4635	0,0063	0,01366	0,00020	0,3128	65,27	3,43	386,40	4,40	3182,00	22,00
LMC-071-71	12.040.00	6.430.00	0.53	0.28230	0.00510	0.5290	0.0098	0.01371	0.00017	0.1000	61.92	3.55	431.30	6.80	3354.00	36.00
LMC-071-49	13 650 00	5 421 00	0.40	0.19610	0.00750	0.3750	0.0130	0.01303	0.00011	0.1000	72.58	3 33	321.90	0.60	2737.00	66.00
LWO-071-49	13.030,00	3.421,00	0,40	0,13010	0,007.00	0,3750	0,0100	0,01333	0,00011	0,1000	72,30	0,00	007.70	3,00	2737,00	50.00
LMC-071-11	9.100,00	4.470,00	0,49	0,23760	0,00740	0,4650	0,0120	0,01456	0,00017	0,1000	70,99	3,60	387,70	8,70	3085,00	53,00
LMC-071-41	10.270,00	4.040,00	0,39	0,19210	0,00640	0,3870	0,0120	0,01474	0,00022	0,1000	77,26	3,60	332,00	8,40	2742,00	58,00
LMC-071-24	12.010,00	5.980,00	0,50	0,25050	0,00520	0,5086	0,0093	0,01514	0,00010	0,1000	72,27	3,75	417,00	6,30	3169,00	33,00
LMC-071-48	14.000,00	5.850,00	0,42	0,21180	0,00320	0,4376	0,0060	0,01518	0,00019	0,1000	77,16	3,63	368,80	4,30	2.913,00	26,00
LMC-071-28	7.730,00	2.990,00	0,39	0,24100	0,00760	0,4960	0,0180	0,01519	0,00019	0,0898	73,65	3,85	407,00	12,00	3.115,00	53,00
LMC-071-26	10.610,00	4.490,00	0,42	0,17970	0,00470	0,3610	0,0100	0,01523	0,00014	0,1000	81,34	3,57	314,20	7,50	2.615,00	49,00
LMC-071-50	9.280,00	3.380,00	0,36	0,12600	0,00310	0,2705	0,0077	0,01555	0,00016	0,4862	89,75	3,60	242,20	6,10	2.027,00	41,00
LMC-071-66	6.800,00	2.970,00	0,44	0,23000	0,00830	0,4910	0,0150	0,01569	0,00018	0,1000	77,45	3,93	404,00	11,00	3.004,00	67,00
LMC-071-10	13 640 00	6 010 00	0.44	0.23330	0.00420	0.5056	0.0085	0.01575	0.00024	0.2359	77.33	3.92	415 50	5 70	3 074 00	30.00
LMC-071-61	11 900 00	5 830 00	0.40	0.16310	0.00960	0.3470	0.0130	0.01574	0.00044	0,1000	96.15	4.43	303.00	10.00	2 420 00	100.00
LIVIC-071-01	11.900,00	5.830,00	0,49	0,10310	0,00900	0,3470	0,0130	0,01574	0,00044	0,1000	00,15	4,43	302,00	10,00	2.420,00	100,00
LMC-0/1-/2	10.120,00	4.760,00	0,47	0,26160	0,00640	0,5640	0,0120	0,01576	0,00024	0,1000	73,80	4,08	453,40	7,90	3.230,00	49,00
LMC-071-3	3.360,00	1.520,00	0,45	0,31650	0,00650	0,6990	0,0140	0,01608	0,00021	0,1895	68,20	4,35	538,20	8,20	3.558,00	33,00
LMC-071-38	6.750,00	3.190,00	0,47	0,13870	0,00630	0,3150	0,0140	0,01657	0,00022	0,0445	93,92	3,95	277,00	11,00	2.172,00	84,00
LMC-071-70	8.300,00	3.660,00	0,44	0,14080	0,00480	0,3270	0,0120	0,01682	0,00016	0,3058	95,05	3,90	287,90	8,90	2.215,00	64,00
LMC-071-63	9.420,00	4.020,00	0,43	0,11160	0,00230	0,2608	0,0045	0,01695	0,00024	0,1234	99,75	4,02	235,10	3,60	1.832,00	36,00
LMC-071-35	8.130,00	3.820,00	0,47	0,13040	0,00670	0,3060	0,0110	0,01717	0,00043	0,1000	98,45	4,64	269,50	8,30	2.007,00	92,00
LMC-071-39	8.440,00	3.660,00	0,43	0,13220	0,00270	0,3164	0,0052	0,01740	0,00013	0,1000	99,51	3,90	278,80	4,00	2.134,00	36,00
LMC-071-34	9.650.00	4.570.00	0.47	0.15440	0.00960	0.3560	0.0160	0.01791	0.00038	0.1000	99.24	4.68	305.00	12.00	2.170.00	120.00
LMC-071-29	9 350 00	3 720 00	0.40	0.09130	0.00400	0.2250	0.0110	0.01800	0.00017	0.3146	108.82	4 16	205 10	8 80	1 395 00	85.00
LMC 071 40	9 750 00	2 000 00	0.45	0.12410	0,00950	0,2200	0,0150	0,01920	0,00045	0,1000	105,52	4,10	263,10	12.00	1 750 00	120.00
LIVIC-071-40	8.750,00	3.900,00	0,45	0,12410	0,00850	0,2960	0,0150	0,01029	0,00045	0,1000	100,77	4,93	202,00	12,00	1.750,00	130,00
LMC-071-5	7.830,00	3.300,00	0,42	0,14470	0,00450	0,3592	0,0086	0,01835	0,00020	0,1000	103,09	4,25	310,60	6,50	2.261,00	56,00
LMC-071-4	7.890,00	3.380,00	0,43	0,16720	0,00420	0,4215	0,0074	0,01841	0,00039	0,1826	100,11	4,67	356,90	5,30	2.523,00	42,00
LMC-071-19	7.730,00	2.710,00	0,35	0,07500	0,00140	0,1861	0,0036	0,01848	0,00038	0,6148	114,11	4,76	173,00	3,10	1.051,00	39,00
LMC-071-69	8.470,00	4.390,00	0,52	0,09880	0,00380	0,2524	0,0067	0,01854	0,00025	0,1000	110,96	4,44	228,30	5,50	1.573,00	72,00
LMC-071-43	7.350,00	3.030,00	0,41	0,08160	0,00240	0,2194	0,0049	0,01876	0,00036	0,2020	114,84	4,75	202,00	4,00	1.233,00	59,00
LMC-071-8	6.390,00	2.520,00	0,39	0,09960	0,00160	0,2583	0,0048	0,01936	0,00024	0,3043	115,71	4,53	232,90	3,90	1.604,00	31,00
LMC-071-45	6.190,00	1.700,00	0,27	0,06730	0,00170	0,1828	0,0042	0,01969	0,00019	0,1513	122,75	4,62	170,20	3,60	844,00	51,00
LMC-071-44	7.010.00	2340.00	0.33	0.06660	0.00180	0.1839	0.0078	0.01978	0.00056	0.6439	123.42	5.66	168.10	5.60	783.00	49.00
LMC-071-33	7 760 00	3 030 00	0.39	0.09860	0.00630	0.2700	0.0150	0.01991	0.00054	0.0373	119.14	5.53	241.00	12.00	1 490 00	120.00
LMC 071 52	7 600 00	2 410 00	0,00	0,12200	0.01200	0,2090	0,0100	0,02010	0,00060	0,0070	117.04	5,50	267.00	16.00	1.500.00	120,00
LINIC-071-55	7.090,00	3.410,00	0,44	0,12200	0,01200	0,3080	0,0220	0,02019	0,00000	0,1000	117,04	5,95	207,00	10,00	1.590,00	180,00
LMC-071-14	11.450,00	4.800,00	0,42	0,13150	0,00580	0,3598	0,0081	0,02028	0,00092	0,3426	116,02	7,10	312,60	5,90	2.093,00	83,00
LMC-071-21	7.580,00	2.693,00	0,36	0,06560	0,00098	0,1795	0,0028	0,02028	0,00026	0,5487	126,68	4,86	167,70	2,50	793,00	31,00
LMC-071-25	7.850,00	2.530,00	0,32	0,06281	0,00085	0,1748	0,0030	0,02047	0,00021	0,5482	128,31	4,81	163,50	2,60	699,00	29,00
LMC-071-42	5.680,00	1.930,00	0,34	0,06170	0,00130	0,1765	0,0045	0,02090	0,00034	0,6325	131,18	5,19	164,20	3,70	633,00	41,00
LMC-071-20	8.770,00	3.690,00	0,42	0,07290	0,00290	0,2091	0,0067	0,02116	0,00026	0,1000	130,91	5,05	192,60	5,60	970,00	80,00
LMC-071-55	5.700,00	2.320,00	0,41	0,07400	0,00160	0,2185	0,0039	0,02148	0,00033	0,1889	132,69	5,21	200,40	3,30	1.036,00	45,00
LMC-071-7	6.800,00	2.560,00	0,38	0,08520	0,00270	0,2497	0,0073	0,02154	0,00023	0,1000	131,14	5,01	225,40	5,90	1.284,00	64,00
LMC-071-16	7.190.00	2.980.00	0.41	0.12800	0.01000	0.3460	0.0160	0.02157	0.00080	0.1000	123.96	6.79	299.00	12.00	1.840.00	130.00
LMC-071-2	6 620 00	3 080 00	0.47	0.08410	0.00310	0 2474	0.0073	0.02170	0.00031	0 1000	132.29	5 20	224.00	5.90	1 246 00	72 00
	0.020,00	0.000,00	0,47	0,00410	0,00010	0,2474	0,0070	0,02170	0,00001	0,1000	102,20	7.44	014.70	0,70	1.240,00	00.00
LIVIC-071-60	8.890,00	3.220,00	0,36	0,08180	0,00330	0,2353	0,0045	0,02188	0,00086	0,1000	133,79	7,41	214,70	3,70	1.215,00	83,00
LMC-071-37	5.010,00	2.061,00	0,41	0,05990	0,00150	0,1833	0,0066	0,02232	0,00064	0,5819	140,35	6,31	170,40	5,60	583,00	55,00
LMC-071-56	6.620,00	2.010,00	0,30	0,06020	0,00120	0,1828	0,0066	0,02248	0,00071	0,6294	141,29	6,93	168,90	5,40	594,00	42,00
LMC-071-57	9.400,00	3.740,00	0,40	0,10210	0,00870	0,2950	0,0150	0,02250	0,00110	0,1000	133,92	7,98	262,00	11,00	1.470,00	150,00
LMC-071-51	6.430,00	2.710,00	0,42	0,06600	0,00110	0,2021	0,0041	0,02264	0,00055	0,6918	141,25	6,09	186,60	3,40	793,00	36,00
LMC-071-54	6.810,00	2.400,00	0,35	0,09210	0,00770	0,2590	0,0120	0,02266	0,00093	0,1000	136,67	7,46	233,50	9,30	1.270,00	150,00
LMC-071-23	8.390,00	3.670,00	0,44	0,12300	0,00520	0,3430	0,0130	0,02267	0,00068	0,2297	131,15	6,68	300,00	10,00	1.952,00	83,00
LMC-071-12	9.830,00	3.510,00	0,36	0,05831	0,00099	0,1773	0,0039	0,02268	0,00037	0,7927	142,88	5,64	165,60	3,30	530,00	37,00
LMC-071-46	7.620.00	3.260.00	0.43	0,09610	0,00560	0,2770	0.0100	0,02268	0,00068	0.1000	136.07	6.79	246.70	7.90	1.350.00	110.00
I MC-071-19	7 400 00	2 920 00	0.30	0.07340	0.00210	0.2261	0.0061	0.00080	0.00025	0.0079	140.90	5.95	206.90	5.00	995.00	60.00
LMC 071 01	0,000,00	2.020,00	0,09	0.00400	0.00400	0,2201	0,0001	0,02200	0,00020	0,0070	140.00	5,55	100.50	3,00	700.00	40.00
LIVIG-071-04	0.000,00	3.400,00	0,39	0,00430	0,00130	0,2089	0,0038	0,02341	0,00036	0,3091	140,33	5,74	192,50	3,20	100,00	43,00

Punto	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Correlación de errores	Edad ²⁰⁶ Pb/ ²³⁸ U (Ma)	±2σ	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	±2σ	Edad 207Pb/206Pb (Ma)	±2σ
LMC-071-62	8.540,00	2.690,00	0,31	0,06510	0,00350	0,2065	0,0058	0,02343	0,00094	0,0569	146,31	8,15	190,30	4,80	720,00	110,00
LMC-071-58	7.070,00	3.050,00	0,43	0,15400	0,01200	0,5320	0,0670	0,02407	0,00097	0,9646	133,27	7,94	417,00	39,00	2.350,00	120,00
LMC-071-22	6.560,00	2.590,00	0,39	0,05485	0,00072	0,1864	0,0028	0,02477	0,00031	0,5604	156,62	5,90	173,40	2,40	405,00	30,00
LMC-071-15	5.660,00	2.120,00	0,37	0,06040	0,00140	0,2027	0,0042	0,02492	0,00044	0,6139	156,47	6,25	186,70	3,40	607,00	50,00
LMC-071-32	5.650,00	1.960,00	0,35	0,06820	0,00300	0,2290	0,0060	0,02537	0,00042	0,1000	157,70	6,24	208,80	4,90	839,00	87,00
LMC-071-67	2.780,00	1.000,00	0,36	0,07230	0,00230	0,2518	0,0084	0,02560	0,00033	0,2068	158,29	6,09	227,70	6,30	959,00	61,00
LMC-071-65	5.570,00	1.783,00	0,32	0,05896	0,00087	0,2174	0,0037	0,02680	0,00021	0,5102	168,48	6,20	199,80	3,10	555,00	32,00
LMC-071-59	6.600,00	1.990,00	0,30	0,05460	0,00075	0,2026	0,0034	0,02709	0,00029	0,5530	171,22	6,34	187,10	2,80	385,00	29,00
LMC-071-17	6.270,00	2.210,00	0,35	0,05790	0,00110	0,2137	0,0035	0,02749	0,00022	0,1000	173,01	6,33	196,70	2,90	506,00	41,00
LMC-071-30	4.150,00	1910,00	0,46	0,06650	0,00170	0,2495	0,0068	0,02786	0,00037	0,3667	173,42	6,91	225,40	5,50	804,00	51,00
LMC-071-36	2.650,00	864,00	0,33	0,05600	0,00180	0,2253	0,0074	0,02956	0,00033	0,1260	186,36	6,97	205,90	6,10	435,00	69,00
LMC-071-52	375,00	345,00	0,92	0,05960	0,00310	0,2420	0,0120	0,02966	0,00037	0,1000	186,14	6,97	221,20	9,50	530,00	110,00
LMC-071-27	5.510,00	2.130,00	0,39	0,05400	0,00080	0,2161	0,0039	0,02970	0,00042	0,5099	187,70	6,97	198,50	3,30	368,00	35,00
LMC-071-13	4.190,00	1.720,00	0,41	0,05331	0,00096	0,2288	0,0049	0,03149	0,00034	0,4824	199,07	7,60	209,30	4,00	329,00	40,00
LMC-071-6	461,00	402,00	0,87	0,05880	0,00170	0,6260	0,0190	0,07853	0,00062	0,1494	486,22	17,82	493,00	11,00	531,00	59,00
LMC-071-1	246,00	210,00	0,85	0,05610	0,00260	0,6500	0,0300	0,08420	0,00120	0,2440	522,19	19,67	505,00	18,00	432,00	88,00
LMC-071-31	1.467,00	211,00	0,14	0,06650	0,00110	0,7660	0,0350	0,08440	0,00290	0,9366	516,88	25,37	573,00	20,00	814,00	35,00
LMC-071-9	0,02	0,02	0,83													

Campos en blanco: no se obtuvieron resultados de los análisis en el laboratorio

Anexo 1.9. Resultados isotópicos U-Pb en circón de la muestra TCR-380

Bunto	II (ppm)	Th	Th/U	207 Db/206 Db	+20	207 Db/23511	+20	206ph/23811	+20	Correlación	Edad 206Pb/238U	+20	Edad 207Pb/235U	+20	Edad	+20
Funto	o (ppiii)	(ppm)	111/0	FD/ FD	120	FD/ O	120	FD/ 0	120	de errores	(Ma)	120	(Ma)	120	²⁰⁷ Pb/ ²⁰⁶ Pb (Ma)	120
TCR-380-42	865,00	700,00	0,81	0,05840	0,00310	0,0884	0,0049	0,01105	0,00018	0,3362	69,87	2,40	86,00	4,50	500,00	100,00
TCR-380-40	293,00	112,30	0,38	0,05290	0,00510	0,0864	0,0081	0,01166	0,00025	0,0553	74,22	2,80	82,90	7,60	220,00	170,00
TCR-380-49	327,00	99,90	0,31	0,04610	0,00440	0,0764	0,0073	0,01168	0,00021	0,1292	74,99	2,66	74,30	7,00	30,00	160,00
TCR-380-38	913,00	398,00	0,44	0,05190	0,00290	0,0867	0,0052	0,01224	0,00026	0,2887	78,00	2,90	84,40	4,90	240,00	110,00
TCR-380-18	1.611,00	2.406,00	1,49	0,05230	0,00130	0,2064	0,0054	0,02823	0,00024	0,2590	178,87	5,59	190,50	4,50	277,00	51,00
TCR-380-28	1.093,00	639,00	0,58	0,05020	0,00130	0,2045	0,0061	0,02900	0,00047	0,5420	184,19	6,26	188,80	5,20	202,00	53,00
TCR-380-43	394,00	473,00	1,20	0,04950	0,00250	0,2020	0,0100	0,02931	0,00034	0,2224	186,30	5,98	187,50	8,80	192,00	94,00
TCR-380-4	824,00	854,00	1,04	0,05080	0,00270	0,2080	0,0110	0,02954	0,00037	0,2228	187,45	6,11	191,90	9,10	230,00	100,00
TCR-380-13	1.628,00	11,40	0,01	0,04880	0,00150	0,2007	0,0066	0,02967	0,00026	0,2208	188,73	5,85	185,50	5,50	155,00	63,00
TCR-380-50	384.00	460.80	1.20	0.05070	0.00230	0.2123	0.0097	0.02969	0.00038	0.2172	188.41	6.17	194.60	8.00	221.00	88.00
TCB-380-14	349.00	382.00	1.09	0.05310	0.00400	0.2200	0.0140	0.02992	0.00060	0.0415	189.29	7 18	204.00	12.00	340.00	120.00
TCB-380-25	120.10	167.40	1 39	0.04830	0.00360	0.2030	0.0150	0.02996	0.00053	0.0687	190.68	6.56	185.00	12.00	110.00	130.00
TOD 000 20	000.00	000.00	0.00	0,04000	0,00050	0,2000	0,0100	0,020004	0,00030	0,0007	100,00	0,00	101.00	0.40	107.00	00.00
TOR-380-39	330,00	306,00	0,93	0,04970	0,00250	0,2064	0,0099	0,03001	0,00043	0,1100	190,00	6,30	191,90	8,40	197,00	92,00
TCR-380-24	1.173,00	3.450,00	2,94	0,05000	0,00110	0,2124	0,0048	0,03002	0,00024	0,1634	190,65	5,91	195,30	4,00	195,00	48,00
TCR-380-29	222,00	366,00	1,65	0,05870	0,00450	0,2440	0,0190	0,03018	0,00051	0,2593	189,59	6,62	219,00	16,00	490,00	150,00
TCR-380-44	1.320,00	2.170,00	1,64	0,08230	0,00470	0,3390	0,0180	0,03045	0,00050	0,4230	185,61	6,80	294,00	13,00	1.159,00	96,00
TCR-380-8	847,00	1.510,00	1,78	0,05380	0,00250	0,2314	0,0098	0,03071	0,00056	0,2353	194,07	6,55	210,30	8,00	374,00	96,00
TCR-380-7	1.557,00	1.358,00	0,87	0,06330	0,00340	0,2750	0,0160	0,03093	0,00024	0,3889	193,13	6,15	242,00	12,00	600,00	100,00
TCR-380-16	405,00	505,00	1,25	0,05410	0,00290	0,2360	0,0130	0,03114	0,00059	0,2167	196,69	7,17	213,00	11,00	380,00	100,00
TCR-380-20	545,00	426,00	0,78	0,09250	0,00580	0,4060	0,0300	0,03116	0,00065	0,6467	187,39	7,40	341,00	22,00	1.380,00	130,00
TCR-380-37	1.224,00	897,00	0,73	0,05140	0,00150	0,2228	0,0066	0,03154	0,00034	0,1753	199,86	6,36	203,50	5,50	264,00	62,00
TCR-380-60	3.860,00	4.820,00	1,25	0,05190	0,00210	0,2076	0,0081	0,03160	0,00100	0,5588	200,11	8,98	191,10	6,80	285,00	81,00
TCR-380-36	216,00	297,00	1,38	0,05180	0,00310	0,2280	0,0140	0,03169	0,00056	0,0592	200,70	7,18	209,00	11,00	260,00	110,00
TCR-380-54	506,00	577,00	1,14	0,04940	0,00200	0,2152	0,0088	0,03187	0,00043	0,1250	202,43	6,55	197,30	7,20	166,00	78,00
TCR-380-27	381,00	388,00	1,02	0,05920	0,00230	0,2730	0,0110	0,03276	0,00049	0,4218	205,50	7,19	244,60	8,90	550,00	82,00
TCR-380-32	854,00	824,00	0,96	0,06330	0,00210	0,2965	0,0087	0,03340	0,00033	0,1000	208,40	6,63	262,80	6,80	722,00	67,00
TCB-380-9	2,245.00	135.00	0.06	0.05030	0.00110	0.2366	0.0066	0.03386	0.00060	0.6044	214.69	7.16	215.00	5.40	202.00	47.00
TCB-380-51	441 00	12 20	0.03	0.05550	0.00260	0.2720	0.0150	0.03430	0.00086	0 5403	216.06	8 40	242.00	12.00	436.00	98.00
TCB-380-30	8 17	0.09	0.01	0.12900	0.03100	0,6000	0 1300	0.03730	0.00240	0 1025	213.28	18.08	347.00	78.00	200.00	470.00
TOD 000 00	400.00	10,00	0,01	0,12000	0,00100	0,0000	0,1000	0,00700	0,00240	0,7000	000.70	10,00	005.00	10,00	554.00	
TOP 000 45	486,00	10,29	0,02	0,05890	0,00190	0,3260	0,0160	0,03810	0,00130	0,7006	238,70	10,83	285,00	12,00	071.00	70.00
TCR-380-45	486,00	535,00	1,10	0,05160	0,00190	0,3110	0,0110	0,04233	0,00050	0,1295	267,26	8,48	272,80	8,70	271,00	73,00
TCR-380-35	24,10	4,11	0,17	0,09200	0,01700	0,4370	0,0660	0,04390	0,00210	0,0180	263,27	16,59	320,00	46,00	400,00	310,00
TCR-380-12	2.320,00	571,00	0,25	0,05474	0,00098	0,3629	0,0065	0,04825	0,00040	0,2957	302,90	9,13	314,70	4,80	393,00	39,00
TCR-380-34	1.471,00	446,00	0,30	0,05390	0,00100	0,3750	0,0130	0,05010	0,00120	0,7886	314,67	12,12	321,90	9,50	362,00	42,00
TCR-380-52	311,50	107,00	0,34	0,05700	0,00200	0,4170	0,0140	0,05284	0,00065	0,2340	330,34	10,99	354,00	10,00	459,00	73,00
TCR-380-10	1.713,00	209,90	0,12	0,05580	0,00110	0,4850	0,0140	0,06270	0,00140	0,7167	391,41	14,60	401,30	9,50	436,00	43,00
TCR-380-26	1.193,00	646,00	0,54	0,05667	0,00086	0,5143	0,0088	0,06401	0,00054	0,4559	399,01	12,27	420,50	5,90	481,00	36,00
TCR-380-48	324,00	111,40	0,34	0,09420	0,00500	0,9300	0,0510	0,06930	0,00110	0,0623	411,68	15,28	663,00	27,00	1.520,00	100,00
TCR-380-2	1.016,00	385,10	0,38	0,05660	0,00140	0,5440	0,0140	0,06948	0,00076	0,2711	432,45	13,51	440,90	8,70	464,00	55,00
TCR-380-17	596,00	476,00	0,80	0,06240	0,00220	0,6100	0,0230	0,07094	0,00096	0,2555	438,25	14,74	484,00	14,00	674,00	79,00
TCR-380-46	265,00	246,60	0,93	0,06080	0,00200	0,6040	0,0200	0,07139	0,00081	0,2707	441,84	14,15	479,00	12,00	599,00	68,00
TCR-380-22	142,00	86,10	0,61	0,05790	0,00310	0,5840	0,0290	0,07220	0,00120	0,0867	448,32	15,36	465,00	19,00	480,00	110,00
TCR-380-55	467,00	24,50	0,05	0,06420	0,00180	0,7070	0,0230	0,07960	0,00120	0,3893	489,49	16,58	544,00	14,00	731,00	59,00
TCR-380-33	1.196.00	245.00	0.20	0.06800	0.00130	0.8430	0.0180	0.08950	0.00100	0.4210	546.37	17.87	621.00	10.00	880.00	38.00
TCB-380-41	230.00	42 70	0.19	0.06940	0.00170	1.3650	0.0350	0 14150	0.00140	0.2656	851.25	26.92	872.00	15.00	902.00	55.00
TCR-390-53	276.00	10.00	0.07	0.07250	0.00170	1 4990	0.0380	0.14960	0.00180	0.1390	880.28	28.55	924.00	15.00	990.00	46.00
TCD 290 56	270,00	02.90	0.46	0,07230	0,00170	1,4000	0,0500	0,14000	0,00100	0,1905	005,20	20,00	081.00	27.00	1 125 00	90.00
TCR-360-30	202,00	93,60	0,40	0,07830	0,00300	1,0320	0,0070	0,15240	0,00230	0,1805	903,09	31,30	961,00	27,00	1.135,00	09,00
TCH-380-57	357,90	174,30	0,49	0,07520	0,00150	1,5960	0,0310	0,15510	0,00160	0,3588	923,93	30,05	968,00	12,00	1.081,00	38,00
TCR-380-47	129,00	61,50	0,48	0,14140	0,00730	3,2400	0,1900	0,16070	0,00390	0,3860	882,40	39,96	1.456,00	45,00	2.221,00	93,00
TCR-380-21	138,00	45,40	0,33	0,08940	0,00310	2,3550	0,0740	0,18950	0,00400	0,3859	1.102,66	41,08	1.235,00	23,00	1.420,00	64,00
TCR-380-19	438,00	36,10	0,08	0,09930	0,00150	3,0090	0,0470	0,21480	0,00220	0,4395	1.230,21	41,51	1.408,00	12,00	1.606,00	27,00
TCR-380-31	309,60	174,60	0,56	0,16550	0,00230	5,6670	0,0950	0,24360	0,00240	0,5501	1.284,11	53,52	1.925,00	15,00	2.510,00	23,00
TCR-380-1	0,08	0,00	0,00													
TCR-380-3	0,00	0,00	-151,24													
TCR-380-5	0,01	0,00	0,23													

Punto	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Correlación de errores	Edad ²⁰⁶ Pb/ ²³⁸ U (Ma)	±2σ	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	±2σ	Edad 207Pb/206Pb (Ma)	±2σ
TCR-380-6	0,08	0,01	0,09													
TCR-380-11	0,00	0,01	2,72													
TCR-380-15	0,00	0,00	-0,19													
TCR-380-58	0,03	0,19	7,46													
TCR-380-59	0,09	0,52	6,12													

Campos en blanco: no se obtuvieron resultados de los análisis en el laboratorio

Anexo 1.10. Resultados isotópicos U-Pb en circón de la muestra AMC-0136A

Punto	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Correlación de errores	Edad ²⁰⁶ Pb/ ²³⁸ U (Ma)	±2σ	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	±2σ	Edad 207Pb/206Pb (Ma)	±2σ
AMC-0136-A-11	149,00	134,00	0,90	0,05700	0,01100	0,1000	0,0190	0,01326	0,00053	0,1000	83,93	4,08	97,00	18,00	190,00	300,00
AMC-0136-A-21	71,80	20,59	0,29	0,05400	0,01000	0,1040	0,0190	0,01482	0,00054	0,0020	94,11	4,31	106,00	18,00	180,00	280,00
AMC-0136-A-7	428,00	165,00	0,39	0,05210	0,00400	0,1129	0,0086	0,01565	0,00047	0,2823	99,59	3,91	107,10	7,80	270,00	130,00
AMC-0136-A-19	45,10	13,19	0,29	0,03700	0,01300	0,0880	0,0280	0,01603	0,00067	0,0834	103,94	5,30	73,00	25,00	-470,00	370,00
AMC-0136-A-24	235,00	239,00	1,02	0,04890	0,00350	0,1097	0,0078	0,01645	0,00032	0,0714	105,08	3,35	106,80	6,80	200,00	120,00
AMC-0136-A-17	71,10	18,10	0,25	0,05900	0,01300	0,1330	0,0270	0,01651	0,00061	0,1000	104,12	4,94	119,00	23,00	120,00	300,00
AMC-0136-A-26	139,00	64,70	0,47	0,05140	0,00610	0,1180	0,0130	0,01652	0,00047	0,1029	105,19	4,02	111,00	12,00	160,00	180,00
AMC-0136-A-23	207,00	140,00	0,68	0,06270	0,00440	0,1461	0,0098	0,01671	0,00029	0,0119	104,88	3,20	138,00	8,60	600,00	140,00
AMC-0136-A-3	267,00	133,80	0,50	0,05280	0,00570	0,1230	0,0130	0,01685	0,00041	0,0544	107,09	3,76	120,00	12,00	270,00	180,00
AMC-0136-A-10	888,00	246,00	0,28	0,05900	0,00430	0,1370	0,0094	0,01685	0,00037	0,0695	106,26	3,58	131,40	8,70	540,00	140,00
AMC-0136-A-25	238,00	178,00	0,75	0,05890	0,00410	0,1368	0,0092	0,01692	0,00026	0,0995	106,71	3,15	129,90	8,20	480,00	130,00
AMC-0136-A-22	189,00	93,30	0,49	0,05500	0,00510	0,1300	0,0110	0,01709	0,00041	0,1131	108,31	3,80	123,00	10,00	320,00	170,00
AMC-0136-A-18	85,80	13,40	0,16	0,05230	0,00880	0,1170	0,0190	0,01717	0,00046	0,0779	109,18	4,18	112,00	17,00	130,00	250,00
AMC-0136-A-4	683,00	1101,00	1,61	0,04900	0,00290	0,1168	0,0071	0,01716	0,00027	0,2581	109,57	3,21	111,70	6,50	160,00	110,00
AMC-0136-A-16	338,00	105,00	0,31	0,04990	0,00450	0,1170	0,0110	0,01730	0,00033	0,1533	110,34	3,50	110,00	9,60	140,00	160,00
AMC-0136-A-2	369,00	205,80	0,56	0,04950	0,00440	0,1190	0,0100	0,01731	0,00046	0,1777	110,46	4,06	113,10	9,10	140,00	150,00
AMC-0136-A-20	83,00	28,70	0,35	0,06000	0,01000	0,1440	0,0230	0,01757	0,00048	0,1257	110,63	4,35	124,00	20,00	270,00	260,00
AMC-0136-A-5	311,00	203,00	0,65	0,05230	0,00540	0,1260	0,0130	0,01764	0,00037	0,1991	112,16	3,70	122,00	12,00	250,00	170,00
AMC-0136-A-12	191,70	48,70	0,25	0,06050	0,00720	0,1500	0,0170	0,01799	0,00056	0,1373	113,19	4,58	143,00	14,00	470,00	200,00
AMC-0136-A-6	354,00	144,00	0,41	0,05230	0,00430	0,1360	0,0100	0,01800	0,00037	0,0706	114,43	3,74	127,20	9,30	320,00	150,00
AMC-0136-A-1	231,00	72,20	0,31	0,05630	0,00520	0,1470	0,0140	0,01836	0,00044	0,1667	116,12	4,05	139,00	12,00	360,00	160,00
AMC-0136-A-15	77,90	67,30	0,86	0,04690	0,00660	0,2370	0,0330	0,03477	0,00099	0,0815	221,33	8,40	215,00	26,00	80,00	210,00
AMC-0136-A-9	113,80	57,30	0,50	0,05410	0,00500	0,3070	0,0270	0,03960	0,00120	0,1854	249,46	10,11	269,00	21,00	310,00	170,00
AMC-0136-A-8	17,93	8,82	0,49	0,15600	0,02300	1,0900	0,1500	0,05230	0,00240	0,0561	287,14	17,99	712,00	73,00	1.680,00	320,00
AMC-0136-A-13	241,00	8,60	0,04	0,07860	0,00210	2,1570	0,0600	0,19610	0,00390	0,3376	1.153,93	35,62	1.167,00	20,00	1.151,00	53,00
AMC-0136-A-14	210,00	21,80	0,10	0,08120	0,00190	2,5510	0,0750	0,22880	0,00400	0,5272	1.334,76	39,36	1.280,00	21,00	1.226,00	49,00

Anexo 1.11. Resultados isotópicos U-Pb en circón de la muestra GZ-6829B

Punto	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	207Pb/235U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Correlación de errores	Edad ²⁰⁶ Pb/ ²³⁸ U (Ma)	±2σ	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	±2σ	Edad 207Pb/206Pb (Ma)	±2σ
GZ-6829-B-22	495,00	94,00	0,19	0,08160	0,00500	0,1395	0,0084	0,01221	0,00026	0,1661	74,89	2,52	129,70	7,20	1.170,00	110,00
GZ-6829-B-14	131,00	36,10	0,28	0,05530	0,00740	0,1130	0,0150	0,01503	0,00038	0,0910	95,28	3,48	103,00	13,00	210,00	210,00
GZ-6829-B-8	216,50	98,80	0,46	0,05690	0,00460	0,1183	0,0093	0,01506	0,00027	0,0218	95,28	2,97	111,80	8,40	430,00	140,00
GZ-6829-B-3	262,70	77,60	0,30	0,05340	0,00550	0,1130	0,0110	0,01511	0,00032	0,0099	96,02	3,19	106,00	10,00	220,00	180,00
GZ-6829-B-18	205,80	65,30	0,32	0,06020	0,00510	0,1240	0,0100	0,01523	0,00029	0,1000	95,94	3,03	117,70	9,00	480,00	150,00
GZ-6829-B-1	236,20	71,20	0,30	0,06670	0,00600	0,1410	0,0120	0,01527	0,00031	0,1000	95,40	3,16	134,00	11,00	710,00	170,00
GZ-6829-B-9	248,70	121,60	0,49	0,05630	0,00390	0,1205	0,0086	0,01530	0,00024	0,1256	96,86	2,89	114,00	7,70	410,00	130,00
GZ-6829-B-11	803,00	437,00	0,54	0,04770	0,00200	0,0997	0,0043	0,01530	0,00022	0,1834	97,92	2,76	96,10	4,00	103,00	81,00
GZ-6829-B-30	183,00	68,60	0,37	0,05080	0,00540	0,1050	0,0110	0,01535	0,00034	0,1682	97,85	3,32	102,10	9,90	190,00	170,00
GZ-6829-B-17	266,00	88,30	0,33	0,05200	0,00450	0,1090	0,0094	0,01537	0,00028	0,1278	97,83	3,04	104,70	8,60	260,00	160,00
GZ-6829-B-24	346,00	149,80	0,43	0,06020	0,00340	0,1272	0,0073	0,01538	0,00023	0,1869	96,88	2,87	122,70	6,70	540,00	110,00
GZ-6829-B-25	174,70	57,89	0,33	0,05040	0,00400	0,1076	0,0082	0,01543	0,00032	0,1175	98,41	3,23	103,00	7,60	230,00	140,00
GZ-6829-B-23	232,60	57,50	0,25	0,05120	0,00390	0,1103	0,0084	0,01559	0,00027	0,0651	99,33	3,04	105,30	7,70	230,00	130,00
GZ-6829-B-21	296,00	78,50	0,27	0,05110	0,00340	0,1105	0,0076	0,01559	0,00027	0,2211	99,34	3,03	105,80	6,90	220,00	120,00
GZ-6829-B-16	390,00	124,10	0,32	0,05710	0,00360	0,1238	0,0077	0,01576	0,00022	0,0491	99,66	2,83	118,40	6,90	440,00	120,00
GZ-6829-B-15	815,00	331,80	0,41	0,05010	0,00220	0,1079	0,0046	0,01578	0,00021	0,1093	100,67	2,82	104,70	4,30	185,00	84,00
GZ-6829-B-20	165,00	43,70	0,26	0,05170	0,00480	0,1120	0,0100	0,01590	0,00031	0,0826	101,23	3,24	108,60	9,20	230,00	160,00
GZ-6829-B-31	167,60	50,00	0,30	0,07030	0,00660	0,1530	0,0140	0,01591	0,00033	0,0497	98,92	3,29	145,00	12,00	740,00	180,00
GZ-6829-B-12	812,00	381,00	0,47	0,05330	0,00240	0,1163	0,0051	0,01595	0,00020	0,1095	101,34	2,82	111,60	4,60	333,00	88,00
GZ-6829-B-4	143,00	69,50	0,49	0,06720	0,00940	0,1490	0,0210	0,01622	0,00037	0,1000	101,24	3,59	134,00	18,00	650,00	240,00
GZ-6829-B-2	288,20	86,70	0,30	0,06330	0,00450	0,1530	0,0110	0,01761	0,00032	0,1323	110,42	3,45	143,60	9,30	560,00	140,00
GZ-6829-B-28	147,60	124,00	0,84	0,06350	0,00370	0,2770	0,0170	0,03115	0,00048	0,2960	194,45	5,75	245,00	14,00	650,00	120,00
GZ-6829-B-27	41,30	60,50	1,46	0,04630	0,00630	0,1990	0,0270	0,03129	0,00071	0,1008	199,55	7,14	182,00	23,00	40,00	200,00
GZ-6829-B-10	108,40	215,00	1,98	0,04980	0,00410	0,2180	0,0180	0,03128	0,00061	0,2050	198,62	6,27	194,00	15,00	130,00	150,00
GZ-6829-B-5	66,10	98,90	1,50	0,05570	0,00620	0,2490	0,0260	0,03295	0,00086	0,0940	207,59	7,69	222,00	22,00	280,00	190,00
GZ-6829-B-7	34,50	37,20	1,08	0,07030	0,00970	0,3240	0,0430	0,03311	0,00091	0,0399	204,79	7,79	266,00	33,00	520,00	260,00
GZ-6829-B-6	44,00	69,80	1,59	0,07600	0,01000	0,3340	0,0460	0,03329	0,00096	0,1089	204,40	8,41	291,00	34,00	690,00	250,00
GZ-6829-B-26	50,90	34,90	0,69	0,06960	0,00680	0,3210	0,0310	0,03354	0,00081	0,1000	207,61	7,62	275,00	24,00	740,00	190,00
GZ-6829-B-19	68,60	37,00	0,54	0,05320	0,00630	0,2420	0,0290	0,03390	0,00076	0,1000	214,17	7,11	223,00	22,00	240,00	190,00
GZ-6829-B-29	148,20	111,40	0,75	0,15470	0,00900	0,8390	0,0590	0,03901	0,00099	0,7417	215,13	8,48	605,00	31,00	2.351,00	98,00
GZ-6829-B-13	240,00	75,50	0,31	0,07430	0,00270	0,6840	0,0240	0,06780	0,00100	0,1827	413,13	11,59	532,00	15,00	1.009,00	77,00

Anexo 2. Resultados de elementos de las tierras raras (REE) en circones de muestras del Batolito de Mogotes

Punto/REE en ppm	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu
Zircon-141 TCR-376	0,86	45,5	0,188	1,47	2,29	0,89	13,22	4,55	59,2	23,73	115,4	266,8	57,67
Zircon-142	0,391	23,72	0,203	1,38	1,54	0,54	7,27	2,47	31,4	13,39	67,4	163	35,46
Zircon-143	0	4,43	0,026	0,72	1,91	0,32	12,85	4,63	62,3	25,19	118,3	233,1	49
Zircon-144	0	16,1	0,0037	0,26	0,7	0,314	4,8	2,05	27,3	11,8	60,5	151	35,9
Zircon-145	6,5	43,4	0,64	2,5	1,34	0,8	12,4	4,55	58,9	26,01	128,3	287,1	61,5
Zircon-146	0	43,23	0,046	1,05	2,76	0,8	14,51	5,51	70,9	30,68	153,8	367,6	81,4
Zircon-147	0,012	26,7	0,035	0,47	1,4	0,59	10,06	4,16	54,7	24,57	123,2	308,5	72,5
Zircon-148	0,108	65,7	1,051	15,6	21	7,44	77,2	21,9	231	81,1	337	630	126,5
Zircon-149	0,085	80,9	0,48	9	14,1	4,47	67,3	20,9	238	88,6	377	697	132,5
Zircon-150	0	58,9	0,085	1,41	2,99	1,35	20,8	7,69	95,3	39,62	187,5	408,6	87,6
Zircon-151	0,244	44,65	0,117	1,42	2,94	1,14	17,95	6,71	87,1	37,69	186,9	435,3	96,9
Zircon-152	0	11,07	0,0084	0,38	0,77	0,319	3,61	1,39	17,77	7,46	36,1	92	20,65
Zircon-153	0	148,7	0,137	3,13	9,04	2,75	47,2	16,7	200	74,9	341	674	132,1
Zircon-154	0,106	29,5	0,076	1,48	2,5	1,03	15,6	5,7	68	27,8	130	291	61,9
Zircon-155	0,267	48,9	0,137	1,43	3,26	1,31	18,7	7,38	94,7	40,5	199,9	484,9	105,3
Zircon-156	0	46,7	0,098	2,39	3,72	1,45	19,3	6,58	82,3	34	161	371	81,9
Zircon-157	0,045	14,64	0,086	0,8	1,76	0,165	7,5	3,41	42,8	19	97,2	272,9	60,2
Zircon-158	0,125	52,3	0,273	3,47	6,73	2,18	31,7	10,55	123	50,3	231	525	112,2
Zircon-159	0,33	51,3	0,461	6,43	9,81	2,81	37,4	11,55	129,6	49,7	219,6	469	99,4
Zircon-160	221	710	88	420	98	14,7	126	28,4	269	89	348	636	121,2
Zircon-161	4,3	67,7	1,64	8,2	5,83	1,72	24,2	8,54	100,9	42,2	193,2	418	88,3
Zircon-162	19,3	131	6	33	10,7	2,38	32	11,33	132,4	52,9	234	504	100,8
Zircon-163	0,027	77	0,295	6,29	12,34	3,72	58,4	19,98	225	84	363	703	137,1
Zircon-164	6,53	101,2	3,94	20,5	11,6	2,67	37,3	13,5	158,2	62,9	290	684	149,5
Zircon-165	0,0052	50,37	0,167	3,26	5,1	2,28	24,7	8,71	115,3	51,9	247,3	554,2	117,8
Zircon-166	0,034	78,3	0,325	6,05	8,81	3,17	45,1	14,71	159,8	58,3	239,3	441,7	83,8
Zircon-001 TCR-376	0,09	120,6	0,245	3,31	7,4	2,25	40,7	13,01	154,9	57,4	254	502	101,2
Zircon-002	0	68,8	0,112	1,96	4,33	1,52	24,15	8,38	97,6	38,38	177,9	354,8	74,1
Zircon-003	0,26	26,69	0,072	0,79	1,43	0,503	8,07	2,94	38,6	16,55	87,2	212	48,6
Zircon-004	0,0037	39,9	0,362	5,56	9,09	3,14	38,8	11,64	131,9	47	207,1	388	80,3
Zircon-005	0,135	424	1,6	25,2	41,6	10,59	184,6	54,2	606	217	911	1.540	293
Zircon-006	5,9	67,8	1,56	7,9	4,23	1,33	21,2	7,38	96,4	40,3	204,7	468	106,9
Zircon-007	0,07	222	0,349	6,34	11,69	4,22	61,9	18,9	208	73	327	579	117,3
Zircon-008	0	31,3	0,027	0,95	1,82	0,67	9,76	3,58	44	17,6	88,9	196	43,5
Zircon-009 TCR-376	0,07	112,3	0,14	3,03	6,46	2,42	39,1	13,07	156,1	59,5	272,8	554	115,8

Anexo 2.1. Resultados de elementos traza en los circones de la muestra TCR-376

Punto/REE en ppm	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dv	Но	Er	Yb	Lu
Zircon-071 MIA-638	0.25	103	0.193	2.8	9.5	1.01	87	39.8	542	226	1.050	2.080	418
Zircon-072	0	48,7	0,028	0,59	2,44	0,78	16,4	6,99	95	41,8	216	493	105
Zircon-073	0.4	254	0.41	7.9	16.6	5	91	30.4	364	140	610	1130	226
Zircon-074	5,8	338	7,2	82	95	27,2	301	86	870	290	1.170	1.920	360
Zircon-075	48	119	8,6	31,9	6,9	1,3	24,7	9,1	118	50,5	233	550	119
Zircon-076	0,067	102	0,211	3,36	6,6	1,72	35,3	11,8	140	55,3	249	515	106
Zircon-077	0,109	116	0,62	9,9	16,5	4,24	77	25,4	295	111	491	910	185
Zircon-078	12,7	480	4,3	29,1	30,9	8,1	183	62	700	250	1.040	1.650	310
Zircon-079	0,47	18,1	0,272	2,9	4,9	0,71	22,7	7,4	85	32	150	308	67
Zircon-080	5,8	58,4	1,58	7,8	4	1,02	16,3	5,48	70,6	31,2	151	352	78
Zircon-081	2,05	77	0,82	7,2	8,4	3,08	41,7	13,1	152	58	270	560	120
Zircon-082	1,6	179	1,32	13,7	18,3	5,7	83	29	325	123	520	910	177
Zircon-083	0,044	59	0,191	4,55	7,8	1,42	38,4	11,4	120	42,6	168	329	64
Zircon-084	1,97	43,1	0,82	3,6	3,31	0,78	14,7	5,6	72	30,5	147	333	71
Zircon-085	4,2	66	1,21	5,8	4,1	1,04	16,8	7,2	96	40	192	381	93
Zircon-086	0,265	689	1,15	22,7	46,7	11,8	255	85	960	352	1.460	2.320	437
Zircon-087	0,7	81	0,84	7,3	13,4	3,64	47,8	15,7	181	67,1	300	553	114
Zircon-088	0,211	45,7	0,107	1,15	2,79	0,92	15,4	5,82	74,7	31,2	149	328	71,5
Zircon-089	0,023	47,9	0,048	0,93	2,62	1,06	17,1	7	91	40,8	200	440	97
Zircon-090	0,25	192	0,285	3,51	10,2	2,73	51,6	18,3	225	87,7	405	820	167
Zircon-091	0,03	1,57	-0,0000099	0,058	0,43	0,18	6,2	4,2	64	28,1	143	310	66
Zircon-92	0,014	7,16	0,041	0,75	1,16	0,318	4,67	1,34	16,8	5,87	26,2	59,1	15,2
Zircon-93	0,51	127	0,89	14,4	18,3	5,88	84	27,2	300	110	457	830	170
Zircon-94	1,67	70	0,64	3,9	4,17	1,08	24,8	8,9	110	46,8	228	482	103
Zircon-95	12,8	140	5,2	31,6	22,1	2,48	111	36,9	437	163	711	1240	245
Zircon-96	0,35	85,1	0,4	4,75	10,5	3,46	66,3	25	305	118	518	900	178
Zircon-97	0,082	17	0,129	0,73	1,45	0,466	9,5	3,45	45,1	19,7	98	274	67,8
Zircon-98	0,128	1,5	0,13	0,9	2,65	0,163	23,4	12,2	188	90	490	1120	232
Zircon-99	0,037	136	0,396	6,4	9,5	4,28	48,1	16,2	185	78	349	750	156
Zircon-100	4,7	460	3	25,7	29,7	7	127	41,3	460	169	730	1290	255
Zircon-101	1,49	216	0,98	10,8	19,4	6,49	100,2	32,7	365	132	556	1040	207
Zircon-102	3,8	447	1,85	17,8	30,4	6,5	138	47,8	530	196	860	1560	310
Zircon-103 MIA-638	0,025	95	0,126	2,33	5,52	1,7	36,6	13	169	66,6	334	687	140

Anexo 2.2. Resultados de elementos traza en los circones de la muestra MIA-638

Anexo 2.3. Resultados de elementos traza en los circones de la muestra MIA-636

z	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu
Zircon-068 MIA-636	0,092	27,4	0,096	1,44	2,94	0,98	14,9	5,13	62,2	23,9	115	244	50,3
Zircon-069	0,01	43,2	0,074	2,04	4,75	1,63	22,9	7,3	87	34	155	294	60,6
Zircon-070	0,26	80	0,56	9,8	15,9	4,55	84	26,6	299	105	469	800	152
Zircon-071	35	116	10,7	52	12,1	2,05	28,5	8,2	95	34,9	165	325	68,6
Zircon-072	0,054	105	0,22	4,05	10,5	2,74	65,7	24,1	314	120	554	1.020	200
Zircon-073	0,112	27,5	0,079	1,38	3,23	0,623	18,6	6,97	83	32,1	158	348	73,2
Zircon-074	0,087	77	0,111	1,79	4,58	1,42	33,2	12,8	167	68	324	650	130
Zircon-075	0,5	42,9	0,59	6,8	11,5	3,76	52,9	16,8	187	67	303	554	111
Zircon-076	0,025	43,2	0,1	1,89	4,39	1,68	25	9,57	117	45,2	219	446	90,8
Zircon-077	0,0091	66	0,107	2,61	5,19	1,58	30,8	10,9	129	48,6	223	404	79,9
Zircon-078	0,25	55,1	0,229	3,49	5,67	2,07	33,9	11,8	152	61,1	273	556	116
Zircon-079	0	8,4	0,036	0,73	1,63	0,68	9	3,21	36,8	14,7	65,9	123	25,4
Zircon-080	0,0015	19	0,148	2,66	4,95	1,7	25,8	8,14	94	34,6	152	273	57,4
Zircon-081	0,072	41,6	0,078	1,16	2,97	0,99	20,8	7,13	95	38,2	181	375	77,1
Zircon-082	0,092	72,6	0,138	1,93	5,39	1,45	33,2	13,4	172	65,8	302	563	110
Zircon-083	0,044	32,8	0,416	5,82	9,2	3,44	38,5	11,3	120	44,1	198	359	76,3
Zircon-084	0,024	29,7	0,075	1,7	3,73	1,24	19,4	7,3	86,9	35,7	167	357	75,3
Zircon-085	0,035	30,5	0,028	1,34	2,74	0,78	18,8	7,4	97,1	39,6	197	408	85
Zircon-086	0	13,3	0,066	0,93	2,36	0,126	14	5,17	60,1	22,6	100,9	178	34,9
Zircon-087	0,87	77,9	0,55	3,53	8,2	1,63	49,6	20,4	254	103	466	867	170
Zircon-088	4,1	88,5	1,66	10,9	11	2,57	57,1	19,7	232	86	375	645	125
Zircon-089	17,3	72	5,6	25,2	5,8	1,01	13	3,77	42,7	17,2	87,9	226	52,1
Zircon-090	0,57	63,8	0,34	3,43	6,05	1,99	32,7	11,04	132,6	50,6	237	456	93,2
Zircon-091	0,079	72,2	0,136	2,95	5,5	2,58	35,6	12,7	160	62,3	293	563	116
Zircon-92	1,03	46,2	0,62	4,9	10,6	1,5	54,9	19,9	255	95,7	456	821	159
Zircon-93	0,47	42	0,48	7,01	12,2	3,85	57,2	18,6	206	72,1	307	510	99
Zircon-94	0,033	87,1	0,138	2,29	9,1	1,68	75,1	27,6	356	136	618	1.130	217
Zircon-95	0,67	104	1,16	15,9	23,6	9,5	121	38	410	148	620	1.090	208
Zircon-96	0,077	155	0,14	2,94	10,9	1,89	75,8	29,8	405	158	738	1.350	257
Zircon-97	0,096	65,6	0,284	4,32	7,09	2,62	39,8	12,7	154	57,3	260	480	96,7
Zircon-98	0,078	52	0,259	4,77	8,9	2,79	43,3	14,3	165	62	277	494	100,3
Zircon-99	11,8	62	5,7	24,6	18,7	4,19	50,7	16,9	197	68,9	301	595	119
Zircon-100	0,0019	16	0,113	2,39	4,02	1,88	21,6	7,14	80,2	30,1	140	260	55,1
Zircon-101	9,2	70,7	2,64	15,7	6,9	1,72	26,4	9,3	113	45,1	210	412	84,9
Zircon-102 MIA-636	0,182	4,15	0,081	0,46	1,14	0,125	4,9	2,42	26,6	12	55,3	141	32,6

Punto/REE en ppm	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu
Zircon-001 AMC-0144	0,00000279	39,5	0,083	1,71	3,04	1,2	19	6,27	79,1	32,3	162	378	84
Zircon-008	1,68	40,1	0,5	3,9	4,7	1,53	21,5	7,7	91	35,5	166	353	76
Zircon-013	0,0000036	40	0,007	0,87	2,21	0,94	12,1	5,7	77	34,7	187	490	114
Zircon-014	0,0078	46,8	0,063	0,98	2,65	0,956	15,34	5,91	77	31,3	155,4	350	74,6
Zircon-015	0,00000198	50,4	0,047	1,34	2,99	1,11	17,8	6,49	88	36,7	186	438	99,9
Zircon-016	0,055	75	0,7	9,7	16,2	5,2	66,2	19,5	218	76	336	625	125
Zircon-017	0,00000227	39,9	0,068	1,11	2,4	1,08	16,9	6,14	74,7	31	155	350	72,1
Zircon-018	0,077	21	0,26	7	14,9	1,3	88	31	380	133	580	1.040	210
Zircon-019	0,1	150	0,23	0,42	7,5	4,4	80	21	340	130	590	1.500	320
Zircon-020	0,00000164	18,1	0,0159	0,38	1,21	0,451	8,24	3,06	38	14,8	76,1	184	42,1
Zircon-023	0,0092	37,6	0,041	0,86	1,94	0,83	12,7	4,57	60,5	24,7	129	332	79
Zircon-024	0,46	93	0,69	8,9	12,8	3,91	55,9	18,1	203	71	329	629	125
Zircon-026	3,9	84,9	1,08	6,4	5,31	1,73	27,3	9,62	123	46,9	250	529	114,3
Zircon-027	0,188	55,6	0,365	6	9,1	3,23	41,6	13,7	155	55,2	265	552	115
Zircon-028	0,00000108	27,4	0,029	0,78	1,79	0,502	9,96	3,66	51,6	21	111	278	63,1
Zircon-029	0,024	91	0,285	6,1	10,3	3,26	51	17,2	204	74,5	371	781	164
Zircon-030	0,0000018	71	0,106	2,22	4,76	1,68	28,3	10,2	130	50,4	251	540	113
Zircon-031	0,016	38,8	0,0163	0,63	2,07	0,81	13,7	5,49	74	31,1	164	405	90,9
Zircon-032	11	68	2,61	9,7	3,03	0,85	14	5,33	71,3	28,1	158	383	88
Zircon-033	0,0101	40,7	0,061	1,62	3,8	1,5	23	8	103	38,8	194	429	90,6
Zircon-035 AMC-0144	1,06	107	0,425	4,62	7	2,49	37,4	12,6	153	55,7	265	541	110

Anexo 2.4. Resultados de elementos traza en los circones de la muestra AMC-0144

GRANITO DE PESCADERO

»Cordillera Oriental Departamento de Santander

Gilberto Zapata, Ana María Correa Martínez, Gabriel Rodríguez y María Isabel Arango

Catálogo de las unidades litoestratigráficas de Colombia / Jurásico

Citación: Zapata, G., Correa Martínez, A. M., Rodríguez, G. y Arango, M. I. (2020). Granito de Pescadero. En *Catálogos de las unidades litoestratigráficas de Colombia: Macizo de Santander*. Vol. 1. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585279445.2 La actividad magmática del periodo Triásico-Jurásico en el Macizo de Santander está evidenciada por el emplazamiento de plutones graníticos, cuerpos hipoabisales riolítico-riodacíticos alargados, con dirección preferencial norte-noroeste, concordante con el rumbo de las fallas regionales, principalmente con el de la falla de Bucaramanga, que marcan la tectónica del macizo y delimitan las diferentes unidades (Ward *et al.*, 1973; Royero y Clavijo, 2001).

El Granito de Pescadero es uno de estos cuerpos, producto de la actividad magmática del Jurásico (Ward *et al.*, 1973; Van der Lelij *et al.*, 2016). En el *Catálogo del Granito de Pescadero* se presentan los análisis petrográficos, geoquímicos y geocronológicos U-Pb en circón por LA-ICP-MS de diferentes muestras de este plutón, junto con datos publicados por Van der Lelij (2013) y Van der Lelij *et al.* (2016). La información fue obtenida en el proyecto de investigación denominado "Magmatismo jurásico del Macizo de Santander", que hace parte del macroproyecto "Magmatismo jurásico en Colombia", llevado a cabo por el Grupo de Estudios Geológicos Especiales de la regional Medellín del Servicio Geológico Colombiano, y cuyo objeto es caracterizar geológicamente las principales unidades jurásicas de Colombia como un aporte al conocimiento geológico del país.

1. Origen del nombre

El nombre *Granito de Pescadero* fue utilizado inicialmente por Goldsmith *et al.*, en 1971, pero su definición como unidad litológica la presentaron Ward *et al.* en 1973.

Se conserva este nombre debido a que cumple con las recomendaciones de la International Subcommission on Stratigraphic Classification of IUGS (1987, 1994).

La denominación *Granito de Pescadero* tiene en cuenta la litología dominante y mantiene el nombre geográfico con el que se describió originalmente. El componente geográfico del nombre proviene de la vereda Pescadero, en los alrededores de Umpalá, municipio de Piedecuesta, donde fue descrito inicialmente por Goldsmith *et al.* en 1971, pero la definición como unidad litológica la presentaron Ward *et al.* en 1973. Vargas *et al.*, (1981) también utilizan este nombre. Royero y Clavijo (2001) denominaron posteriormente este cuerpo como *Granito Rosado*. Estos autores consideraron la posibilidad de que el Granito de Pescadero hiciera parte del Batolito de Mogotes.

2. Distribución geográfica

Este plutón se localiza en el área correspondiente a las planchas 120-Bucaramanga, 121-Cerrito (Ward *et al.*, 1977) y 136-Málaga (Vargas *et al.*, 1984) del Ingeominas, sobre las respectivas bases topográficas del IGAC a escala 1:100.000. Aflora como un cuerpo de forma alargada al occidente de la falla de Bucaramanga, con orientación SE-NW, paralelo a ella. Su extensión es de aproximadamente 22 km y tiene un ancho máximo de 4 km (figura 1).

Los principales afloramientos de esta unidad se encuentran a lo largo de la carretera Piedecuesta-Cepitá.

Por el costado este, el Granito de Pescadero se encuentra en contacto intrusivo y fallado con el Neis de Bucaramanga, a lo largo de la falla de Bucaramanga. Al oeste y al sur se encuentra en contacto intrusivo con la Formación Silgará, de acuerdo con la presencia de diques pegmatíticos y aplíticos del Granito de Pescadero que cortan esta unidad (Ward *et al.*, 1973, y el presente estudio), como se muestra en la figura 2. También en el sur se encuentra en contacto con el Batolito de Mogotes. Hacia el sector norte, la masa principal de la unidad se encuentra en contacto con la Formación Jordán, cuyo conglomerado basal contiene fragmentos del Granito de Pescadero.

Figura 1. Mapa geológico del Granito de Pescadero

Simbología: círculos rojos: estaciones con secciones delgadas de este estudio y de proyectos anteriores del Ingeominas; cuadrados verdes: estaciones con análisis litogeoquímicos de este proyecto; estrellas: estaciones con dataciones radiométricas de otros autores y del presente estudio Fuente: tomado y modificado de Plancha 120-Bucaramanga (Ward *et al.*, 1977), Plancha 121-Cerrito (Ward *et al.*, 1977) y Plancha 136. Málaga (Vargas *et al.*, 1984)

Figura 2. Afloramiento de un dique del Granito de Pescadero intrusivo en rocas de la Formación Silgará, vía a Cepitá

3. Reseña histórica

La denominación *Granito de Pescadero* fue utilizada inicialmente por Goldsmith *et al.* (1971), pero la definición como unidad litológica la presentaron Ward *et al.* (1973) en la *Memoria explicativa de los cuadrángulos H-12 y H-13*, donde lo describen como un granito leucocrático rosado naranja. Vargas *et al.* (1981), en la *Memoria explicativa del cuadrángulo I-13*, también utilizan este nombre. Royero y Clavijo (2001), en la *Memoria del mapa geológico de Santander*, denominaron este cuerpo como *Granito Rosado* y consideraron la posibilidad de que el Granito de Pescadero formara parte del Batolito de Mogotes, por las similitudes litológicas en el área de contacto entre ambos cuerpos.

4. Descripción geológica

Geológicamente, el Granito de Pescadero hace parte del sector occidental del Macizo de Santander. Dicho macizo corresponde a un bloque regional de forma triangular limitado por las fallas de Bucaramanga en el costado occidental, la falla de Oca en el norte y la falla de Boconó en el costado oriental.

El basamento del Macizo de Santander está conformado por unidades metamórficas como el Neis de Bucaramanga (Ward *et al.*, 1973), que incluye paraneises migmatíticos de alto grado, con edades del Proterozoico (Goldsmith *et al.*, 1971; Ward *et al.*, 1973; Restrepo-Pace *et al.*, 1997; García y Ríos, 1999; Cardona, 2003; Jordano *et al.*, 2005), aunque los resultados geocronológicos obtenidos por Van der Lelij (2013) y en este proyecto indican edades ordovícicas en el Neis de Bucaramanga. Resultados U-Pb en circones obtenidos de migmatitas y ortoneises sincinemáticos muestran que las condiciones metamórficas máximas se alcanzaron hace ~477 Ma (Van der Lelij, 2013, Van der Lelij *et al.*, 2016), y corresponden a la orogenia Caparonensis, también denominada Caledoniana o Famatiniana (Pankhurst *et al.*, 1998, Rapela *et al.*, 2001).

El Neis de Bucaramanga está cubierto por la Formación Silgará, aunque las relaciones entre ambas unidades no son totalmente claras (Ward et al., 1973, Restrepo-Pace, 1995). La Formación Silgará de Ward et al. (1973), compuesta por rocas metamórficas pelíticas y semipelíticas, ha sido dividida por Mantilla-Figueroa et al. (2016) en tres conjuntos. La edad máxima de depositación del protolito del primero, denominado Esquistos del Silgará, corresponde al Neoproterozoico Temprano, con metamorfismo en facies esquisto verde del Ordovícico Temprano, durante el evento orogénico Famatiniano Principal (Mantilla-Figueroa et al., 2016). El segundo corresponde a los Esquistos del Chicamocha, cuyo protolito tiene una edad máxima de depositación del Cámbrico y metamorfismo en facies anfibolita del Ordovícico Temprano. El tercer conjunto es el de las Filitas de San Pedro, con máxima edad de depositación de su protolito del Ordovícico Tardío y su metamorfismo, aún no determinado geocronológicamente, pero considerado como de finales del Ordovícico Tardío, durante el evento orogénico Famatiniano Menor (Mantilla-Figueroa et al., 2016).

Dataciones U/Pb en circones de diferentes unidades ígneas revelan eventos magmáticos posteriores al metamorfismo en el Macizo de Santander y en los Andes de Mérida. Estos magmatismos están representados por metavulcanitas y plutones que intruyen el basamento metamórfico, con edades del Silúrico, Devónico Inferior, Carbonífero y el límite Triásico-Jurásico (Goldsmith *et al.*, 1971; Mantilla Figueroa *et al.*, 2012; Van der Lelij, 2013; Van der Lelij *et al.*, 2016).

Los plutones del Triásico-Jurásico del Macizo de Santander corresponden a un magmatismo de arco continental, con el emplazamiento de granitoides de diferentes dimensiones (batolitos, *stocks*) y cuerpos riolíticos subvolcánicos.

Las unidades sedimentarias cretácicas reposan inconformemente sobre el basamento metamórfico y sobre los plutones triásico-jurásicos.

Por último, durante el Mioceno se emplazaron pequeños cuerpos de pórfidos a los que se encuentran relacionadas las mineralizaciones de oro de la zona (Leal-Mejía, 2011; Mantilla Figueroa *et al.*, 2013).

4.1. Características macroscópicas

Los afloramientos de roca más fresca del Granito de Pescadero se localizan hacia las porciones central y meridional del cuerpo, donde gran parte corresponde a cortes de la carretera, a lo largo de la vía paralela al río Manco v cerca del río Chicamocha. En estos sectores las rocas son de tonalidad naranja (figura 3A), faneríticas de grano medio, equigranulares a inequigranulares (figura 4), moteadas de blanco y negro y, en menor proporción, de color rosa grisáceo, algunas con enclaves de tonalidad verdosa. Cerca del río Chicamocha son comunes las diaclasas y fallas (figura 3B). Hacia la porción norte del cuerpo (sur de Piedecuesta), las rocas exhiben moderada a alta meteorización, con desarrollo de saprolitos rosados y suelos arcillo-arenosos de colores claros (figura 3 C y D). Allí las rocas son de grano fino a muy fino, de color rosado, con texturas equigranulares a ligeramente porfiríticas (figura 4 E y F), con fenocristales de feldespato potásico y escasos nidos dispersos de minerales máficos.

El Granito de Pescadero está intruido por diques pegmatíticos, aplíticos, de riolitas y riodacitas. Estos no fueron muestreados en el presente proyecto, por lo que se describen sus características macroscópicas.

Figura 3. Afloramientos del Granito de Pescadero

A) Estación GZ-6825, afloramiento de roca fresca de tonalidad naranja en la parte central del cuerpo (cañón del río Manco). B) Estación AMC-0135, afloramiento de roca fresca de tonalidad rosa-grisácea con partes verdosas; obsérvese la falla (entre líneas rojas) y diaclasas, cerca del río Chicamocha, en la parte sur del cuerpo. C) Estación AMC-0133, afloramiento de roca saprolitizada, de color rosa-naranja claro, en el sector norte del Granito de Pescadero. D) Estación GZ-6823, afloramiento de roca moderadamente meteorizada de color rosa pálido, parte norte del Granito de Pescadero

Figura 4. Aspecto macroscópico de las rocas del Granito de Pescadero

A) IGM-900873 (AMC-0141), con textura fanerítica inequigranular de grano medio, moteada. B) IGM-900867 (AMC-0135), roca fanerítica finogranular, de tonalidad rosa-grisácea. C) IGM-900872 (AMC-0140), roca fanerítica inequigranular de grano medio, de tonalidad rosa-anaranjada. D) IGM-900898 (GZ6824), roca fanerítica equigranular de grano medio, de tonalidad naranja, con abundantes fracturas. E) IGM-900897 (GZ-6823), roca fanerítica finogranular a microportídica con microfenocristales de cuarzo y plagioclasa en matriz microcristalina feldespática, de tonalidad anaranjada. F) IGM-900864 (AMC-0132), roca fanerítica mediogranular a porfídica con fenocristales de plagioclasa y feldespato potásico en matriz de grano medio, de tonalidad rosa, con parches de óxidos de hierro

4.2. Características microscópicas

Se analizaron catorce secciones delgadas del Granito de Pescadero, de las cuales ocho son de este proyecto y seis de proyectos de cartografía realizados por el Ingeominas en la Plancha 120-Bucaramanga (Ward *et al.*, 1977), Plancha 121-Cerrito (Ward *et al.*, 1977) y Plancha 136-Málaga (Vargas *et al.*, 1984) (tabla 1). La clasificación modal se hizo a partir de conteo de puntos en las secciones delgadas, y se basó en los diagramas de Streckeisen (1974 y 1978). La abreviatura de minerales es la de Whitney y Evans (2010). Predominan los sienogranitos y monzogranitos (figura 4). De los diques que intruyen esta unidad se analizaron cuatro secciones delgadas, de los proyectos anteriores, de las cuales dos corresponden a cuarzotraquitas, una a dacita y una a basalto.

4.2.1. Sienogranitos, monzogranitos y granodioritas El Granito de Pescadero está compuesto principalmente de sienogranitos, seguidos de monzogranitos, y esporádicamente se pueden encontrar granodioritas (tabla 1, figura 5).

En las rocas del Granito de Pescadero se aprecia una variación textural de sur a norte. Las rocas de la parte centro-meridional son hipidiomórficas y alotriomórficas inequigranulares (tabla 1, figura 6 A, B, C y D), y aquellas de la parte centro-septentrional son hipidiomórficas y alotriomórficas, localmente con textura micrográfica (tabla 1, figura 6 E y F), que son texturas de rocas plutónicas. Las muestras de la parte septentrional exhiben textura granofídica (tabla 1, figura 7 A y B) que son típicas de rocas subvolcánicas.

Los sienogranitos están conformados por feldespato potásico (39,3 a 64,1%), plagioclasa (10 a 22,4%), cuarzo (21 a 36,9%), biotita (1,5 a 4,2%) y moscovita (0,5 a 1,8%); como accesorios, opacos, apatito y circón en proporciones menores del 1% y trazas de titanita; los minerales de alteración son caolinita, epidota y calcita (tabla 1).

Los monzogranitos están compuestos por feldespato potásico (31,4 a 42%), plagioclasa (24 a 38,5%), cuarzo (25,5 a 33,67%), biotita (4,2 a 7%), moscovita (\leq 1,4%), (\leq 1,4%), opacos 1%, trazas de apatito, circón, titanita y epidota (tabla 1).

La granodiorita contiene 50% de plagioclasa, 27% de cuarzo y 23% de feldespato (tabla 1).

El feldespato potásico es ortosa en cristales de forma tabular, anhedrales con tamaño <3 mm, con pertitas en venas y parches parcialmente enmascarados y en ocasiones acentuados por la moderada alteración a caolín, de color marrón. Algunos son oikocristales que encierran cristales menores de plagioclasa alterada. En las muestras con texturas micrográficas, el feldespato aparece en intercrecimientos con cuarzo.

Tabla 1. Composición modal de las muestras del Granito de Pescadero

Código IGM	Código campo	Este	norte	Qtz	PI	Kfs	Bt	Ms	Ор	Ар	Zrn	Clasificación		
37317		1120950	1239750	24,55	10,82	64,1		0,5				Sienogranito		
37308		1123150	1239390	29	22	45	1,5	0,5		1	1	Sienogranito		
900867	AMC-0135	1118525	1246438	31	22,4	42,4	4,2		Tr	Tr	Tr	Sienogranito		
900873	AMC-0141	1120201	1247032	25,5	38,5	28	7		1	Tr	Tr	Monzogranito		
900899	GZ-6825	1120192	1248404	32,3	31,4	31,3	4,2		0,8			Monzogranito		
37329		1121160	1249460	33,67	27,55	37,8		х	1,02			Monzogranito		
37159		1120220	1249320	23,92	14,37	57,5	x	0,96	0,48		0,9	Sienogranito		
37345		1120340	1250650	27	50	23						Granodiorita		
37162		1120220	1248620	21	22	51					х	Sienogranito		
900872	AMC-0140	1120105	1251098	26,5	13	58	1,5	0,7	0,3	Tr	Tr	Sienogranito		
900898	GZ-6824	1119450	1253741	36,9	21,2	39,3		1,8	0,8			Sienogranito		
900871	AMC-0139	1118451	1256383	33	24	42		1	Tr		Tr	Monzogranito		
900897	GZ-6823	1117247	1257175	32,4	29,4	36,8		1,4	Tr			Monzogranito		
900864	AMC-0132	1116348	1260230	30	10	59,5		0,5	Tr		Tr	Sienogranito		
Те	Textura hipidiomórfica-alotriomórfica						Textura localmente micrográfica					Textura granofídica		

Figura 5. Clasificación modal en el diagrama de Streckeisen (1974) de las rocas del Granito de Pescadero

La plagioclasa se presenta como cristales anhedrales a euhedrales, inequigranulares, alterados a sericita y saussurita. Presentan maclas de albita y albita-Carlsbad. El tamaño de sus cristales es ≤1,5 mm, pero los chadocristales encerrados en el feldespato potásico o el cuarzo son de tamaño menor a 0,5 mm. Su composición por el método Michel-Lévy corresponde a oligoclasa-andesina (An₃₀) (ángulo de extinción de 12°).

El cuarzo se encuentra en cristales anhedrales con bordes irregulares, incoloros limpios o con caminos de finas inclusiones, con extinción levemente ondulatoria; algunos poiquilíticos que encierran cristales finos de plagioclasa. El tamaño de sus cristales es ≤1,6 mm.

La biotita se encuentra en láminas subhedrales, parcial o totalmente alterada a clorita y epidota. El tamaño de sus cristales es ≤0,6 mm, ocasionalmente hasta 0,9 mm. Presenta pleocroísmo de pardo claro a oscuro. Se observan inclusiones de opacos primarios, apatito y circón.

La moscovita se presenta en láminas subhedrales incoloras y de tonalidad verde muy tenue. En ocasiones tiene tinción en sus bordes por óxidos de color marrón. Se encuentra principalmente entre los cristales de feldespato potásico y cuarzo, con bordes bien definidos, con alteración a clorita. El tamaño de los cristales es ≤0,3 mm. Presenta inclusiones de opacos.

Los minerales opacos se encuentran diseminados en la roca en cristales anhedrales finos de tamaños que van desde ≤0,1 mm hasta 0,5 mm, generalmente asociados a la biotita. Algunos de ellos, los de mayor tamaño, y posiblemente son primarios. Los cristales de magnetita finos se encuentran asociados a la alteración de las biotitas. La ilmenita está alterada, con formas rómbicas o de punta de lanza, euhedrales a anhedrales; tiene color marrón oscuro levemente translúcido, y sus cristales alcanzan hasta 1 mm.

El circón se presenta en cristales finos euhedrales prismáticos y subhedrales, asociados a los opacos primarios y también como inclusiones dentro de la biotita, con tamaños ≤0,06 mm.

La allanita, en cristales subhedrales pleocroicos diseminados en la roca, tiene un tamaño promedio de 0,35 mm.

El apatito, en cristales euhedrales con tamaño $\leq 0,09$ mm, se presenta asociado a los opacos y como inclusiones dentro de biotita y feldespato; también en menor cantidad diseminado en la roca. La titanita se encuentra en cristales euhedrales en forma de rombo y en cristales anhedrales diseminados en la roca.

Figura 6. Microfotografías de rocas del Granito de Pescadero con texturas hipidiomórficas y alotriomórficas, algunas micrográficas locales A) y B) Sienogranito. IGM-900867 (aumento: 40x). A) En Nícoles paralelos. B) Nícoles cruzados. Textura alotriomórfica inequigranular, poiquilítica con oikocristal de cuarzo que incluye plagioclasas finas. C y D) Monzogranito IGM-900873 (aumento: 40x) compuesto por feldespato potásico (Kfs), cuarzo (Qtz), plagioclasa (PI) y biotita cloritizada (Bt). D) Feldespato potásico pertitizado. E) Monzogranito IGM900898 (aumento: 40x). Nícoles cruzados, textura hipidiomórfica inequigranular y micrográfica, cuarzo (Qtz), feldespato potásico (Kfs). F) Sienogranito IGM-900872 (aumento: 40x), textura micrográfica alrededor de feldespato alcalino (Kfs) en roca con textura hipidiomórfica, localmente micrográfica

Figura 7. Microfotografías de rocas del Granito de Pescadero con textura granofídica

A) IGM-900864, sienogranito (aumento: 40x, nícoles cruzados). Textura micrográfica por intercrecimiento de Kfs con Qtz en una roca con textura general granofídica. B) IGM-900897, monzogranito (aumento: 40x, nícoles paralelos). Textura micrográfica por intercrecimiento de Kfs con Qtz en una roca con textura general granofídica

4.2.2. Rocas de dique

La composición modal de los diques analizados se puede observar en la tabla 2, mientras que su clasificación petrográfica está en la tabla 2 y en la figura 8, en el diagrama QAP (Streckeisen, 1978).

Tabla 2. Composición modal de las muestras de diques del Granito de Pescadero

Código IGM	Qtz	PI	Kfs	Hbl	Bt	Ms	Ор	Ар	Zrn	Ttn	Vidrio	Matriz	Otros	Clasificación
37163	12,9	3,8	82,3			Tr	х	Tr				1		Cuarzotraquita
37164	11,82	2,96	83,72										Al 1,5	Cuarzotraquita
37306	25	49		9	12		1	1	1	2				Dacita porfirítica
27214		25		15			v				50			Pagalta

Figura 8. Clasificación modal de los diques del Granito de Pescadero en diagrama de Streckeisen (1978)

Figura 9. Microfotografías que muestran la composición y las texturas en algunos diques del Granito de Pescadero (aumento de todas: 40 x) A) Cuarzotraquita de feldespato alcalino IGM-37163. Cuarzos bipiramidales con bahías de corrosión, rodeados por esferulitas. B) Esferulitas con feldespato potásico (Kfs), cavidades rellenas con calcita (Cal), cuarzo y prehnita (?). C) y D) Cuarzotraquita IGM-37164. C) Textura esferulítica y cuarzo bipiramidal. D) Fenocristal de plagioclasa rodeado por esferulitas. E) Basalto IGM-37314. Textura intersertal hialocristalina, con cristales de plagioclasa (PI) y matriz cloritizada (Chl). F) Agregado glomeroporfídico de plagioclasa (PI), con epidota (Ep)

4.2.2.1. Cuarzotraquitas de feldespato alcalino Están compuestas por feldespato potásico, cuarzo y plagioclasa, y apatito como minerales primarios, con trazas de moscovita como mineral secundario. Las cuarzotraquitas presentan texturas microporfídica y esferulítica (figura 9 A, B, C y D).

El feldespato potásico (82 a 85%) se presenta como fenocristales y microlitos. También se encuentra en las esferulitas producto de devitrificación de la matriz. Los fenocristales y microlitos son subhedrales a euhedrales, tabulares no maclados, con tamaños de hasta 1,8 mm, y presentan alteración a caolín y algo de sericita. Las esferulitas con diámetros entre 0,2 y 1 mm están constituidas principalmente por intercrecimientos de feldespato potásico y cuarzo, y localmente pasan a textura granofídica.

El cuarzo (12 a 13%), es subhedral bipiramidal con bahías de corrosión y anhedral. Se presenta como fenocristales de hasta 1,6 mm, y también como microcristales en la textura granofírica, y en las esferulitas, con el feldespato potásico. En general, muestra extinción levemente ondulante.

La plagioclasa (3 a 4%) se presenta como fenocristales y microlitos subhedrales, tabulares, con macla de Carlsbad o localmente de periclina y albita, moderadamente alterada a sericita y calcita. Su tamaño varía entre 0,2 y 2 mm.

4.2.2.2. Dacita porfídica

Está compuesta por plagioclasa (49%), cuarzo (25%), biotita (12%), hornblenda (9%), titanita (2%), opacos (1%), apatito (1%) y circón (1%). La matriz es fina cuarzofeldespática. Como minerales de alteración se reconocieron trazas de prehnita y calcita. La dacita exhibe textura porfídica (no se muestra microfotografía de esta).

La plagioclasa es subhedral a euhedral y aparece como fenocristales con maclas de albita y albita-Carlsbad, alterada a sericita y minerales arcillosos. También se encuentra como microlitos en la matriz. El cuarzo se halla como microcristales en la matriz. La biotita es euhedral y presenta pleocroísmo X: amarillo pálido, Z: marrón rojizo, Y: naranja; las láminas están dobladas y tienen extinción ondulante. La hornblenda es subhedral, con pleocroísmo de verde pálido a verde azuloso.

4.2.2.3. Basalto

Conformado por plagioclasa (35%), hornblenda alterada a epidota (15%), trazas de opacos y matriz (50%) cloritizada que posiblemente corresponde a vidrio devitrificado. La textura es hialocristalina intersertal (figura 9 E y F).

La plagioclasa se presenta como fenocristales asociados en glomerofenocristales, pero predomina como microlitos, euhedrales parcialmente alterados a sericita.

Los minerales de alteración son abundantes. La epidota es subhedral, y en ocasiones aparece rellenando fracturas de la roca; la clorita es de color verde pálido. Compone gran parte de la matriz, donde probablemente corresponde a vidrio devitrificado. También hay clorita que se dispone entre los cristales de plagioclasa, de color café anómalo de interferencia, y esta debe corresponder a alteración de ferromagnesianos primarios. La calcita se encuentra en cristales anhedrales asociados a la epidota.

5. Química mineral

Se analizó la composición química de feldespato potásico, plagioclasa e ilmenita en una muestra de monzogranito AMC-0141 (IGM-900873) colectada sobre la carretera Piedecuesta-Pescadero. Los análisis se realizaron con una microsonda electrónica marca JEOL JXA-8230 de la Universidad Nacional de Colombia, sede Bogotá, utilizando un diámetro de haz de 1 a 10 μ m y un tiempo en el pico de 20 ms, con una intensidad de 20 nA y voltaje de aceleración de 15 kV. Los conteos obtenidos con la microsonda fueron transformados a porcentajes de óxidos mediante comparaciones con estándares naturales y sintéticos. Los datos se sometieron a la corrección ZAF (Z: número atómico, A: absorción de masas, F: fluorescencia) mediante el programa de JEOL.

La sección delgada se metalizó con una película de grafito. Se obtuvieron imágenes de electrones retrodispersados de los cristales seleccionados y se realizaron análisis puntuales a lo largo del cristal, en áreas sin alteración ni fracturas.

Dada su alteración a minerales arcillosos y sericita, solo se obtuvieron análisis puntales en diferentes cristales de plagioclasa (figura 10), que no permitieron interpretar variaciones a lo largo de perfiles núcleo-bordes. La composición de la plagioclasa (tabla 3, figura 11) corresponde a oligoclasa (Ab₇₂₋₈₁ An₁₅₋₂₅ Or₃₋₄).

Figura 10. Microfotografía de cristal alterado de plagioclasa (aumento: 40 x). Análisis puntuales en las zonas limpias de la muestra AMC-0141 A) Campo de análisis 4. B) Campo de análisis 9

	AMC-0141-C9-	AMC-0141-C9-	AMC-0141-C9-	AMC-0141-C9-	AMC-0141-C4-	AMC-0141-C4-	AMC-0141-C4-	AMC-0141-C4-
Analisis	PI-1	PI-2	PI-3	PI-4	PI-1	PI-2	PI-3	PI-4
SiO	63,257	64,624	64,163	62,654	64,348	61,882	61,912	64,039
TiO	0,000	0,010	0,005	0,000	0,010	0,011	-0,018	0,000
Al ₂ O ₃	22,456	21,624	21,947	22,981	21,868	23,480	23,205	21,618
FeO	0,189	0,122	0,147	0,172	0,178	0,182	0,162	0,137
MgO	0,000	0,007	0,000	0,000	0,004	0,006	0,000	0,003
CaO	4,277	3,325	3,675	4,717	3,705	5,244	5,281	3,480
Na _s O	9,235	9,848	9,505	9,044	9,656	8,616	8,549	9,861
K,Ō	0,538	0,640	0,553	0,481	0,679	0,530	0,504	0,609
Total (% en peso)	99,952	100,2	99,995	100,049	100,448	99,951	99,595	99,747
Si	11,2305	11,4174	11,359	11,129	11,358	11,0155	11,0554	11,3788
AI	4,6992	4,503	4,5797	4,8114	4,5497	4,9265	4,8841	4,5276
Ti	0	0,0013	0,0007	0	0,0013	0,0014	0	0
Fe	0,0281	0,018	0,0217	0,0255	0,0262	0,0271	0,0242	0,0204
Mg	0	0,0018	0	0	0,0011	0,0016	0	0,0007
Na	3,1791	3,3735	3,2629	3,1148	3,3048	2,974	2,9602	3,3975
Ca	0,8137	0,6294	0,6972	0,8977	0,7007	1,0003	1,0105	0,6626
K	0,1218	0,1442	0,1249	0,1089	0,1529	0,1205	0,1148	0,138
Total cationes	20,0724	20,0886	20,0461	20,0873	20,0947	20,0669	20,0492	20,1256
0	32	32	32	32	32	32	32	32
Ab	77,264	81,346	79,875	75,576	79,473	72,629	72,456	80,929
An	19,776	15,177	17,067	21,781	16,850	24,429	24,734	15,783
Or	2,960	3,477	3,058	2,642	3,677	2,943	2,810	3,287

Tabla 3. Composición química de la plagioclasa en la muestra AMC-0141

Figura 11. Composición de la plagioclasa y el feldespato potásico en diagrama de Smith y Brown (1988) correspondiente a la muestra de monzogranito AMC-0141 del Granito de Pescadero

Los cristales de feldespato potásico también presentan alteración (figura 12), pero dieron buenos resultados. Exhiben micropertitas en filoncillos (figura 13) y corresponden a pertita $({\rm Or}_{_{70.3-79.6}}\,{\rm Ab}_{_{29.3-20}}\,{\rm Or}_{_{0.4-0-0.1}})$ (tabla 4, figura 11).

Figura 12. Microfotografía de cristal de feldespato potásico alterado Análisis puntuales en las zonas limpias de la muestra de monzogranito AMC-0141 (aumento: 40x). A) Campo de análisis 8. B) Campo de análisis 6

Figura 13. Imágenes de electrones retrodispersados de cristales de feldespato potásico. Se observan micropertitas en filoncillos. A) Or _{74,8} Ab ₂₅ An _{0,2}. B) Or _{74,7} Ab ₂₅ An _{0,3}

Tabla 4. Composición química del feldespato potásico en la muestra AMC-0141

Análisis	AMC- 0141-C8	AMC-0141- C8-Kfs-2	AMC-0141- C8-Kfs-3	AMC-0141- C8-Kfs-4	AMC-0141- C6-Kfs-1	AMC-0141- C6-Kfs-2	AMC-0141- C6-Kfs-3	AMC-0141- C6-Kfs-4	AMC-0141- C6-Kfs-5
SiO ₂	65,962	65,982	66,143	66,142	65,647	64,001	64,963	65,243	64,139
TiO ₂	0,024	0,014	0,007	0,009	0,011	0,066	0,004	0,011	0,082
Al ₂ O ₃	18,673	18,817	18,713	18,614	18,665	18,883	18,927	18,742	19,005
FeO	0,058	0,083	0,087	0,123	0,087	0,11	0,086	0,069	0,106
MgO	0	0	0	0	0	0	0	0	0
CaO	0,079	0,063	0,064	0,054	0,045	0,052	0,06	0,025	0,037
Na ₂ O	3,287	3,133	2,678	2,868	2,816	2,178	3,175	2,648	2,613
K ₂ O	11,982	12,383	13,123	13,007	12,765	13,094	11,944	12,798	12,462
Total (% en peso)	100,07	100,48	100,82	100,82	100,04	98,38	99,16	99,54	98,44

Análisis	AMC- 0141-C8	AMC-0141- C8-Kfs-2	AMC-0141- C8-Kfs-3	AMC-0141- C8-Kfs-4	AMC-0141- C6-Kfs-1	AMC-0141- C6-Kfs-2	AMC-0141- C6-Kfs-3	AMC-0141- C6-Kfs-4	AMC-0141- C6-Kfs-5
Si	11,998	11,9747	11,9928	11,996	11,983	11,901	11,932	11,968	11,891
Al	4,003	4,0248	3,9989	3,979	4,016	4,138	4,097	4,052	4,153
Fe	0,003	0,0019	0,0010	0,001	0,002	0,009	0,001	0,002	0,011
Ti	0,006	0,0084	0,0088	0,012	0,009	0,011	0,009	0,007	0,011
Mg	0	0,0000	0,0000	0	0	0	0	0	0
Na	1,159	1,1024	0,9415	1,009	0,997	0,785	1,131	0,942	0,939
Ca	0,015	0,0123	0,0124	0,010	0,009	0,010	0,012	0,005	0,007
K	2,780	2,8670	3,0355	3,009	2,973	3,106	2,799	2,995	2,947
Total cationes (a.p.f.u.)	19,9645	19,9915	19,9909	20,0165	19,9875	19,9611	19,9794	19,9697	19,9595
0	32	32	32	32	32	32	32	32	32
32Z	16,00	16,00	15,99	15,98	16,00	16,05	16,03	16,02	16,05
Х	3,96	3,99	4,00	4,04	3,99	3,91	3,95	3,95	3,90
Or	70,30	72,00	76,09	74,70	74,73	79,61	71,01	75,98	75,69
Ab	29,31	27,69	23,60	25,03	25,05	20,13	28,69	23,89	24,12
An	0,39	0,31	0,31	0,26	0,22	0,27	0,30	0,12	0,19

Tabla 5. Composición química de la magnetita en la muestra AMC-0141

Análisis	AMC-0141-C1-Mt-1	AMC-0141-C1-Mt-2	AMC-0141-C1-Mt-3	AMC-0141-C2-IIm-4
SiO ₂	0,014	0	ND	ND
TiO ₂	1,585	0,677	0,746	9,02
Al ₂ O ₃	0,045	0,036	0,107	ND
Cr ₂ O ₃	0,044	0,011	0,006	ND
FeO	93,978	95,269	92,647	85,34
MnO	0,038	0,011	0,020	0,652
MgO	0,007	0,068	ND	ND
CaO	ND	ND	ND	ND
V ₂ O ₃	ND	ND	ND	0,086
Total (% en peso	95,711	96,072	93,526	95,098
Si	0,004	0	0	0
Ti	0,358	0,152	0,172	2,067
AI	0,016	0,013	0,039	0
Cr	0,010	0,003	0,001	0
V	ND	ND	ND	0,0217
Fe ³⁺	11,616	11,839	11,805	9,653
Fe ²⁺	11,983	11,961	11,977	12,091
Mg	0,003	0,030	0	0
Mn	0,010	0,003	0,005	0,168
Total cationes (a.p.f.u.)	24	24	24	24
Clasificación	Magnetita	Magnetita	Magnetita	Magnetita titanífera

ND: no detectado en el análisis

También se analizaron cristales de minerales opacos del monzogranito, correspondientes a magnetita e ilmenita parcialmente alterada (figura 14). Los contenidos de Fe³⁺ y Fe²⁺ se calcularon usando la fórmula de Droop (1987).

Los cristales de magnetita tienen una composición aproximada de FeO (92 a 95% en peso) y TiO₂ (0,68 a 1,59% en peso) (tabla 5). La ilmenita tiene partes preservadas con una composición de TiO₂ de entre 69,5 y 75% en peso y FeO entre 21,5 y 26% en peso (columnas 1 y 2 de la tabla 6) y partes alteradas a magnetita titanífera (columna 4 de la tabla 5) con FeO (85,34% en peso), alto contenido de TiO₂ (9,02% en peso), V₂O₃ (0,086% en peso) y MnO (0,65% en peso) y a rutilo con TiO de 95,6% en peso y FeO de 2% en peso (columna 3 en la tabla 6).

Figura 14. Imagen de electrones retrodispersados de óxidos en la muestra AMC-0141

En la imagen se muestra cristal de magnetita (Mag) analizado, cuyos resultados tienen el código AMC-0141-C1, y cristal de ilmenita (IIm) parcialmente alterado a magnetita titanífera (Mag Ti) y a rutilo (Rt), con resultados identificados como AMC-0141-C2

Análisis	AMC-0141-C2-IIm-1	AMC-0141-C2-IIm-2	AMC-0141-C2-IIm-3
SiO2	0,004	ND	ND
TiO ₂	69,535	75,081	95,651
Al ₂ O ₃	0,014	0,005	0,015
Cr ₂ O ₃	0,015	ND	ND
FeO	26,217	21,597	2,013
MnO	0,204	0,147	0,015
MgO	0,003	0,011	0,017
CaO	ND	ND	0,079
V ₂ O ₃	0,432	0,499	0,632
Total (% en peso)	96,424	97,34	98,422
Si	0,0002	ND	ND
Ti	2,7998	3,0114	3,8791
Al	0,0009	0,0003	0,0010
Cr	0,0006	ND	ND
V	0,0153	0,0176	0,0225
Fe ⁺²	1,1737	0,9632	0,0908
Mg	0,0002	0,0009	0,0014
Mn	0,0093	0,0066	0,0007
Ca	ND	ND	0,0046
Total cationes (a.p.f.u.)	4,0000	4,0000	4,0000
Clasificación	Ilmenita	Ilmenita	Rutilo

Tabla 6. Composición de la ilmenita y el rutilo en la muestra AMC-0141

ND: no detectado en el análisis

6. Geoquímica

La caracterización litogeoquímica de las rocas del Granito de Pescadero se realizó a partir de nueve análisis en granitoides del plutón (muestras con previo análisis petrográfico). Se incluyó el análisis de la muestra 1 0VDL22 de Van der Lelij (2013) y Van der Lelij *et al.* (2016).

Los análisis químicos de todas las muestras del proyecto se hicieron en los laboratorios del Servicio Geológico Colombiano (Bogotá). Los análisis de los óxidos de elementos mayores y los elementos trazas (V, Mo, Nb, Ta, W, Zr y Hf) se realizaron con un espectrómetro de fluorescencia de rayos X, FRX, Panalytical AXIOS Mineral; el resto de elementos traza y tierras raras se determinaron con un equipo de espectrometría de masas con plasma acoplado inductivamente (ICP-MS). La concentración de los óxidos de elementos mayores se recalculó teniendo en cuenta los valores de pérdidas por ignición (LOI). En las tablas 6 y 7 se agruparon las muestras y se resaltaron con colores, de acuerdo con los diferentes patrones que presentan, considerando la posibilidad de que estos representen pulsos magmáticos de diferente edad.

6.1. Óxidos de elementos mayores

Las concentraciones de los óxidos de elementos mayores se presentan en la tabla 7. Los resultados geoquímicos de las muestras se agrupan de acuerdo con las características texturales de las rocas.

Se hizo un análisis de alteración química de las muestras, dadas las evidencias petrográficas de alteración de los minerales. Según el diagrama de Hughes (1972), la única muestra que presenta una alteración potásica significativa es la IGM-900864.

Tabla 7. Concentración de óxidos de elementos m	ayores, expresados en porcentaje	en peso (% en peso), e	en rocas del Granito de Pescadero
---	----------------------------------	------------------------	-----------------------------------

Código IGM	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃ T	MgO	CaO	Na ₂ O	K ₂ O	P202	MnO	LOI
900867	74,44	0,20	13,05	1,22	0,33	0,88	3,20	5,01	0,05	0,48	0,66
900873	68,86	0,80	16,73	2,31	0,41	1,47	3,77	3,83	0,00	0,12	1,70
900899	68,60	0,21	16,90	2,39	0,40	1,45	4,37	4,32	0,00	0,10	1,26
10VDL22-	71,30	0,38	14,66	2,26	0,72	1,94	3,62	4,03	0,12	0,13	0,84
900872	72,53	0,46	16,18	1,51	0,08	0,28	3,83	4,54	0,00	0,05	0,54
900898	76,77	0,16	12,55	0,76	0,06	0,08	3,19	4,88	0,02	0,71	0,68
900871	76,74	0,14	13,76	0,70	0,02	0,15	3,05	4,96	0,00	0,01	0,47
900897	72,35	0,08	17,15	0,84	0,05	0,20	3,46	5,00	0,00	0,03	0,84
900864	77,24	0,11	12,80	0,47	0,04	0,05	2,48	5,35	0,01	0,42	0,90
Textura hipidior	Textura granofídica					Textura localmente gráfica					

Fe₂O₂T: contenido de hierro total

10DVL22, muestra de Van der Lelij (2013)

Figura 15. Muestras del Granito de Pescadero en el diagrama de Hughes (1972) con campos de composición ígnea y de alteraciones potásica y sódica

Símbolos: cuadrados rojos: rocas con texturas hipidiomórfica-alotriomórfica; círculos verdes: rocas con texturas hipidiomórfica-alotriomórfica localmente gráfica; triángulos grises: rocas con textura granofídica Utilizando el diagrama de Middlemost (1994) se puede observar que las rocas analizadas del Granito de Pescadero pertenecen al campo de los granitos (figura 16A), resultado que concuerda con las clasificaciones petrográficas. Teniendo en cuenta el contenido de Na₂O + K₂O, las rocas pertenecen a la serie subalcalina. En el diagrama de Peccerillo y Taylor (1976) se puede observar que las muestras corresponden a rocas calco-alcalinas ricas en potasio (figura 16B).

En el diagrama de alcalinidad-aluminosidad (Shand, 1943), las muestras analizadas (excepto la IGM-900864, que se descartó por mostrar alteración de la composición química) del Granito de Pescadero pertenecen al campo de las rocas peraluminosas, con valores de A/NK > 1 y A/ CNK > 1 (figura 17). Las muestras con A/CNK > 1,1 pueden deber su alta peraluminosidad a alteración de los minerales (sericitización, argilización de los feldespatos), a pesar de que no se hayan definido como muestras con alteración o movilidad química en el diagrama de la figura 15.

Figura 16. Diagramas de clasificación química. A) Diagrama de Middlemost (1994) correspondiente a rocas del Granito de Pescadero. B) Diagrama K₂O vs. SiO₂ (Peccerillo y Taylor, 1976). Símbolos como en la figura 15

Figura 17. Diagrama de alcalinidad-aluminosidad (Shand, 1943) correspondiente a rocas del Granito de Pescadero Símbolos como en la figura 15

6.2. Elementos traza y tierras raras

Los resultados de los análisis de elementos traza y tierras raras de las rocas plutónicas del Granito de Pescadero se presentan en la tabla 8.

En el diagrama de las tierras raras (REE) normalizadas con respecto a condrito según los valores de Nakamura (1974) se observa que las muestras analizadas del Granito de Pescadero exhiben dos patrones (figura 18 A, B y C). Un patrón es el exhibido por las muestras IGM-900867, 900899 y 10VDL22 (figura 18 A y B); estas muestras se caracterizan por presentar textura hipidiomórfica o alotriomórfica inequigranular. Este grupo se caracteriza por presentar un patrón más empinado debido a un mayor contenido de tierras raras livianas (LREE) y menor concentración de tierras raras pesadas (HREE), donde exhiben un patrón plano y anomalía negativa de Eu (Eu/Eu* < 1) muy leve.

Tabla 8. Concentración de elementos traza y tierras raras expresados en partes por millón (ppm) de rocas del Granito de Pescadero. Código de colores como en la tabla 7

Código IGM/ elemento	900867	900873	900899	10VDL22-	900872	900898	900871	900897	900864
Be	1,91	3,41	2,98	4,37	2,25	3,16	2,45	3,92	2,10
Sc	2,90	14,04	5,57	6,52	7,42	7,64	6,21	7,96	4,82
V	10,60	10,60	16,40	24,00	13,64	6,19	1,50	2,89	1,59
Cr	1,82	9,49	2,40	7,00	10,99	1,82	<0,5	1,50	0,95
Со	11,74	20,52	15,65	3,06	20,79	18,08	11,75	6,09	9,89
Ni	2,47	6,52	2,82	6,41	9,48	0,26	1,20	0,33	1,47
Cu	4,11	6,58	4,26	4,80	5,70	3,87	3,41	4,81	3,71
Zn	23,30	22,64	34,50	46,00	36,08	18,78	10,88	24,35	24,68
Ga	15,37	21,81	16,92	16,37	18,01	16,05	16,58	17,26	16,49
As	1,51	2,70	1,78	2,81	2,24	2,29	2,13	1,64	1,61
Rb	177,32	181,46	173,84	131,22	188,11	198,42	206,12	197,33	174,06
Sr	142,12	81,67	199,48	261,65	76,99	32,11	28,22	23,77	31,62
Cs	2,20	1,86	2,06	1,53	1,90	1,94	2,38	1,83	3,12
Ba	974,07	1127,95	1277,18	962,73	716,50	432,73	305,76	336,63	472,12
Pb	13,99	11,16	15,03	12,01	5,62	10,51	6,00	24,10	5,59
Th	20,02	19,19	13,62	19,66	19,12	20,10	16,44	15,10	13,13
U	2,70	3,83	2,52	2,65	3,21	2,89	2,36	3,76	2,98
Zr	124,70	181,00	161,20	229,55	139,00	121,50	82,10	77,50	66,80
Nb	10,20	22,10	14,00	16,70	23,40	27,90	24,40	28,00	20,90
W	41,80	69,50	53,40	0,28	64,70	69,90	48,50	30,30	43,40
La	42,03	47,39	42,67	56,70	52,02	31,32	26,67	19,17	22,26
Ce	67,31	102,77	73,00	94,82	102,88	92,80	60,42	34,57	43,30
Pr	6,62	12,15	7,78	9,36	12,70	8,84	6,95	5,88	6,38
Nd	18,06	39,48	25,49	32,13	37,45	28,91	22,45	20,63	20,33
Sm	2,63	9,11	4,00	5,26	7,88	6,61	4,71	4,91	4,95
Eu	0,70	1,26	1,08	0,95	0,87	0,63	0,38	0,53	0,56
Gd	2,22	6,81	3,11	3,73	5,64	4,44	3,13	3,00	3,20
Tb	0,34	1,32	0,53	0,55	1,03	0,84	0,54	0,64	0,60
Dy	1,61	7,29	2,72	3,55	5,36	4,11	2,79	3,48	2,95
Но	0,31	1,33	0,55	0,73	1,01	0,79	0,51	0,66	0,54
Er	1,03	3,78	1,77	2,12	3,18	2,35	1,73	2,05	1,68
Tm	0,14	0,47	0,25	0,32	0,42	0,34	0,24	0,30	0,24
Yb	0,98	2,97	1,72	2,54	2,72	2,36	1,74	2,07	1,72
Lu	0,15	0,39	0,27	0,38	0,40	0,37	0,26	0,32	0,25

10DVL22, muestra de Van der Lelij (2013)

El otro patrón lo exhiben las muestras IGM-900871, 900897, 900864, 900898, 900872 y 900873. Las tres primeras tienen textura granofídica; las dos siguientes, textura hipidiomórfica y localmente gráfica, y la última, textura hipidiomórfica inequigranular. Las muestras están enriquecidas en LREE entre cincuenta y doscientas veces con respecto al condrito y empobrecidas en las pesadas (HREE), donde muestran un patrón plano y exhiben anomalías negativas de Eu (figura 1 8 A y C), probablemente debidas al fraccionamiento de la plagioclasa en el magma. Este patrón se diferencia del anterior por la anomalía negativa de Eu bien pronunciada y por la mayor concentración en HREE.

Las relaciones La_N/Yb_N , La_N/Sm_N , Ce_N/Yb_N , Ce_N/Sm_N , Eu_N/Yb_N , Sm_N/Yb_N y Eu/Eu^* de las rocas analizadas del Granito de Pescadero se presentan en la tabla 8. En las

nueve muestras de rocas graníticas, la relación Eu/ Eu* < 1 podría indicar un origen con afinidad continental o fusión parcial de la corteza que subduce, en la que el Eu es retenido, lo cual genera un patrón empobrecido en este elemento.

En el diagrama multielemental normalizado con respecto a NMORB (Sun y McDonough, 1989), las rocas del Granito de Pescadero analizadas (figura 19) muestran un patrón paralelo, con empobrecimiento de los elementos inmóviles Nb, Zr y Ti que pueden corresponder a la separación de fases minerales accesorias como titanita, rutilo y apatito, lo que reflejaría una evolución característica de arcos magmáticos relacionados con ambientes de subducción, con empobrecimiento progresivo de los elementos pesados (Winter, 2001).

Figura 18. Diagrama de REE normalizado respecto al condrito de Nakamura (1974) A) Patrones correspondientes a todas las muestras del Granito de Pescadero, incluyendo la muestra 10DVL22 de Van der Lelij (2013). B) Muestras del primer patrón de REE. C) Muestras del segundo patrón de REE. Símbolos como en la figura 15

Tabla 9. Valores de elementos (La, Ce, Sm, Eu e Yb) y relaciones normalizados de rocas del Granito de Pescadero (valores de normalización son los del condrito de Nakamura, 1974)

Código IGM	La _N	Ce _N	Sm _N	Eu _N	Yb _N	Eu/Eu*	La _N /Yb _N	La ^N /Sm _N	Ce _N /Yb _N	Ce _N /Sm _N	Eu _N /Yb _N	Sm _N /Yb _N
900867	127,37	77,82	12,96	9,07	4,45	0,89	28,63	9,83	17,49	6,00	2,04	2,91
900873	143,59	118,81	44,90	16,33	13,52	0,49	10,62	3,20	8,79	2,65	1,21	3,32
900899	129,31	84,39	19,69	13,98	7,84	0,94	16,50	6,57	10,77	4,29	1,78	2,51
10VDL22-	71,82	109,62	25.91	12.34	11,55	0,66	14.88	6.63	9.49	4.23	1,07	2,24
900872	157,63	118,94	38,82	11,25	12,37	0,40	12,74	4,06	9,61	3,06	0,91	3,14
900898	94,92	107,28	32,56	8,19	10,75	0,36	8,83	2,92	9,98	3,29	0,76	3,03
900871	80,82	69,85	23,19	4,96	7,91	0,31	10,22	3,49	8,83	3,01	0,63	2,93
900897	58,10	39,97	24,20	6,84	9,42	0,42	6,17	2,40	4,24	1,65	0,73	2,57
900864	67,45	50,06	24,36	7,30	7,81	0,43	8,63	2,77	6,41	2,05	0,93	3,12

10DVL22, muestra de Van der Lelij (2013). Código de colores como en la tabla 7

Figura 19. Diagrama multielemental normalizado con respecto a NMORB (Sun y McDonough, 1989) correspondiente a rocas del Granito de Pescadero Símbolos como en la figura 18

Los valores más altos de los elementos Cs y Th, litófilos de radio iónico grande (LILE), indican una afinidad con rocas de corteza continental (márgenes convergentes), donde abundan estos elementos altamente incompatibles. Las anomalías positivas de K, y Rb podrían provenir de la movilización de fluidos que en la zona de subducción interactúan con el magma.

Los patrones multielementales de las muestras con textura hipidiomórfica-alotriomórfica inequigranular (figura 19) se diferencian de los otros en que no presentan anomalías de Ba y Zr.

6.3. Discriminación de ambiente tectónico y tipo de granitoides

Las muestras del Granito de Pescadero tienen afinidad con granitos tipo I, según se muestra en la figura 20. La muestra IGM-900864 grafica en el campo de los granitos tipo S, pero esta no es una característica primaria del magma original, sino que probablemente se debe a la alteración potásica de la roca. La muestra IGM-900871 grafica cerca del límite entre los dos campos, lo que

Figura 20. Muestras del Granito de Pescadero en el diagrama K_2O vs. Na₂O de Chappell y White (1974) para discriminar entre granitos tipo I y tipo S Símbolos como en la figura 15

sugiere que también puede tener algún grado de enriquecimiento en potasio por alteración.

7. Posición estratigráfica y edad

La primera datación radiométrica de las rocas del Granito de Pescadero fue realizada por Goldsmith *et al.* (1971), y corresponde a un análisis K-Ar en biotita de la muestra IMN-11547. La edad obtenida fue de 193 ± 6 Ma. Van der Lelij (2013) obtuvo una edad de 199,1 ± 1,3 Ma con el método U-Pb en circón por LA-ICP-MS en la muestra 10VDL22 de una granodiorita del Granito de Pescadero.

En este proyecto se dataron con el método U/Pb dos muestras: una con textura hipidiomórfica localmente gráfica (GZ-6824) colectada en la vía Piedecuesta-Pescadero, y otra con textura granofídica (GZ-6823) colectada sobre la carretera Piedecuesta-Mesa de los Santos. La ubicación de las muestras se puede visualizar en la figura 1.

Los circones de la muestra GZ-6824 se obtuvieron de un concentrado de triturado de esquirlas de roca,

mientras que los de la muestra GZ-6823 se seleccionaron a partir de un concentrado de circones de un saprolito. Las dataciones fueron realizadas en el Laboratorio de Geocronología del Servicio Geológico Colombiano, mediante el método *laser ablation inductively coupled plasma mass spectrometry* (LA-ICP-MS). El gráfico de concordia y los histogramas se elaboraron en el software de Isoplot/ Ex vers. 3.75-4.15 (Ludwig, 2012).

El resumen de los resultados obtenidos se muestra en la tabla 10, y todos los resultados están en los anexos 1 y 2. Las edades reportadas menores de 800 Ma corresponden a las obtenidas a partir de la relación ²⁰⁶Pb/²³⁸U, mientras que las mayores de 800 Ma son las arrojadas por la relación ²⁰⁷Pb/²⁰⁶Pb. De la muestra GZ-6824 (IGM-900898) se separaron 73 cristales de circones subhedrales a euhedrales de diferente tamaño, prismáticos cortos o alargados, unos pocos de formas subesféricas, translúcidos, con pátinas de óxidos de hierro e inclusiones de opacos. Presentaban fracturas internas y zonación, y sus tamaños oscilaban entre 50 y 220 μ m. Varios granos corresponden a fragmentos de cristales. No se consideraron en la interpretación los resultados con discordias mayores del 11% y discordancias inversas menores de –6%. La mayor parte de los circones exhiben zonación oscilatoria (figura 21) y algunos contienen núcleos heredados que cuando corresponden a xenocristales exhiben contactos tajantes con los bordes zonados.

Tabla 10. Resultados de geocronología en muestras del Granito de Pescadero por el método U-Pb en circón por LA-ICP-MS

Código IGM	N.° de campo	Norte	Este	Plancha	Clasificación	Edad (Ma)	Herencias (Ma)
900898	GZ-6824	1119450	1253741	120	Monzogranito	192,9 ± 1,3 MSWD = 2,0	940 ± 190; 860 ± 110; 760 ± 170; 754 ± 45; 324 ± 19; 209-200 (n = 9, antecristales)
900897	GZ-6823	1117247	1257175	120	Monzogranito	192,9 ± 2 MSWD = 1,3	$\begin{array}{c} 741\pm 410; 493\pm 10; 466\pm 10\\ n=2); 457\pm 10; 448\pm 10\;(n=2); 422\pm 15; 405\pm 19; 381\pm 16; 229\pm 9; 219\pm 8; 212\pm 5;\\ 206\pm 5 \end{array}$

Figura 21. Imágenes de catodoluminiscencia de algunos cristales de la muestra GZ-6824 (IGM-900898) con los puntos de análisis y su respectiva edad U-Pb

Las edades de los circones de la muestra GZ-6824 se resumen en la tabla 10. Los resultados se pueden visualizar en los diagramas de concordia y de densidad de probabilidad relativa (figura 22 A, B, C y D), donde la mayor parte de los datos se agrupan alrededor de los 200 Ma, con edades heredadas del Neoproterozoico y una edad heredada del Carbonífero. El diagrama de densidad de probabilidad de la figura 22C sugiere que los datos del Triásico Tardío-Jurásico representan varias poblaciones, y por tal motivo no se usan todos estos para calcular la edad promedio ponderada final de cristalización. Se interpreta que la edad de cristalización final de la muestra corresponde a la del pico más representativo de la figura 22C, que abarca datos comprendidos entre 198 y 188 Ma, mientras que los datos más antiguos que 198 Ma hasta 210 Ma deben corresponder a antecristales que son circones solidificados en etapas iniciales del magmatismo o parcialmente solidificados en el sistema magmático (Miller *et al.*, 2007). La edad promedio obtenida para el conjunto coherente de datos que se interpretan como representativos del último pulso de cristalización es de 192,9 ± 1,3 Ma con un MSWD de 2 (figura 23).

Las relaciones Th/U en los circones datados entre 198 y 188 Ma oscilan entre 0,81 y 3,6, la mayor parte por encima de 1, valores que son típicos de circones ígneos, según Rubatto (2002).

Figura 22. Resultados geocronológicos de la muestra GZ-6824(IGM-900898)

Diagrama de la concordia Tera-Wasserburg con todos los resultados obtenidos en los circones de la muestra GZ-6824 (IGM-900898). B) Diagrama de densidad de probabilidad con los resultados aceptados en circones de la muestra GZ-6824. C) Diagrama de densidad de probabilidad con los resultados del Triásico-Jurásico en circones de la muestra GZ-6824. D) Diagrama de la concordia Tera-Wasserburg en el que están los datos del Triásico Tardío-Jur rásico aceptados de la muestra GZ-6824

Figura 23. Edad promedio ponderada de la muestra GZ-6824

De la muestra GZ-6823 se extrajeron 34 circones con formas prismáticas euhedrales, transparentes y de color pardo, con inclusiones de puntos negros, algunos fracturados. En las imágenes de catodoluminiscencia (CL) se observa que los circones son euhedrales a subhedrales, si bien predominan los prismáticos alargados, algunos homogéneos y otros zonados con núcleos más oscuros. La ablación en estas muestras se hizo en los núcleos y en algunos cristales en el límite entre el núcleo zonado y los bordes (figura 24).

Las edades de cristalización y heredadas de la muestra GZ-6823 se resumen en la tabla 10. Los resultados se pueden visualizar en los diagramas de concordia y de densidad de probabilidad relativa (figura 25 A, B, C y D). Se obtuvieron edades heredadas entre el Cámbrico y Devónico (principalmente del Ordovícico), una edad heredada del Neoproterozoico, una del Carbonífero y cuatro del Triásico tardío, y un grupo representativo de edades entre 200 Ma y 188 Ma, con relaciones Th/U en los circones entre 1,10 y 3,62. En este último intervalo de edades se obtuvo una edad promedio ponderada de 192,9 ± 2 Ma con un MSWD de 1,3 (figura 26), y se interpreta como la edad final de cristalización de la roca. Algunas edades del Triásico tardío deben corresponder a xenocristales, y otras a antecristales, según las definiciones de Miller et al. (2007).

Figura 24. Imágenes de catodoluminiscencia de la muestra GZ-6823 (IGM-900728). Se muestran los cristales de circón y los puntos donde se realizaron los análisis

Figura 25. Resultados geocronológicos de la muestra GZ-6828 (IGM-900897) A) Diagrama de la concordia Tera-Wasserburg con todos los resultados obtenidos en los circones de la muestra GZ-6823 (IGM-900897). B) Diagrama de densidad de probabilidad con los resultados aceptados en circones de la muestra GZ-6823. C) Diagrama de densidad de probabilidad con los resultados del Triásico-Jurásico en circones de la muestra GZ-6823. D) Diagrama de la concordia Tera-Wasserburg en el que están los datos del Triásico Tardío-Jurásico aceptados de la muestra GZ-6823

Figura 26. Edad promedio ponderada de la muestra GZ-6823

8. Correlaciones

Las rocas del Granito de Pescadero se pueden correlacionar por edad, composición litológica, química y posición tectónica con una serie de plutones que afloran en el Macizo de Santander, generados en el mismo evento magmático entre el Triásico Tardío y el Jurásico Temprano. Entre los plutones con los que se pueden correlacionar se encuentran el Monzogranito de Santa Bárbara, con edades U/Pb de 203,8 ± 2,7; 195,1 ± 1,9; 198,0 ± 2,7 y 196,0 ± 2,0 Ma (Rodríguez *el al.*, 2018); el Monzogranito de La Corcova, con edades U/Pb de 204,8 ± 6,1; 202,7 ± 1,2; 199,5 ± 4,6; y 192,5 ± 2,6 Ma (Rodríguez *et al.*, 2016); el Monzogranito de Rionegro, con edades de 196 ± 1,1 y 195,8 ± 1,5 Ma (Van der Lelij, 2013), 214,5 ± 2,7; 197,2 ± 1,5; 196,6 ± 2,1; 195,9 ± 1,6 y 184,1 ± 2,3 (Arango *et al.*, 2016); con la tonalita y granodiorita de páramo Rico, con edades U/Pb de 199,8 ± 1,2 (Van der Lelij, 2013), 210,6 ± 3,5 a 199,0 + 2,5/–2,6 (Mantilla *et al.*, 2013) y 206,84 ± 0,97 Ma (Rodríguez *et al.*, 2017) y con el Batolito de Mogotes, que tiene edades de 201 a 198 Ma (Van der Lelij, 2013) y de 203 a 189 Ma (2020a).

El Granito de Pescadero se diferencia de las otras unidades mencionadas en que contiene rocas subvolcánicas.

Un cuerpo de riolitas dentro del Batolito de Mogotes que fue reportado por Ward *et al.* (1973) y cartografiado por Ward *et al.* (1977) como una parte del Granito de Pescadero fue recientemente definido como una nueva unidad denominada *Riolitas del Alto Los Cacaos*, con una edad de 201,6 ± 2,1 Ma (Correa Martínez *et al.*, 2020b). Las riolitas tienen una edad semejante a las rocas plutónicas del Granito de Pescadero con las cuales pueden ser correlacionables, pero son más antiguas que los granófidos del Granito de Pescadero, con los que tienen semejanzas geoquímicas (Correa Martínez *et al.*, 2020b).

9. Localidad tipo

Se propone como localidad tipo para el Granito de Pescadero los afloramientos a lo largo de la carretera Piedecuesta y la vereda Los Llanitos hasta el puente de Pescadero, en el municipio de Piedecuesta (planchas 120-Bucaramanga y 121-Cerrito). En este sector la unidad muestra afloramientos continuos y de fácil acceso.

10. Génesis

Las características composicionales y las diferencias texturales en las muestras del Granito de Pescadero sugieren cristalización en condiciones desde mesozonales hasta subvolcánicas.

Las rocas presentan empobrecimiento de elementos inmóviles Nb, P, Zr y Ti que pueden reflejar una evolución característica de arcos magmáticos relacionados con ambientes de subducción (Winter, 2001). Los valores altos de Cs y Th indican afinidad con corteza continental (márgenes convergentes), donde abundan estos elementos altamente incompatibles. El Granito de Pescadero posiblemente se generó en un arco de margen continental activa.

En arcos continentales, las rocas derivan de la fusión parcial de la cuña del manto y, en menor medida, de la corteza oceánica subducente, con mayor o menor interacción y asimilación de corteza continental inferior. Según Van der Lelij (2013) y Van der Lelij *et al.* (2016) los granitoides del Triásico-Jurásico de Santander, de acuerdo con sus composiciones isotópicas de Nd, Hf y Sr, sugieren asimilación cortical.

El carácter peraluminoso de las muestras del Granito de Pescadero puede sugerir que las rocas provienen de la fusión de corteza continental o que los magmas experimentaron contaminación con las rocas de caja, aunque magmas peraluminosos que generan granitos tipo I pueden derivarse por fusión parcial de rocas metaluminosas (Chappell *et al.*, 2012).

En las muestras analizadas del Granito de Pescadero, los circones heredados abundantes del Paleozoico y escasos del Neo-proterozoico, indican la fusión de rocas de la corteza continental en la que se emplazó el cuerpo plutónico. Las edades U/Pb ordovícicas obtenidas en los núcleos heredados de los circones son comparables con edades U/Pb obtenidas del Neis de Bucaramanga, los ortogneises graníticos del Macizo de Santander y otros granitoides ordovícicos de los macizos de Santander y Floresta.

La presencia de dos patrones de REE en las rocas del Granito de Pescadero, cada uno con edades diferentes, sugiere por lo menos dos eventos o pulsos magmáticos diferentes. Las rocas del patrón con leve anomalía negativa de Eu tienen una edad de 199 \pm 1 Ma (edad reportada por Van der Lelij, 2013), mientras que las rocas del patrón con anomalía negativa de Eu bien pronunciada tienen una edad de 193 \pm 2 Ma.

11. Recursos minerales

Sobre la vía Piedecuesta-Pescadero existen varias canteras de gravas y arenas provenientes de las rocas del Granito de Pescadero.

Otero y Angarita (1975) y Royero y Clavijo (2001) mencionan explotaciones de granitos como piedras ornamentales en las áreas de Umpalá y Pescadero, municipio de Piedecuesta. Royero y Clavijo (2001) señalan que los problemas de la explotación del Granito de Pescadero son la meteorización y la densidad de fracturamiento.

Otero y Angarita (1975) reportan la mina de fluorita Lomas de Ventorrillo, localizada aproximadamente a 800 m de la inspección de policía de Pescadero, por el camino que cruza la quebrada Chinavega. Según estos autores, se presenta como un filón de fluorita blanca a verde pálido con cuarzo, con rumbo N 80°E y un espesor que oscila entre 0,2 y 2 m. Igualmente, reporta filones de este mismo material encajados en diques de pegmatita dentro del Granito de Pescadero. Existen también minas de fluorita en cercanías de Umpalá y en la vía a Cepitá.

Otero y Angarita (1975) también mencionan diques de feldespato que cortan este plutón.

No se conocen otros tipos de mineralizaciones asociadas al Granito de Pescadero.

Conclusiones

Petrográficamente, las muestras analizadas de esta unidad litológica tienen una composición ácida que varía desde sieno a monzogranitos, con muy pocas muestras de composición intermedia granodiorítica. Las rocas están constituidas principalmente por feldespato alcalino (23 a 64%), cuarzo (21 a 37%) y plagioclasa (10 a 38,5%), con porcentajes de biotita <7% y moscovita <2%, y ausencia de hornblenda.

Químicamente, las rocas son de la serie calco-alcalina alta en K, peraluminosas, afines con granitos tipo I. De acuerdo con el enriquecimiento general en K, Rb, Th y Cs y las anomalías negativas de Nb, P, Zr y Ti, se interpreta que fueron generadas en ambientes relacionados a subducción. La unidad posiblemente se originó en un arco de margen continental activa.

Los elementos de las tierras raras del Granito de Pescadero permiten dividirlo en dos grupos con diferentes tendencias del patrón geoquímico de REE, que a su vez coinciden con la clasificación textural: un grupo con mavor pendiente negativa y una incipiente anomalía negativa de Eu, exhibido por muestras con texturas hipidiomórfica y/o alotriomórfica inequigranular; el otro grupo, con una pendiente del patrón de REE menos inclinada, con menor concentración de LREE, en comparación con el anterior, pero con una anomalía de Eu negativa muy bien definida, donde las muestras que presentan este patrón son las que tienen texturas gráficas locales y texturas granofídicas, exceptuando una muestra que es de textura alotriomórfica. Una muestra del primer grupo presenta una edad de 199 ± 1 Ma, que fue reportada por Van der Lelij (2013) y Van der Lelij *et al.* (2016), mientras que dos muestras del segundo grupo arrojaron edades de 193 ± 1 y 193± 2 Ma. Las características texturales, geoquímicas y geocronológicas de los dos grupos sugieren que el Granito de Pescadero se generó a partir de por lo menos dos eventos o pulsos magmáticos.

Al igual que en otros cuerpos del Macizo de Santander, hay registro de magmatismo desde los 210 Ma, aproximadamente. Es posible que los circones con edades de entre 210 y 200 Ma correspondan a antecristales, y los más antiguos, a xenocristales. El último evento de cristalización del Granito de Pescadero se reconoce hacia la parte centro-septentrional y septentrional, y ocurrió alrededor de los 193 Ma.

Referencias

- Arango, M. I, Rodríguez, G, Zapata G. y Correa M, A. M. (2016). Catálogo de unidades litoestratigráficas de Colombia. Monzogranito de Rionegro, cordillera Oriental, departamento de Santander. Medellín: Servicio Geológico Colombiano.
- Cardona, A. (2003). Correlações entre fragmentos do embasamento Pre-Mesozoico da terminação setentrional dos Andes Colombianos, com base em dados isotópicos e geocronológicos (tesis de maestria). Universidade de São Paulo.
- Chappell, B. W, Bryant, C. J. y Wyborn, D. (2012). Peraluminous I-type granites. *Lithos*, 153, 142-153. https://doi.org/10.1016/j.lithos.2012.07.008.
- Chappell, B. W. y White, A. J. R. (1974). Two contrasting granite types. *Pacific Geology*, 8 (2), 173-174.
- Clavijo, J. (1994). *Mapa geológico generalizado de norte de Santander. Escala 1:250.000. Mapa interno.* Bucaramanga: Ingeominas.
- Cordani, U. G, Cardona, A, Jiménez, D. M, Liu, D. y Nutran, A. P. (2005). Geochronology of Proterozoic basement inliers from the Colombian Andes: Tectonic history of remnants from a fragmented Grenville belt. Londres: Geological Society. https://doi. org/10.1144/GSLSP.2005.246.01.13.
- Correa Martínez, A. M, Rodríguez, G, Arango, M. I, Zapata, G. y Bermúdez J. G. (2020a). Batolito de Mogotes. En Catálogo de las unidades litoestratigráficas de Colombia: Macizo de Santander. Vol. 1. Bogotá: Servicio Geológico Colombiano.
- Correa Martínez, A. M, Rodríguez, G, Arango, M. I, Zapata, G. y Bermúdez J. G. (2020b). Riolitas del Alto Los Cacaos. En Catálogo de las unidades litoestratigráficas de Colombia: Macizo de Santander. Vol. 1. Bogotá: Servicio Geológico Colombiano.

- Droop, G. T. R. (1987). A general equation for estimating Fe³⁺ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. *Mineralogical Magazine*, 51 (361), 431-435. https://doi.org/10.1180/minmag.1987.051.361.10.
- García, C. y Ríos, C. (1999). Metamorfismo y metalogenia asociada del Macizo de Santander, cordillera Oriental, Colombia. Informe final Proyecto de Investigación 1102-05-083-95. Bucaramanga: Colciencias-Universidad Industrial de Santander.
- Goldsmith, R, Marvin, R. F. y Maner, H. H. (1971). *Radiometric ages in the Santander Massif, Eastern Cordillera, Colombian Andes.* U.S. Geological Survey Professional Paper 750-D, D44-D49.
- Hughes, C. J. (1972). Spilites, keratophyres and the igneous spectrum. *Geological Magazine*, 109(6), 513-527. https://doi.org/10.1017/S0016756800042795.
- International Subcommission on Stratigraphic Classification. (1987). Stratigraphic classification and nomenclature of igneous and metamorphic rock bodies. *GSA Bulletin*, 99 (3), 440-442. https://doi.org/ 10.1130/0016-7606(1987)99<440:SCANOI>2.0.CO;2.
- International Subcommision on Stratigraphic Classification. (1994). *International stratigraphic guide:* A *guide to stratigraphic classification, terminology and procedure* (2.ª ed.). Amos Salvador (ed.). The International Union of Geological Sciences – The Geological Society of America.
- Leal-Mejía, H. (2011). *Phanerozoic Gold Metallogeny in the Colombian Andes: A tectono-magmatic approach* (tesis de doctorado). Universitat de Barcelona, España.
- Ludwig, K. R. (2012). User's manual for Isoplot 3.75-4.15. A Geochronological Toolkit Microsoft Excel. Berkeley Geochronology Center.
- Mantilla Figueroa, L. C, Bissig, T, Cottle, J. M, y Hart, C. J. (2012). Remains of early Ordovician mantle-derived magmatism in the Santander Massif (Colombian Eastern Cordillera). *Journal of South American Earth Sciences*, 38, 1-12. https://doi.org/10.1016/j. jsames.2012.03.001.
- Mantilla Figueroa, L. C, Bissig, T, Valencia. V. y Hart, C. (2013). The magmatic history of the Vetas-California Mining District, Santander Massif Eastern Cordillera, Colombia. *Journal of South American Earth Sciences*, 45, 235-249. https://doi.org/10.1016/j. jsames.2013.03.006.

- Mantilla-Figueroa, L. C, García-Ramírez, C. A. y Valencia, V. A. (2016). Propuesta de escisión de la denominada "formación Silgará" (Macizo de Santander, Colombia), a partir de edades U-Pb en circones detríticos. *Boletín de Geología*, 38 (1), 33-50. https:// doi.org/10.18273/revbol.v38n1-2016002.
- Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. *Earth-Science Reviews*, 37 (3-4), 215-224. https://doi.org/10.1016/0012-8252(94)90029-9.
- Miller, J. S, Matzel, J. E, Miller, C. F, Burgess, S. D. y Miller, R. B. (2007). Zircon growth and recycling during the assembly of large, composite arc plutons. *Journal of Volcanology and Geothermal Research*, 167 (1-4), 282-299. https://doi.org/10.1016/j.jvolgeores.2007.04.019.
- Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. *Geochimica et Cosmochimica Acta*, 38 (5), 757-775. https://doi.org/10.1016/0016-7037(74)90149-5.
- Otero, A. y Angarita, L. (1975). *Ocurrencias minerales en el departamento de Santander del Sur*. Informe 1686. Bogotá: Ingeominas.
- Pankhurst, R. J., Rapela, C. W., Saavedra, J., Baldo, E., Dahlquist, J., Pascua, I. y Fanning, C. M. (1998). The Famatinian magmatic arc in the Central Sierras Pampeanas: An Early to Mid-Ordovician continental arc on the Gondwana margin. En R. J. Pankhursty C. W. Rapela (eds.), *The ProtoAndean Margin of Gondwana*. Londres: Geological Society.
- Peccerillo A. y Taylor, T. S. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey. *Contributions to Mineralogy and Petrology*, 58, 63-81. https://doi.org/10.1007/ BF00384745.
- Rapela, C. W, Casquet, C, Baldo, E, Dahlquist, J, Pankhurst, R. J, Galindo, C. y Saavedra, J. (2001). Las orogénesis del Paleozoico Inferior en el margen proto-andino de América del Sur, sierras pampeanas, Argentina. *Journal of Iberian Geology*, 27 (1), 23-41.
- Restrepo-Pace, P. A. (1995). Late Precambrian to early Mesozoic tectonic evolution of the Colombian Andes, based on new geochronological, geochemical and isotopic data (tesis Ph. D.), Univ. of Ariz, Tucson, EE. UU.
- Restrepo-Pace, P, Ruiz, J, Gehrels, G. y Cosca, M. (1997). Geochronology and Nd isotopic data of the Grenville-age rocks in the Colombian Andes: New con-

straints for Late Proterozoic-Early Paleozoic paleocontinental reconstructions of the Americas. *Earth and Planetary Science Letters*, 150 (3-4), 427-441. https://doi.org/10.1016/S0012-821X(97)00091-5.

- Rodríguez, G, Zapata, G, Arango, M. I. y Correa, A. M. (2018). Catálogo Monzogranito de Santa Bárbara, cordillera Oriental, departamento de Santander. Medellín: Servicio Geológico Colombiano.
- Rodríguez, G, Correa, A. M, Zapata, G. y Arango, M. I. (2016). *Catálogo Monzogranito de La Corcova, cordillera Oriental, departamento de Santander*. Medellín: Servicio Geológico Colombiano.
- Rodríguez, G, Zapata, G, Correa-Martínez, A. M. y Arango, M. I. (2017). *Caracterización del magmatismo triásico-jurásico del Macizo de Santander*. Medellín: Servicio Geológico Colombiano.
- Royero, J. M. y Clavijo, J. (2001). *Mapa Geológico generalizado departamento de Santander. Escala 1: 400.000.* Bogotá: Informe Ingeominas.
- Rubatto, D. (2002). Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. *Chemical Geology*, 184(1-2), 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2.
- Shand, S. J. (1943). Eruptive rocks: Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. New York: John Wiley & Sons.
- Smith, J. V. y Brown, W. L. (1988). Feldspar minerals. I. Crystal Structures, Physical, Chemical and Microtextural Properties (2.^a ed.). Berlín: Springer-Verlag. https://doi.org/10.1007/978-3-642-72594-4.
- Streckeisen, A. L. (1974). Classification and nomenclature of plutonic rocks recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. *Geologische Rundschau. Internationale Zeitschrift für Geologie*, 63 (2), 773-785.
- Streckeisen, A. (1978). IUGS Subcommission on the Systematics of Igneous Rocks: Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks; recommendation and

suggestions. Neues Jahrbuch für Mineralogie, Abhandlungen, 134, 1-14.

- Sun, S. S. y Mcdonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. En A. D. Sanders y M. J. Norry (eds.), *Magmatism in oceanic basins*. Oxford: Geological Society of London.
- Van Der Lelij, R. (2013). *Reconstructing North-Western Gondwana with implications for the evolution of the lapetus and Rheic Oceans: A geochronological, thermochronological and geochemical study* (tesis de doctorado), Université de Genève, n.º 4581, Suiza.
- Van der Lelij, R., Spikings, R., Ulianov, A., Chiaradia, M. y Mora, A. (2016). Palaeozoic to Early Jurassic history of the Northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. *Gondwana Research*, 31, 271-294. https://doi.org/10.1016/j.gr.2015.01.011.
- Vargas, R., Arias, A., Jaramillo, L. y Téllez, N. (1981). Geología del cuadrángulo I-13, Málaga. Boletín Geológico, 24 (3), 1-76.
- Vargas, R., Arias, A., Jaramillo, L., y Téllez, N. (1984). Geología de la Plancha 136-Málaga. Mapa, escala: 1:100.000. Bogotá: Ingeominas.
- Ward, D. E., Goldsmith, R., Jimeno, A., Cruz, J., Restrepo,
 H. y Gómez, E. (1973). Cuadrángulo H-12 Bucaramanga. Planchas 109-Rionegro, 120-Bucaramanga.
 Cuadrángulo H-13 Pamplona. Planchas 110-Pamplona, 121-Cerrito. Escala 1:100.000. Boletín Geológico, 21 (1-3).
- Ward, D. E., Goldsmith, R., Cruz, J., Téllez, N. y Jaramillo, L. (1977). Mapa geológico San Gil y Málaga (parte de los cuadrángulos I-12 y I-13), Colombia. Escala: 1:100.000. Bogotá: Ingeominas.
- Whitney, D. L. y Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. *American Mineralogist*, 95 (1), 185-187. https://doi.org/10.2138/ am.2010.3371.
- Winter, J. (2001). An introduction to igneous and metamorphic petrology. New Jersey: Prentice Hall.

ANEXOS

Edades U-Pb del Granito de Pescadero, muestras GZ-6823 (IGM-900897) Y GZ-6824 (IGM-900898)

Anexo 1. Edades U-Pb del Granito de Pescadero, muestra GZ-6824 (IGM-900898)

Punto	U ,	Th	Th/U	207Pb/	±2 σ	²⁰⁷ Pb/	± 2 σ	²⁰⁶ Pb/	± 2 σ	Correlación	Edad 206 Pb/	± 2 σ	Edad 207Pb/	± 2σ	Edad 207Pb/	± 2 σ
07.0004.04	(ppm)	(ppm)	0.00	200 Pb	0.00040	200	0.0000	2300	0.00004		²³⁸ U (Ma)	4.07	235U (Ma)	01.00	P D (ma)	470.00
GZ_6824_01	172,00	512,00	2,98	0,07070	0,00640	0,3180	0,0280	0,03187	0,00061	0,0582	197,09	4,07	283,00	21,00	820,00	170,00
GZ_6824_02	1329,00	826,00	0,62	0,07280	0,00210	0,2577	0,0072	0,02626	0,00031	0,2032	162,23	1,95	233,40	5,90	989,00	60,00
GZ_6824_03	676,00	785,00	1,16	0,05350	0,00250	0,2160	0,0100	0,02986	0,00042	0,0731	188,82	2,70	199,10	8,40	329,00	93,00
GZ_6824_04	350,80	/12,50	2,03	0,04990	0,00370	0,2020	0,0150	0,03007	0,00052	0,2065	190,99	3,39	186,00	13,00	150,00	130,00
GZ_6824_05	608,00	606,00	1,00	0,05810	0,00290	0,2520	0,0130	0,03145	0,00048	0,1571	197,64	3,07	228,00	10,00	511,00	98,00
GZ_6824_06	470,00	1058,00	2,25	0,05660	0,00370	0,2360	0,0150	0,03033	0,00042	0,1000	191,02	2,76	215,00	12,00	440,00	130,00
GZ_6824_07	1432,00	2784,00	1,94	0,04970	0,00160	0,2050	0,0062	0,03032	0,00031	0,1131	192,61	1,99	188,60	5,20	194,00	64,00
GZ_6824_08	172,30	337,00	1,96	0,04910	0,00650	0,2000	0,0260	0,03029	0,00073	0,0236	192,56	4,85	179,00	22,00	60,00	210,00
GZ_6824_09	122,90	296,60	2,41	0,05000	0,00860	0,1940	0,0350	0,02965	0,00071	0,0344	188,32	4,90	180,00	29,00	0,00	260,00
GZ_6824_10	246,00	87,70	0,36	0,06700	0,00260	1,1410	0,0540	0,12450	0,00370	0,4868	754,14	21,85	761,00	25,00	809,00	79,00
GZ_6824_11	80,80	166,80	2,06	0,09200	0,01400	0,4240	0,0620	0,03330	0,00110	0,1688	200,27	7,51	350,00	44,00	990,00	290,00
GZ_6824_12	58,80	84,40	1,44	0,06400	0,01500	0,2400	0,0640	0,03170	0,00120	0,1165	197,72	8,30	223,00	51,00	-20,00	370,00
GZ_6824_13	185,00	123,90	0,67	0,05880	0,00610	0,2540	0,0270	0,03176	0,00065	0,1000	199,39	4,32	229,00	22,00	490,00	190,00
GZ_6824_14	193,30	311,50	1,61	0,11600	0,01200	0,5690	0,0660	0,03373	0,00084	0,8131	196,47	5,80	405,00	35,00	1660,00	200,00
GZ_6824_15	102,90	188,60	1,83	0,06300	0,01000	0,2700	0,0420	0,03127	0,00079	0,1000	195,31	5,47	220,00	34,00	300,00	280,00
GZ_6824_16	858,00	975,00	1,14	0,04970	0,00200	0,2055	0,0078	0,03080	0,00037	0,2112	195,63	2,38	191,20	6,70	183,00	76,00
GZ_6824_17	232,10	298,00	1,28	0,04990	0,00500	0,2080	0,0210	0,03059	0,00051	0,0270	194,26	3,43	187,00	17,00	200,00	160,00
GZ_6824_18	176,90	264,00	1,49	0,05850	0,00670	0,2570	0,0280	0,03130	0,00073	0,1414	196,61	4,83	232,00	22,00	450,00	190,00
GZ_6824_19	100,90	208,80	2,07	0,05600	0,01000	0,2220	0,0400	0,02855	0,00078	0,0433	180,05	5,37	193,00	32,00	180,00	290,00
GZ_6824_20	109,20	220,60	2,02	0,05110	0,00940	0,2000	0,0370	0,03030	0,00078	0,0952	192,15	5,39	187,00	31,00	110,00	260,00
GZ_6824_21	124,70	267,50	2,15	0,05250	0,00740	0,2190	0,0300	0,03058	0,00074	0,0176	193,57	4,97	195,00	25,00	160,00	230,00
GZ_6824_22	359,00	477,00	1,33	0,05610	0,00370	0,2310	0,0150	0,03046	0,00048	0,0575	191,95	3,12	212,00	12,00	430,00	130,00
GZ_6824_23	105,80	239,60	2,26	0,05400	0,01000	0,2470	0,0440	0,03206	0,00082	0,0756	202,47	5,71	205,00	33,00	90,00	260,00
GZ_6824_24	110,80	254,00	2,29	0,04420	0,00830	0,1870	0,0340	0,03126	0,00075	0,0976	199,87	5,17	164,00	29,00	-130,00	260,00
GZ_6824_25	163,10	277,30	1,70	0,06060	0,00650	0,2480	0,0260	0,02928	0,00056	0,1168	183,55	3,79	219,00	21,00	440,00	190,00
GZ_6824_26	170,80	416,00	2,44	0,08660	0,00940	0,3750	0,0420	0,03177	0,00071	0,4237	192,50	4,87	307,00	29,00	1170,00	200,00
GZ_6824_27	68,60	93,40	1,36	0,06200	0,01400	0,2230	0,0530	0,02700	0,00087	0,0661	169,08	6,17	201,00	45,00	70,00	370,00
GZ_6824_28	42,10	76,50	1,82	0,10000	0,02000	0,4110	0,0870	0,03180	0,00120	0,5672	189,33	8,67	319,00	62,00	770,00	390,00
GZ_6824_29	68,50	83,60	1,22	0,05100	0,01000	0,2210	0,0440	0,03286	0,00080	0,1671	208,24	5,64	205,00	39,00	20,00	300,00
GZ_6824_30	110,80	208,60	1,88	0,05500	0,00770	0,2190	0,0320	0,03020	0,00072	0,0046	190,59	4,86	197,00	26,00	200,00	230,00
GZ_6824_31	96,50	178,10	1,85	0,05390	0,00650	0,2270	0,0260	0,03036	0,00068	0,1138	191,86	4,53	207,00	22,00	300,00	200,00
GZ_6824_32	143,40	333,00	2,32	0,07820	0,00570	0,3420	0,0260	0,03158	0,00063	0,1452	193,45	4,08	294,00	19,00	970,00	150,00
GZ_6824_33	25,10	8,99	0,36	0,06930	0,00600	1,5300	0,1300	0,15790	0,00360	0,1302	946,49	21,84	925,00	56,00	760,00	170,00
GZ_6824_34	150,00	180,00	1,20	0,05070	0,00590	0,2110	0,0240	0,03067	0,00059	0,0619	194,57	3,97	188,00	20,00	160,00	190,00
GZ_6824_35	83,10	88,30	1,06	0,06310	0,00810	0,2670	0,0320	0,03101	0,00075	0,1000	193,68	5,04	235,00	27,00	470,00	230,00
GZ_6824_36	130,50	125,80	0,96	0,05370	0,00530	0,2200	0,0220	0,03069	0,00061	0,1000	193,97	4,03	202,00	18,00	300,00	170,00
GZ_6824_37	88,80	99,30	1,12	0,05250	0,00660	0,2440	0,0300	0,03304	0,00077	0,1000	208,98	5,11	217,00	24,00	320,00	200,00
GZ_6824_38	80,30	95,90	1,19	0,05090	0,00900	0,1950	0,0340	0,02803	0,00075	0,0793	177,93	5,12	177,00	29,00	20,00	270,00
GZ_6824_39	270,00	456,00	1,69	0,05320	0,00370	0,2280	0,0150	0,03202	0,00053	0,0648	202,42	3,44	208,00	13,00	320,00	120,00
GZ_6824_40	79,80	59,80	0,75	0,05510	0,00880	0,2370	0,0360	0,03198	0,00072	0,1000	201,69	5,01	211,00	28,00	320,00	230,00
GZ_6824_41	18,33	2,54	0,14	0,07900	0,00780	1,8600	0,1800	0,17750	0,00490	0,0374	1047,78	29,43	1040,00	68,00	940,00	190,00
GZ_6824_42	153,60	191,00	1,24	0,05250	0,00540	0,2220	0,0230	0,03166	0,00061	0,1000	200,34	4,05	207,00	19,00	240,00	180,00
GZ_6824_43	74,30	77,60	1,04	0,04200	0,01100	0,1610	0,0460	0,03090	0,00078	0,1000	198,13	5,63	160,00	39,00	-270,00	330,00
GZ_6824_44	220,20	305,00	1,39	0,05180	0,00440	0,2090	0,0180	0,03030	0,00057	0,0791	191,98	3,73	194,00	15,00	200,00	150,00
GZ_6824_45	318,00	443,00	1,39	0,05040	0,00360	0,2280	0,0160	0,03300	0,00052	0,0155	209,27	3,39	206,00	14,00	250,00	130,00
GZ_6824_46	489,00	999,00	2,04	0,05210	0,00300	0,2290	0,0130	0,03217	0,00049	0,0835	203,63	3,16	210,00	11,00	250,00	110,00
GZ_6824_47	950,00	688,00	0,72	0,05330	0,00180	0,3720	0,0160	0,05160	0,00130	0,5700	324,18	8,07	318,00	11,00	305,00	70,00
GZ_6824_48	323,80	938,00	2,90	0,07490	0,00590	0,3260	0,0250	0,03214	0,00049	0,0188	197,68	3,34	277,00	19,00	810,00	150,00
GZ_6824_49	179,90	300,00	1,67	0,07570	0,00970	0,3390	0,0450	0,03241	0,00089	0,0402	199,12	5,95	268,00	33,00	560,00	240,00
GZ_6824_50	50,00	22,53	0,45	0,06630	0,00560	1,4600	0,1300	0,16320	0,00420	0,0230	980,50	25,15	909,00	52,00	620,00	170,00
GZ_6824_51	81,50	38,20	0,47	0,07070	0,00400	1,5050	0,0850	0,15900	0,00300	0,1733	951,31	17,87	937,00	34,00	860,00	110,00
GZ_6824_52	374,00	356,00	0,95	0,12820	0,00210	6,0100	0,1100	0,34250	0,00440	0,5564	1873,08	24,09	1974,00	17,00	2075,00	27,00
GZ_6824_53	420,00	260,00	0,62	0,06250	0,00230	0,5900	0,0250	0,07000	0,00170	0,4639	432,51	10,36	472,00	16,00	654,00	76,00
GZ_6824_54	116,00	93,50	0,81	0,06300	0,01500	0,2410	0,0600	0,03111	0,00091	0,0678	194,32	6,72	212,00	49,00	50,00	360,00
GZ_6824_55	733,00	1133,00	1,55	0,05140	0,00210	0,2261	0,0097	0,03196	0,00039	0,2822	202,49	2,50	206,90	8,00	255,00	81,00
GZ_6824_56	153,30	400,00	2,61	0,04700	0,00650	0,1950	0,0270	0,03064	0,00072	0,1000	195,27	4,81	182,00	22,00	110,00	210,00
GZ_6824_57	243,00	876,00	3,60	0,04780	0,00500	0,2050	0,0220	0,03117	0,00063	0,1560	198,42	4,16	189,00	18,00	170,00	170,00
GZ_6824_58	241,00	178,00	0,74	0,04830	0,00500	0,2080	0,0210	0,03223	0,00066	0,1128	204,97	4,34	188,00	18,00	140,00	170,00
GZ_6824_59	130,00	199,00	1,53	0,06200	0,01300	0,2270	0,0400	0,03155	0,00079	0,0167	197,29	5,86	207,00	31,00	-20,00	320,00
GZ_6824_60	80,60	147,70	1,83	0,05200	0,01300	0,2290	0,0530	0,03309	0,00093	0,1000	209,42	6,73	191,00	50,00	10,00	330,00
GZ_6824_61	145,70	491,00	3,37	0,06420	0,00770	0,3030	0,0380	0,03388	0,00075	0,4123	211,12	5,06	253,00	28,00	530,00	200,00
GZ_6824_62	24,70	32,50	1,32	0,12400	0,08300	0,1800	0,1600	0,02980	0,00190	0,1000	171,87	22,35	378,00	97,00	-1900,00	1000,00
GZ_6824_63	68,50	114,80	1,68	0,07500	0,01300	0,3200	0,0530	0,03140	0,00110	0,1000	193,15	7,43	268,00	43,00	560,00	310,00
GZ_6824_64	78,50	155,00	1,97	0,06500	0,01200	0,3130	0,0540	0,03360	0,00110	0,1375	209,19	7,48	294,00	43,00	560,00	280,00
GZ_6824_65	37,50	47,20	1,26	0,08000	0,02700	0,3200	0,1000	0,03270	0,00160	0,0689	199,78	11,91	302,00	75,00	300,00	510,00
GZ_6824_66	126,40	282,00	2,23	0,05760	0,00860	0,2350	0,0340	0,02960	0,00073	0,1000	186,24	4,97	212,00	28,00	410,00	240,00
GZ_6824_67	198,60	460,00	2,32	0,05680	0,00590	0,2520	0,0250	0,03193	0,00067	0,1000	200,95	4,43	232,00	21,00	450,00	180,00

Punto	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	± 2 σ	²⁰⁷ Pb/ ²³⁵ U	± 2 σ	²⁰⁶ Pb/ ²³⁸ U	± 2 σ	Correlación de errores	Edad 208 Pb/ 238 U (Ma)	± 2 σ	Edad 207Pb/ 235U (Ma)	± 2 σ	Edad ²⁰⁷ Pb/ ²⁰⁶ Pb (Ma)	± 2 σ
GZ_6823_18	837,00	984,00	1,18	0,05420	0,00190	0,1952	0,0077	0,02604	0,00048	0,4152	164,72	4,51	181,10	6,40	365,00	73,00
GZ_6823_19	896,00	3370,00	3,76	0,08390	0,00960	0,3240	0,0300	0,02958	0,00051	0,1000	179,97	5,36	277,00	22,00	960,00	180,00
GZ_6823_3	228,00	251,00	1,10	0,05090	0,00380	0,2030	0,0150	0,02958	0,00070	0,2768	187,67	5,82	189,00	12,00	190,00	120,00
GZ_6823_24	559,00	988,00	1,77	0,05190	0,00200	0,2147	0,0085	0,02994	0,00038	0,2432	189,70	4,47	197,40	7,10	281,00	78,00
GZ_6823_8	214,00	674,00	3,15	0,05030	0,00450	0,2070	0,0180	0,03002	0,00074	0,2147	190,58	6,10	192,00	15,00	210,00	150,00
GZ_6823_4	1009,00	1297,00	1,29	0,04910	0,00170	0,2072	0,0071	0,03018	0,00030	0,1450	191,87	4,28	191,20	5,90	147,00	67,00
GZ_6823_30	227,00	475,00	2,09	0,05240	0,00340	0,2150	0,0130	0,03019	0,00049	0,0836	191,15	4,94	197,00	11,00	240,00	120,00
GZ_6823_16	237,00	341,00	1,44	0,04950	0,00340	0,2030	0,0130	0,03058	0,00052	0,0501	194,29	5,20	186,00	11,00	140,00	120,00
GZ_6823_21	406,00	1061,00	2,61	0,05070	0,00230	0,2160	0,0100	0,03073	0,00040	0,2314	194,95	4,66	197,80	8,30	246,00	89,00
GZ_6823_26	201,50	441,00	2,19	0,06250	0,00420	0,2650	0,0190	0,03073	0,00062	0,2947	192,09	5,54	234,00	15,00	590,00	130,00
GZ_6823_9	340,00	1006,00	2,96	0,04910	0,00280	0,2080	0,0120	0,03078	0,00044	0,1380	195,65	4,87	189,90	9,80	150,00	100,00
GZ_6823_14	429,00	1390,00	3,24	0,05510	0,00310	0,2320	0,0120	0,03093	0,00042	0,0506	195,13	4,80	210,00	10,00	370,00	110,00
GZ_6823_27	470,00	1080,00	2,30	0,05440	0,00280	0,2310	0,0120	0,03102	0,00044	0,1920	195,86	4,85	208,40	9,40	308,00	91,00
GZ_6823_13	987,00	3570,00	3,62	0,05060	0,00160	0,2201	0,0071	0,03159	0,00030	0,1836	200,37	4,40	201,10	5,90	219,00	66,00
GZ_6823_17	552,00	2400,00	4,35	0,04850	0,00210	0,2159	0,0093	0,03242	0,00038	0,1328	206,12	4,79	197,00	7,70	128,00	81,00
GZ_6823_29	225,00	582,00	2,59	0,04760	0,00300	0,2180	0,0140	0,03325	0,00052	0,0769	211,57	5,45	199,00	12,00	80,00	110,00
GZ_6823_32	379,00	248,00	0,65	0,05280	0,00260	0,2580	0,0160	0,03460	0,00100	0,6939	218,66	7,57	229,00	13,00	322,00	99,00
GZ_6823_6	990,00	1660,00	1,68	0,05280	0,00430	0,2560	0,0260	0,03630	0,00120	0,1820	229,28	8,86	236,00	18,00	290,00	150,00
GZ_6823_25	664,00	31,70	0,05	0,05550	0,00220	0,3350	0,0210	0,04270	0,00210	0,7595	268,27	13,69	291,00	16,00	415,00	83,00
GZ_6823_15	1570,00	1320,00	0,84	0,05380	0,00120	0,4480	0,0220	0,06080	0,00230	0,8249	380,69	16,05	370,00	15,00	341,00	46,00
GZ_6823_11	605,00	273,00	0,45	0,05790	0,00250	0,5300	0,0260	0,06510	0,00280	0,6133	405,07	19,02	430,00	18,00	524,00	87,00
GZ_6823_2	1351,00	205,00	0,15	0,05500	0,00190	0,5120	0,0200	0,06770	0,00200	0,5240	422,41	14,79	418,00	13,00	394,00	74,00
GZ_6823_22	667,00	428,00	0,64	0,05680	0,00130	0,5540	0,0160	0,07190	0,00120	0,6897	447,09	11,71	447,00	11,00	457,00	51,00
GZ_6823_10	1393,00	2235,00	1,60	0,05598	0,00099	0,5530	0,0110	0,07196	0,00064	0,3878	447,90	9,90	447,20	6,80	453,00	39,00
GZ_6823_28	1025,00	859,00	0,84	0,05690	0,00110	0,5680	0,0120	0,07358	0,00092	0,4247	457,26	10,49	458,20	7,50	479,00	41,00
GZ_6823_7	497,00	288,00	0,58	0,05800	0,00140	0,6040	0,0150	0,07518	0,00067	0,2493	466,37	9,90	481,80	9,80	510,00	54,00
GZ_6823_31	227,00	120,70	0,53	0,05820	0,00200	0,6070	0,0230	0,07520	0,00100	0,3173	466,38	11,12	479,00	14,00	517,00	76,00
GZ_6823_12	492,00	722,00	1,47	0,05800	0,00160	0,5930	0,0180	0,07555	0,00077	0,3740	468,62	10,50	473,00	11,00	516,00	58,00
GZ_6823_23	1940,00	980,00	0,51	0,05910	0,00140	0,6450	0,0330	0,07970	0,00330	0,8630	493,13	21,87	502,00	20,00	580,00	51,00
GZ_6823_5	255,00	114,00	0,45	0,07190	0,00390	0,9200	0,1400	0,08790	0,00930	0,9706	534,28	55,88	605,00	62,00	920,00	110,00
GZ_6823_33	492,00	77,00	0,16	0,06610	0,00210	1,1560	0,0820	0,12210	0,00650	0,8484	740,83	41,33	742,00	39,00	777,00	65,00
GZ_6823_1	729,00	268,00	0,37	0,08730	0,00240	2,0400	0,1900	0,15900	0,01300	0,9872	933,01	73,87	1031,00	73,00	1346,00	57,00
GZ_6823_20	80,80	37,70	0,47	0,08050	0,00340	1,8530	0,0790	0,16830	0,00220	0,1226	993,60	23,65	1057,00	28,00	1192,00	88,00
GZ_6823_34	1279,00	239,00	0,19	0,08350	0,00130	1,9990	0,0890	0,16980	0,00610	0,9361	998,65	40,06	1096,00	30,00	1278,00	30,00

Anexo 2. Edades U-Pb del Granito de Pescadero, muestra GZ-6823 (IGM-900897)

MONZOGRANITO DE Santa Bárbara

»Cordillera Oriental Departamento de Santander

Gabriel Rodríguez, Gilberto Zapata, María Isabel Arango y Ana María Correa Martínez

Catálogo de las unidades litoestratigráficas de Colombia / Triásico-Jurásico

Citación: Rodríguez, G., Zapata, G., Arango, M. I. y Correa Martínez, A. M. (2020). Monzogranito de Santa Bárbara. En *Catálogos de las unidades litoestratigráficas de Colombia: Macizo de Santander.* Vol. 1. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585279445.3 En el Macizo de Santander, la actividad magmática del periodo Jurásico se evidencia en el emplazamiento de cuerpos intrusivos graníticos, cuerpos hipoabisales y vulcanismo riolítico-riodacítico en basamentos metamórficos del Paleozoico. Los cuerpos son alargados y orientados preferencialmente en dirección norte-noroeste, lo que concuerda con el rumbo de las fallas regionales, principalmente la falla de Bucaramanga, que marcan la tectónica del Macizo de Santander y delimitan las diferentes unidades.

El Monzogranito de Santa Bárbara es uno de los cuerpos resultado del magmatismo Triásico-Jurásico. En el catálogo del Monzogranito de Santa Bárbara se incluyen los análisis petrográficos, químicos y edades radiométricas U-Pb de este plutón y de diques y cuerpos menores que lo intruyen, lo que constituye un aporte al desarrollo del conocimiento geológico del país.

1. Origen del nombre, distribución geográfica y reseña histórica

En este trabajo, y con el fin de uniformar la nomenclatura de la unidad según las sugerencias de la International Subcommission on Stratigraphic Classification (ISSC) (1987 y 1994), se utiliza el nombre de *Monzogranito de Santa Bárbara*, teniendo en cuenta que la mayoría de rocas del cuerpo pertenecen al campo de monzogranitos situados en el triángulo de Streckeisen (1976), y no en el de las cuarzomonzonitas, como sugiere el nombre propuesto por Ward *et al.* (1973); además, se conserva el nombre del sitio geográfico de la descripción original. La unidad toma el nombre del municipio de Santa Bárbara (Santander), localizado al oriente de Bucaramanga, en la cordillera Oriental de Colombia.

1.1. Distribución geográfica

El Monzogranito de Santa Bárbara aflora en su totalidad al oriente de la falla de Bucaramanga y tiene aproximadamente 51 km de largo por 12 km de ancho en su sección más amplia. Su orientación preferencial es norte-sur (figura 1), si se toman como base los mapas de Ward *et al.* (1977) y Vargas *et al.* (1976). El Monzogranito de Santa Bárbara se encuentra distribuido en las planchas 110, 121 y 136 del IGAC, en un área aproximada de 428,5 km².

1.2. Reseña histórica

El nombre de *Batolito de Santa Bárbara* fue dado por Ward *et al.* (1970). Posteriormente, Ward *et al.* (1973) utilizaron por primera vez el nombre de *Cuarzomonzo*- *nita de Santa Bárbara*. Vargas *et al*. (1981) propusieron para este plutón el nombre de *Cuarzomonzonita Rosada*.

Royero y Clavijo (2001) incluyen en la Cuarzomonzonita Rosada lo que Ward et al. (1977) denominaron cuarzomonzonita, aplita y pórfido en el área de California (Santander). En este catálogo no se incluye como parte de la "Cuarzomonzonita de Santa Bárbara" la unidad que denominaron tonalita y granodiorita del plutón de Páramo Rico (TRTGD) (Ward et al., 1973), y que fue cartografiada en el mapa geológico del cuadrángulo H-13 (Pamplona), en los alrededores del municipio de California (Santander). Al analizar los tipos de roca es posible la separación regional del plutón de Páramo Rico por sus características composicionales, que corresponden a rocas intermedias que varían entre cuarzodiorita y tonalita. Los trabajos locales y en semidetalle recientemente publicados por Mantilla et al. (2011 y 2013) definen así las unidades de roca: alasquita I, correlacionable con la cuarzomonzonita, aplita y el pórfido, y rocas intermedias (dioritas a granodioritas) correlacionables con la unidad de tonalita y granodiorita, al tiempo que discriminan una nueva unidad llamada alasquita II.

2. Descripción geológica

2.1. Marco geológico

El Macizo de Santander hace parte de un bloque regional de forma triangular formado por las fallas de Santa Marta-Bucaramanga, al occidente, Oca-Ancón, al norte, y Boconó, al oriente.

Figura 1. Mapa de localización del Monzogranito de Santa Bárbara y localización de muestras con petrografía, litogeoquímica y geocronología Fuente: Ward *et al.* (1970), Goldsmith *et al.* (1971), Vargas *et al.* (1976) y este trabajo

Las rocas más antiguas del Macizo de Santander comprenden unidades metamorficas, como el Neis de Bucaramanga (Ward *et al.*, 1973), denominado también *Complejo Bucaramanga* (Clavijo, 1994), que consiste de paraneises migmatíticos de alto grado, del Paleozoico, y que fue considerado del Proterozoico (García y Ríos, 1999; Ordóñez *et al.*, 2006), con un pico de metamorfismo de edad 1.057 ± 28 Ma (U/Pb-Shrimp en circón), relacionado con la orogenia Grenvilliana en el Gabro del Alto de Sanín.

La Formación Silgará se encuentra en contacto discordante sobre el Neis de Bucaramanga y está compuesta por rocas del Paleozoico temprano. Comprende ortoanfibolitas, esquistos, filitas, metalodolitas, metaareniscas, y escasos mármoles, que son parte del basamento del Macizo de Santander (Ward *et al.*, 1973; García y Ríos, 1999; Ríos *et al.*, 2003; Mantilla *et al.*, 2013). Presenta edades de metamorfismo del Ordovícico inferior-medio, relacionadas con la orogenia Caledoniana (Forero, 1990; Ríos *et al.*, 2003; Ordóñez Cardona *et al.*, 2006; Clavijo *et al.*, 2008; Mantilla *et al.*, 2013; Van der Lelij, 2013).

Algunas edades U/Pb en circón obtenidas en el presente trabajo evidencian magmatismo posterior al metamorfismo, representado por metavulcanitas y plutones que intruyen el basamento metamórfico, con edades U/ Pb en circón del Silúrico, Devónico inferior, Carbonífero y límite entre el Triásico y el Jurásico.

Los plutones Triásico-Jurásicos del Macizo de Santander se encuentran emplazados en rocas metamorficas precámbricas y paleozoicas del Terreno Chibcha, según Restrepo y Toussaint (1988) y Restrepo *et al.* (2011).

Durante el límite Triásico-Jurásico se desarrolló un importante magmatismo de arco, con el emplazamiento de grandes batolitos, *stocks* graníticos y cuerpos riolíticos subvolcánicos localizados hacia la margen occidental del Macizo de Santander, dentro del basamento metamórfico.

Unidades sedimentarias cretácicas reposan discordantes sobre el basamento metamórfico y los plutones. Después de la sedimentación cretácica, durante el Mioceno se dio un escaso magmatismo y se emplazaron cuerpos pequeños de pórfidos con mineralización de oro (Leal, 2011; Mantilla *et al.*, 2013).

2.2. Descripción macroscópica y microscópica

El Monzogranito de Santa Bárbara es un cuerpo litológicamente homogéneo con variaciones composicionales menores. Está constituido por granitoides faneríticos de grano medio, holocristalinos, en él predomina la textura granular e inequigranular bimodal, puede presentar xenolitos y techos colgantes de neises y esquistos del Neis de Bucaramanga y la Formación Silgará, así como enclaves intermedios de microdioritas.

Este plutón generalmente presenta meteorización profunda, con desarrollo de saprolito arcillo-arenoso de color blanco crema ligeramente moteado de pardo, con bloques de roca esferoidales locales (figura 2 A y B). En el interior del plutón son frecuentes los diques y cuerpos pequeños intrusivos constituidos por rocas de color rosado, faneríticas finas, equigranulares, con textura aplítica y composición monzogranítica, que algunos autores han llamado *alaskitas* (Mantilla *et al.*, 2011, 2013), que se caracterizan por su mayor resistencia a la meteorización y generan colinas y cuerpos tabulares que sobresalen en la topografía (Ward *et al.*, 1973; figura 2 C y D). Además, presenta diques de cuarzo lechoso, riolitas y dacitas porfídicas de color rosado.

El Monzogranito de Santa Bárbara está constituido principalmente por rocas de composición monzogranítica biotítica de color blanco moteado entre rosado y gris, equigranular a inequigranular, de grano medio a medio-grueso. Contiene feldespato de potasio, plagioclasa, cuarzo y escasa biotita. Esta última forma localmente nidos de hasta 5 mm de diámetro. El feldespato potásico y la plagioclasa se encuentran en porcentajes similares, aunque generalmente el primero es ligeramente más abundante que la segunda, y de color rosado. El cuarzo varía entre el 15 % y el 25 %.

Para realizar el estudio petrográfico del plutón se analizaron veinticuatro secciones delgadas de granitoides, doce de diques y cuerpos menores intrusivos, y quince rocas metamorficas que se presentan como xenolitos, techos colgantes y rocas de caja. Para su clasificación se realizó el conteo modal de entre 150 y 300 puntos.

A y B) Aspecto macroscópico del saprolito del Monzogranito de Santa Bárbara. C) Diques de granito aplítico en el páramo de Berlín. D) Aspecto macroscópico de rocas graníticas aplíticas (alaskitas) que atraviesan el Monzogranito de Santa Bárbara

2.2.1. Monzogranitos, granodioritas y sienogranitos El plutón está constituido principalmente por monzogranitos que pueden variar a granodioritas y sienogranitos, y hacia los bordes del cuerpo pueden aparecer localmente dioritas y tonalitas. En general, las rocas son faneríticas, de grano medio a grueso, de color rosado moteado de blanco y negro, con textura granular e inequigranular, localmente bimodal, constituidas por cristales de feldespato alcalino de color rosado, cuarzo blanco translúcido y plagioclasa blanca lechosa, escasa hornblenda y, como mineral máfico principal, biotita (figura 3).

Los monzogranitos están constituidos por cuarzo (20,5 % a 34,6 %), plagioclasas (23 % a 40,7 %) de tipo oligoclasa-andesina (An₂₈ a An₃₆), feldespato potásico (25,3 % a 44,8 %), biotita (1,2 % a 10 %) y hornblenda, que puede estar ausente o alcanzar hasta un 3 % del volumen

de la roca. Los minerales accesorios son opacos, circón, apatito, titanita y, en algunas rocas, granate y allanita. Las granodioritas presentan más del 20% de cuarzo. Los

Figura 3. Aspecto macroscópico del Monzogranito de Santa Bárbara

contenidos de plagioclasa son similares a los de monzogranitos, presentan valores menores de feldespato alcalino y tienen los mismos minerales característicos y accesorios. Los sienogranitos tienen mayores cantidades de feldespato alcalino (41 % a 46,5 %; tabla 1; figuras 4 y 5B). Los minerales de alteración más frecuentes son sericita, arcilla, clorita y epidota.

IGM	N campo	х	Y	Qtz	PI	Kfs	Hbl	Bt	Grt	Chl	Ор	Ар	Zrn	Ttn	Ep	Otros	tros Clasificación petrográfica		
10926	HCH-38	1130520	1267650	29,6	25,6	44,8		Tr			Tr	Tr	Tr				Monzogranito		
10927	HCH-39	1130260	1268160	33,3	38,8	12,4		14			1,5	Tr	Tr	Tr			Granodiorita		
10933	HCH-45	1129700	1268100	21,5	40,7	25,9	3	8,9			TR	Tr	Tr	Tr			Monzogranito		
37328	GIR-557	1122960	1248960	21	50	5	7	14				1	Tr	2			Tonalita		
37356	BC-79-3	1124400	1260290	40	35	17		6		Tr	0,5	0,5			1		Granodiorita		
37435	GIR-950	1130190	1289720	19	50	6	8	16		Tr	1	Tr	Tr	Tr	Tr	Tr	Granodiorita		
37439	GIR-755C	1130640	1291080	30	25	43		2		Tr	Tr	Tr	Tr		Tr	Tr	Monzogranito		
37620	GIR-E-2-2	1130260	1290750	34	39,5	15		7,7		Х		0,3	Х		3,3	0,2	Granodiorita		
37769	GIR-796	1136260	1279800	29	35	31,2		1,2			1		Tr		0,4	2,2	Monzogranito		
37843	GIR-905	1131650	1255650	23,2	25,2	33,7		9,3				1,8	0,2	1,2	2	3,4	Monzogranito		
37952	GIR-1319A	1130200	1270500	21,5	17	41		Tr		3		,5	Tr	0,5	16,5	0,5	Sienogranito		
37976	GIR-1370A	1122300	1261820	6	55	0,5	18	Tr		6	1,5	1		0,5	11,5	Pirita	Diorita		
37978	GIR-1372A	1122500	1261880	43	23	30			2,5		1		Tr			0,5	Monzogranito		
900857	AMC-0123	1131987	1255454	24,5	22,2	46,5		6		Tr	0,8				Tr	Tr	Sienogranito		
900870	AMC-0138A	1126314	1238798	34,7	30,5	26,8		5,9		Tr	2,1				Tr		Monzogranito		
900881	GR-6718	1135523	1280563	34,6	26,8	35,3	0,6	2			0,6	Tr	Tr	Tr			Monzogranito		
900882	GR-6719	1138272	1285445	32,2	24,5	37,1		6,2			Tr	Tr	Tr	Tr			Monzogranito		
900896	GZ-6820	1130042	1257023	5,2	25,5	66,2		3,1			Tr		Tr				Cuarzosienita		
900908	JGB-457	1126936	1261464	27	24	37		2.3		0.3	0.3	TR	TR	TR	TR		Monzogranito		
900920	LMC-062	1138946	1285633	27	35	29		9		Tr	Tr	Tr	Tr	Tr	Tr	Tr	Monzogranito		
900933	MIA-628A	1124047	1259950	23,7	32,8	34,3	Tr	6,4			1,2	1,1	0,5		Tr	Tr	Monzogranito		
900935	MIA-629B	1128475	1260575	26,3	28,6	42,7		1,4			1					Tr	Monzogranito		
900941	MIA-635	1127633	1239321	28,4	32,8	25,3		10			1,5	0,5	Tr	1	0,5	0,5	Monzogranito		
900955	TCR-363	1130187	1289698	14	46	7	10	19		Tr	1,5	0,5	0,5	1,5		Tr	Granodiorita		
900959	TCR-372	1128653	1277828	20,5	29	39,5		9,5		Tr	1		0,5		Tr	Tr	Monzogranito		

Figura 4. Clasificación modal de rocas del Monzogranito de Santa Bárbara.

Fuente: Streckeisen (1976) y este trabajo

Sienita de feldespato alcalino
 Monzodiorita monzogabro

3 Diorita, gabro

Figura 5. Características microscópicas del Monzogranito de Santa Bárbara

A) IGM 900941 (MIA-635) monzogranito. Nícoles cruzados. Textura holocristalina subidiomórfica, compuesta por plagioclasa (PI), cuarzo (Qtz), microclina (Kfs mc) y biotita cloritizada (Bt). B) IGM 900857 (AMC-0123) Sienogranito. Nícoles paralelos. Láminas de biotita reemplazadas por clorita y epidota.
 C) IGM-900882 (GR-6719) monzogranito. Nícoles cruzados. Cristales de plagioclasa (PI), feldespato alcalino (Kfs), cuarzo, opacos (Op) y titanita (Ttn).
 D) IGM 900955 (TCR-363) granodiorita. Nícoles cruzados. Cristales de hornblenda (Hbl), plagioclasa (PI) y cuarzo (Qtz). E) INM 10926 (HCH-38) monzogranito. Nícoles cruzados. Cristales de feldespato (Kfs) con intercrecimientos gráficos con cuarzo (Qtz). F) INM-10933 (HCH-45) monzogranito. Nícoles cruzados. Cristales de feldespato (Kfs) poiquilítico, junto a cuarzo (Qtz) y con láminas de biotita (Bt) parcialmente alteradas a clorita
El cuarzo se presenta como cristales anhedrales inequigranulares. En algunas rocas es bimodal, su tamaño varía entre 0,25 y 5 mm, con bordes irregulares, limpios y extinción ondulatoria, localmente con intercrecimientos gráficos con feldespato e inclusiones de polvo a manera de líneas o caminillos. Puede tener inclusiones de feldespato y microfracturas irregulares internas (figura 5).

La composición de la plagioclasa varía entre oligoclasa (An_{28}) y andesina (An_{36}) , aparece en cristales subhedrales a euhedrales tabulares cortos, inequigranulares bimodales, con bordes rectos cristalinos a irregulares, con tamaños que varían entre 0,3 y 3,0 mm, con extinción zonada normal ligeramente oscilatoria. Por lo general los núcleos de la plagioclasa están más alterados que los bordes, reemplazados por sericita en agregados y escamas finas, y saussurita. Pueden tener los bordes limpios y los núcleos alterados, con maclas de albita y albita Carlsbad, y con menos frecuencia, de periclina (figura 5).

El feldespato alcalino es ortosa, se encuentra en cristales anhedrales inequigranulares, cuyo tamaño oscila entre 0,25 y 5,0 mm. En algunas rocas el feldespato presenta texturas poiquilíticas, gráficas, de bordes de reacción con las plagioclasa y pertíticas en filoncillos y parches. Los cristales están microfracturados, pueden tener parches desdoblados a microclina con maclas en parrilla, y además se presentan empolvados por alteración a caolín y tienen inclusiones de cuarzo, plagioclasa, biotita y apatito (figura 5C).

La biotita se presenta en láminas subhedrales a euhedrales, de entre 0,4 mm y 2,0 mm de tamaño, de color marrón, con un pleocroísmo X amarillo pálido, Y y Z marrón oscuro. En ella se aprecian inclusiones de plagioclasa, apatito, circón y opacos. Los cristales, en algunos casos, se están alterando a clorita y epidota, a lo largo del clivaje (figura 5B).

La hornblenda aparece principalmente en rocas intermedias de composición diorítica a granodiorítica (18%) y rara vez en los monzogranitos y sienogranitos. Se presenta en cristales euhedrales a subhedrales de entre 0,75 y 3,0 mm, de color verde, con un pleocroísmo X verde pálido, Y verde y Z verde, con maclas dobles; junto a cristales de biotita, titanita y opacos, tienen inclusiones de titanita y opacos (figura 5D).

La titanita se presenta en trazas y en algunas rocas puede representar hasta el 1 %. Los cristales varían de anhedrales a subhedrales, con tamaños de entre 0,1 y 0,7 mm, de colores pardos, con pleocroísmo de tonos claros y medios, con microfracturas irregulares internas y relieve alto. Tiene inclusiones irregulares de opacos y se presenta junto a estos y la biotita.

Los opacos generalmente aparecen en cristales finos anhedrales de formas irregulares, y en algunos euhedrales hexagonales, cuyo tamaño varía entre 0,06 mm y 0,20 mm. Generalmente se presentan junto con biotita y hornblenda. Pueden tener inclusiones de apatito y circón o estar rodeados por minerales secundarios, como epidota-clinozoisita.

El apatito se encuentra en cristales euhedrales de 0,05 a 0,2 mm. Los apatitos son incoloros, generalmente en cortes basales hexagonales, y menos frecuentemente longitudinales tabulares cortos, incluidos en biotita, opacos, cuarzo y feldespatos.

El circón se presenta en microcristales que varían de euhedrales prismáticos a subhedrales de tamaños menores de 0,06 mm, generalmente junto a opacos.

La allanita y el granate pueden o no estar presentes. La allanita se encuentra en cristales euhedrales a subhedrales de color pardo marrón, con zonación de color y pleocroísmo marcado. El granate aparece en cristales anhedrales subredondeados a poiquilíticos, con desarrollo intersticial e inclusiones irregulares de cuarzo; es incoloro y tiene microfracturas internas.

2.2.2. Rocas de dique y cuerpos menores intrusivos Se analizaron catorce secciones delgadas de rocas de dique y cuerpos menores intrusivos que afloran en el Monzogranito de Santa Bárbara (tabla 2), que se clasifican petrográficamente como andesita (1), fenodacita (2), microdiorita (1), cuarzodiorita (2), monzogranito (4) y sienogranitos (4) (figura 6).

Las andesitas presentan textura microcristalina amigdalar e intergranular microporfídica. Están constituidas por microcristales de plagioclasa euhedrales y escasos microfenocristales euhedrales tabulares, con maclas de tipo Carlsbad. Los cristales se entrecruzan con microcristales de hornblenda de hábito tabular con bordes verdes y núcleo pardo, ligeramente fibrosos en los bordes, algunos con maclas dobles, extinción anómala e inclusiones de titanita y opaco.

El cuarzo se presenta en los intersticios de la red de cristales de plagioclasa y hornblenda. Presenta extinción ondulatoria y tiene un tamaño promedio de 0,06 mm. Aparece junto a agregados de epidota (figura 7C).

Figura 6. Rocas de dique y cuerpos menores intrusivos en el Monzogranito de Santa Bárbara. En rojo, diques con texturas volcánicas, y en verde, diques y cuerpos menores con texturas plutónicas.

Fuente: Streckeisen (1976) y este trabajo

Tabla 2. Análisis petrográfico de rocas de dique y cuerpos menores intrusivos en el Monzogranito de Santa Bárbara

IGM	N campo	х	Y	Qtz	PI	Kfs	Hbl	Bt	Ор	Ар	Zrn	Ttn	Ep	Vidrio	Otros	Clasificación petrográfica
10932	HCH-44	1129730	1269920	2	59		23		3			1		4	8	Andesita
900859	AMC- 0125B	1130530	1256893	33	36							TR	TR	30	1	Fenodacita
900860	AMC-0127	1129934	1258935	2,95	5,35			1,7	Tr		TR		TR	90		Fenodacita
900934	MIA-629A	1128475	1260575	3,4	64,5		26		1,1				TR		5	Microdiorita
900940	MIA-634	1129437	1238387	9,5	49,1		27,4	13	0,5	Tr		0,5	TR		TR	Cuarzodiorita
900907	JGB-456	1126023	1260523	2	30,7	0,33		21,3	TR	TR		TR	45,66			Cuarzodiorita
38122	GIR-907b	1132040	1255380	32,5	28,5	36		Tr				1,5			1.5	Monzogranito
37438	GIR-752C	1130540	1290220	30	33	34	TR					1	TR		2	Monzogranito
37951	GIR-1316	1129900	1270200	33,5	29,5	34		TR	TR			0,5	1,5		1	Monzogranito
900880	GR-6717	1134180	1284660	32,1	31,4	35,8		0,7	TR	TR	TR					Monzogranito
900918	LMC-059A	1133364	1285807	45	18	34		2	TR	TR			TR		TR	Sienogranito
900919	LMC-061	1134263	1285805	35	21	42		1	1				TR		Qtz	Sienogranito
900911	JGB-465	1127462	1237751	30,3	13,66	52		3								Sienogranito
900858	AMC- 0125A	1130530	1256893	53,5	7	38		1	0,5	Tr	Tr		Tr			Sienogranito

En la matriz se presentan, además, microcristales de opacos y titanita diseminados. Se encuentra vidrio alterado a palagonita de color verde claro. Las amígdalas son de formas irregulares y su tamaño varía entre 0,2 y 0,6 mm; pueden estar rellenas de calcita, y otras, de clorita, con ocasional epidota en agregados de color verde pálido.

Los diques de microdiorita son faneríticos, de grano muy fino a fino, de color gris verdoso, con textura subidiomórfica intergranular y poiquilítica, dada por inclusiones de opacos en plagioclasa. Están constituidos por cristales de plagioclasa tabulares subidiomórficos, con alteración fuerte a sericita y epidota, maclados según albita, con un tamaño promedio de 0,4 mm y con disposición entrecruzada con hornblenda intergranular. La hornblenda tiene ángulo de extinción de 15°, y está reemplazada por clorita, epidota y óxidos de hierro (figura 7B).

El cuarzo puede presentarse como cristales incoloros, intersticiales entre plagioclasa y hornblenda, o en amígdalas. Como elementos accesorios se encuentran opacos incluidos en hornblenda (figura 7).

Figura 7. Aspecto microscópico de rocas de dique.

A) INM-10932 (HCH-44) andesita. Nícoles cruzados. Microcristales de plagioclasa y anfíbol en arreglo intergranular. B) 900934 (MIA-624A) microdiorita. Nícoles cruzados. Textura holocristalina subidiomorfa finogranular, compuesta por plagioclasa (PI) y hornblenda (HbI), con alteración a clorita (ChI) y epidota (Ep). C) IGM-900859 (AMC-125A) fenodacita. Nícoles cruzados. Fenocristal de cuarzo rodeado por agregado muy fino de epidota y matriz finogranular, 4x, XPL. D) IGM-900860 (AMC-0127) fenodacita. Nícoles cruzados. Aspecto general de matriz vítrea desvitrificada con microfenocristales de cuarzo que muestran bahía de corrosión, plagioclasa y biotita. PPL, 4x

Los diques clasificados petrográficamente como fenodacitas (IGM-900859-AMC-0125B y 900860-AMC-0127) tienen un color pardo entre claro y blanquecino, son afaníticos, tienen fenocristales de cuarzo, plagioclasa y biotita, presentan textura porfídica con matriz vítrea o desvitrificada en agregados felsíticos microcristalinos. Las fenodacitas tienen como minerales accesorios allanita, circón y opacos. La plagioclasa es de tipo andesina (An₃₈), aparece en fenocristales y microfenocristales euhedrales y subhedrales tabulares, con maclas de albita y albita-Carlsbad; también, en la matriz, como microcristales y microlitos, con alteración leve a sericita, epidota y alteración moderada a arcilla. El cuarzo se presenta en microfenocristales equidimensionales, euhedrales a subhedrales, algunos bipiramidales, otros redondeados y limpios; muestran bahías de corrosión. La biotita se encuentra en cristales euhedrales-subhedrales en cortes basales de contornos hexagonales y cortes longitudinales; es pleocroica, de tono pardo a amarillo claro, algunas veces alterada a epidota-clinozoisita; principalmente se encuentra como microcristales, y en menor proporción como microfenocristales (figura 7).

Son frecuentes los diques y cuerpos menores intrusivos de monzogranitos y sienogranitos con textura microgranular-aplítica sacaroidal, que algunos autores han denominado *alaskitas* (Mantilla *et al.*, 2011 y 2013). Las rocas son de color rosado moteado de blanco lechoso, con textura granular aplítica, y están constituidas por cristales de feldespato alcalino de color rosado (36 % a 46 %), cuarzo blanco translúcido (30 % a 53.5 %) y plagioclasa de tono blanco lechoso (7 % a 33 %), y como mineral máfico, biotita < 1 %. Los minerales accesorios son circón, titanita, allanita y apatito (figura 8).

De los cuerpos monzograníticos y sienograníticos se analizaron ocho muestras (tabla 2). La plagioclasa, que se clasificó como albita y oligoclasa ($An_6 a An_{28}$), se presenta en cristales anhedrales a subhedrales tabulares cortos, de entre 0,5 y 1,0 mm, con extinción plana, con maclas de albita y albita Carlsbad. Pueden estar los núcleos más alterados que los bordes, reemplazados por sericita en agregados, saussurita y escasa arcilla, y pueden estar incluidos en feldespato (figura 9).

Figura 8. Aspecto macroscópico de los cuerpos intrusivos menores en el Monzogranito de Santa Bárbara

Figura 9. Aspecto microscópico y composición mineral de diques y cuerpos menores intrusivos en el Monzogranito de Santa Bárbara. A) IGM-900919 sienogranito, nícoles cruzados. Textura hipidiomorfa granular constituida por cuarzo (Qtz), ortoclasa (Or), plagioclasa (PI) y biotita (Bt). B) IGM-900858 sienogranito. Nícoles paralelos. Textura granular con feldespato potásico (Kfs), cuarzo (Qtz), plagioclasa (PI), biotita (Bt) y opacos (Op) C) IGM-900880 monzogranito. Nícoles paralelos. Cristales de plagioclasa (PI), feldespato alcalino (Kfs) y cuarzo (Qtz) anhedrales con escasos opacos (Op) y biotita (Bt). D) 900918 sienogranito. Nícoles paralelos. Constituido por cuarzo (Qtz), ortoclasa (Or) alterada a caolinita y plagioclasa (PI)

El cuarzo se encuentra en cristales anhedrales de entre 0,5 mm y 2,0 mm, con bordes irregulares, limpios, con extinción ondulatoria, con inclusiones de polvo y microfracturas irregulares internas (figura 9).

El feldespato alcalino es ortosa, se presenta en cristales anhedrales inequigranulares con contornos irregulares. Mide entre 0,5 mm y 1,0 mm, se transforma generalmente por alteración a caolín, puede tener inclusiones de cuarzo, plagioclasa y presenta desmezclas pertíticas en filoncillos y parches. Desarrolla bordes de reacción con la plagioclasa que se incluyen en el feldespato, y en algunas muestras tiene textura micrográfica (figura 9).

La biotita se encuentra en láminas subhedrales a euhedrales de entre 0,25 mm y 0,5 mm, presenta inclusiones de apatito y circón y se altera a clorita en los bordes y a lo largo del clivaje. En algunas muestras está reemplazada por epidota y agregados de magnetita residual (figura 9).

Los cristales de circón son euhedrales a subhedrales prismáticos, de tamaños menores de 0,06 mm. Generalmente aparecen junto a opacos e incluidos en biotita y, en menor cantidad, diseminados en la roca. Otros accesorios son apatito, allanita y opacos. La allanita se presenta en algunos granitos.

2.3. Química mineral

Los análisis de química mineral del Monzogranito de Santa Bárbara se realizaron en la muestra GZ-6820, clasificada petrográficamente como cuarzosienita. Para el análisis de microsonda se escogió un cristal de feldespato alcalino y un cristal de biotita (figura 10).

Los resultados de la química mineral se muestran en la tabla 3 y las figuras 11 y 12.

El feldespato potásico exhibe micropertitas en filoncillos que se pueden apreciar en la imagen de la muestra analizada (figura 10), con Or que varían entre 70,11 y 72,11, Ab entre 27,46 y 29,41, y los contenidos de An entre 0,34 y 0,48 (tabla 3) corresponden a pertita (figura 11).

La mica se clasifica como biotita, basándose en el diagrama de Si vs. Fe/(Mg + Fe) (Rieder *et al.*, 1998; figura 12A). Es decir, XFE = Fe/(Fe + Mg) > 0,33. Las micas son graficadas en el diagrama cuadrilátero (ASPE) annita-si-derofilita flogopita-biotita (figura 12A), comúnmente adoptada para ilustrar el Si total y contenido XFE de micas trioctaédricas. Las biotitas analizadas con un alto aluminio tetraédrico (AIIV) (2,31-2,37 átomo/unidad de fórmula) son características de series de granitos calcoalcalinos orogénicos, como se muestra en el diagrama MgO vs. Al₂O₃ (figura 12B).

Figura 10. Imágenes de electrones retrodispersados de cristal de feldespato potásico donde se observan las micropertitas en filoncillos y de cristal de biotita, en la muestra GZ-6820

Figura 11. Composición del feldespato potásico en la muestra GZ-6820. Diagrama de Smith y Brown (1988)

Tabla 3. Composiciór	n química de	feldespato	alcalino y	biotita	en la roca GZ-6820
----------------------	--------------	------------	------------	---------	--------------------

	GZ-6820-C1-Kfs-1	GZ-6820-C1-Kfs-2	GZ-6820-C1-Kfs-3		GZ-6820-C2-Bt-1	GZ-6820-C2-Bt-2	GZ-6820-C2-Bt-3	GZ-6820-C2-Bt-4
SiO ₂	65,488	65,998	66,261	SiO ₂	37,243	37,604	37,313	37,131
TiO ₂	0	0	0,004	TiO ₂	3,284	3,227	3,297	3,270
Al_2O_3	18,564	18,793	18,427	Al_2O_3	14,136	14,078	14,269	14,159
FeO	0,12	0,099	0,118	FeO	16,475	15,784	16,235	15,664
MgO	0	0	0	MgO	13,636	13,723	13,509	14,129
CaO	0,1	0,071	0,09	MnO	0,873	0,755	0,749	0,686
Na ₂ O	3,381	3,324	3,16	CaO	0,000	0,000	0,000	0,000
K ₂ O	12,25	12,399	12,614	Na ₂ O	0,167	0,162	0,162	0,171
Total	99,868	100,675	100,666	K ₂ O	9,355	9,457	9,333	9,447
Si	11,969	11,965	12,019	Total	95,169	94,790	94,867	94,657
AI	3,999	4,015	3,94					
Ti	0	0	0,001	Si	5,636	5,688	5,651	5,628
Fe ₂ +	0,012	0,01	0,012	AIIV	2,364	2,312	2,349	2,372
Mg	0	0	0	AIVI	0,157	0,198	0,198	0,157
Na	1,198	1,168	1,111	Ti	0,374	0,367	0,375	0,373
Ca	0,02	0,014	0,017	Mg	3,076	3,095	3,050	3,193
К	2,856	2,868	2,919	Fe ₂ +	2,085	1,997	2,056	1,985
Total	20,0531	20,04	20,019	Mn	0,112	0,097	0,096	0,088
Z	15,97	15,98	15,96	Ca	0,000	0,000	0,000	0,000
х	4,09	4,06	4,06	Na	0,049	0,048	0,048	0,050
Or	70,11	70,81	72,11	К	1,806	1,825	1,803	1,827
Ab	29,41	28,85	27,46	Total	15,658	15,626	15,626	15,673
An	0,48	0,34	0,43	Fe/(Fe+Mg)	0,404	0,392	0,403	0,383
Total	100	100	100					

Muestra GZ-6820 del Monzogranito de Santa Bárbara (Rieder *et al.*, 1998). A) composición de biotita del Monzogranito de Santa Bárbara representado en diagrama de MgO-Al₂O₂ (Abdel Rahman, 1994). B) Clasificación de las biotitas en diferentes series, diagrama de Abdel Rahman (1994)

Abdel Rahman (1994) demostró, a partir de numerosos análisis de biotitas, que las biotitas ígneas son químicamente diferentes si cristalizan de magmas peraluminosos, calcoalcalinos orogénicos o alcalinos anorogénicos. De acuerdo con este estudio, la biotita de la muestra GZ-6820 del Monzogranito de Santa Bárbara grafica en las series calcoalcalinas orogénicas (figura 12B).

3. Litogeoquímica

La caracterización litogeoquímica del Monzogranito de Santa Bárbara se realizó a partir de doce análisis de rocas de la litología predominante del plutón y de nueve muestras de diques y cuerpos menores intrusivos que atraviesan los granitos, incluido el análisis petrográfico de todas las rocas. Los análisis químicos se hicieron en el Laboratorio del Servicio Geológico Colombiano, sede Bogotá. Con los óxidos mayores se utilizó el método de fluorescencia de rayos X y se incluyeron los elementos trazas V, Mo, Nb, Ta, W, Zr y Hf. Con el resto de elementos traza y tierras raras se utilizó el equipo de espectrometría de masas con plasma acoplado inductivamente (ICP-MS). Para la interpretación de los óxidos mayores se hizo el recálculo, teniendo en cuenta los valores de LOI (pérdidas por ignición), que en la mayoría de muestras es <3%, valor normal en rocas poco alteradas. Los resultados de óxidos mayores se muestran en la tabla 4.

3.1. Óxidos mayores

Los valores de SiO₂ en rocas granitoides del Monzogranito de Santa Bárbara varían entre 72 % y 77 %, y solo una muestra presenta valores menores de 66,32 % de SiO₂ (IGM-900910-JGB-464); los valores de Al₂O₃, Fe₂O₃, MgO y CaO disminuyen con el aumento de SiO₂; el Na₂O y K₂O son altos y constantes con el aumento de SiO₂ y el TiO₂ < 0,6 %. La roca IGM-900910 (JGB-464) presenta un comportamiento diferente en los óxidos mayores. Los contenidos de Al₂O₃ están entre 12,69 % y 14,98 %; el MgO es menor de 0,83 % en todas las rocas, excepto en la muestra JGB-464, en la que asciende a 2,07 %; presentan un alto contenido de álcalis (Na₂O + K₂O > 7 %), altas razones de K₂O/Na₂O > 1, bajo TiO₂ (<0,5 %); excepto en la muestra IGM-900910 (JGB-464), el CaO varía entre 0,22 % y 2,95 %.

En las rocas de dique y cuerpos menores intrusivos, el contenido de SiO₂ varía entre 48,9 % y 79,4 %; los diques andesíticos y microdioríticos tienen valores entre 48,9 % y 49,8 %, mientras las dacitas presentan valores de SiO₂ de entre 58,18 % y 62,4 %; en los diques y cuerpos menores de monzogranitos y sienogranitos, el SiO₂ varía entre 72,2 % y 79,4 %. Claramente, los diques se agrupan en varias poblaciones: aquellos con contenidos de SiO₂ entre 48,9 % y 49,52 % corresponden a andesitas y microdioritas; diques de composición intermedia, con SiO_2 entre 58,2 % y 62,4 %, fenodacitas y cuarzodioritas, y el tercer grupo tiene contenidos de SiO_2 entre 72,7 % y 79,4 %, y corresponde a monzogranitos y sienogranitos aplíticos. En diques más básicos, los valores de Al_2O_3 varían entre 11,3 % y 16,5 %; en los diques graníticos los valores son relativamente constantes, entre 13,5 % y 16,6 %; los contenidos de Fe_2O_3 , MgO, CaO, TiO₂, MnO y P₂O₅ son erráticos con el aumento de SiO₂ (tabla 4).

Los valores de Na₂O son similares en todos los diques: entre 2,5 % y 3,5 %, excepto la muestra IGM-900940 (MIA-634), con Na₂O de 1,08 %, mientras el K₂O es mayor en los diques ácidos que presentan valores entre 4,4 % y 5,5 % (K₂O>Na₂O) (tabla 3); con valores de ál-

calis (Na₂O+K₂O), para estos últimos, del orden de 7,22 % a 8,2 %, mientras los básicos a intermedios el álcalis varía entre 4,5 % y 5,4 %; la muestra IGM-900940 (MIA-634) presenta un valor de álcalis de 1,67 % para un contenido de SiO₂ de 48,9 %.

En el diagrama K_2O versus SiO₂ (Peccerillo y Taylor, 1976), las rocas granitoides del Monzogranito de Santa Bárbara grafican en la serie calcoalcalina alta en K, y la muestra IGM-900910 (JGB-464) se clasifica en el campo de la serie calcoalcalina. Separada de las demás muestras, corresponde a una roca con menor contenido de SiO₂ (62,3%) (figura 13A).

Tabla 4. Com	posición de	óxidos may	ores en r	ocas q	ranitoides v	/ dique	s del I	Monzogr	anito de	e Santa	Bárbara

IGM	N campo	w	N	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	MnO	LOI
				Rocas	s del Mor	nzogranit	o de Sant	a Bárbar	a					
900857	AMC-0123	1131987	1255454	72,32	0,35	14,11	2,25	0,82	1,03	3,48	4,47	0,095	0,089	1,18
900870	AMC-0138A	1126314	1238798	72,62	0,35	14,87	1,36	0,40	0,53	2,79	5,24	0	0,045	0,85
900881	GR-6718	1135523	1280563	77,25	0,09	12,77	0,61	0,03	0,25	3,03	5,28	0,009	0,033	0,72
900882	GR-6719	1138272	1285445	71,97	0,64	13,74	2,58	0,03	2,15	2,56	3,85	0	0,108	0,92
900896	GZ-6820	1130042	1257023	73,83	0,25	13,72	1,68	0,56	1,3	3,22	4,43	0,074	0,069	0,80
900908	JGB-457	1126936	1261464	75,36	0,06	12,96	1,31	0,13	1,04	2,84	5,15	0	0,045	0,18
900910	JGB-464	1132151	1237861	66,32	0,92	14,54	6,17	2,01	2,95	2,04	1,92	0	0,178	2,34
900911	JGB-465	1127462	1237751	76,56	0,05	12,64	1,08	0,08	0,59	3,07	4,93	0	0,057	0,18
900920	LMC-062	1138946	1285633	71,68	0,29	15,13	2,01	0,54	0,71	2,79	4,63	0	0,079	1,23
900933	MIA-628A	1124047	1259950	74,77	0,23	13,48	1,51	0,41	1,29	3,04	4,49	0,052	0,061	0,65
900935	MIA-629B	1128475	1260575	77,88	0,08	12,65	0,34	0,00	0,22	3,54	4,93	0,000	0,020	0,39
900941	MIA-635	1127633	1239321	72,14	0,36	14,05	2,20	0,66	1,61	3,02	4,71	0,105	0,058	0,95
				Rocas o	le dique	y cuerpos	s menore	s intrusiv	/os					
900858	AMC-0125A	1130530	1256893	74,56	0,31	13,50	1,03	0,11	0,47	3,44	4,56	0	0,058	0,66
900859	AMC-0125B	1130530	1256893	62,42	0,7	15,97	5,12	2,58	5,37	2,55	2,79	0,223	0,164	1,94
900860	AMC-0127	1129934	1258935	75,89	0,05	13,12	0,76	0,09	0,77	3,05	4,53	0	0,039	0,74
900880	GR-6717	1134180	1284660	72,16	0,28	14,56	1,75	0,6	2,46	2,87	4,41	0,077	0,063	0,70
900907	JGB-456	1126023	1260523	49,85	0,78	16,50	9,12	7,92	6,49	2,52	1,80	0	0,585	3,66
900918	LMC-059A	1133364	1285807	79,45	0,02	11,27	0,88	0,02	0,06	3,01	4,12	0	0,018	0,44
900919	LMC-061	1134263	1285805	77,09	0,04	12,75	1,11	0,02	0,09	2,27	5,44	0	0,018	0,68
900934	MIA-629A	1128475	1260575	58,18	1,11	15,70	7,00	5,02	3,44	3,47	2,67	0,286	0,380	2,46
900940	MIA-634	1129437	1238387	48,94	0,48	16,60	9,96	7,53	12,07	1,08	0,55	0,037	0,215	2,49

Figura 13. Diagrama K₂O Vs SiO₂ (Peccerillo y Taylor, 1976) A) Granitoides del Monzogranito de Santa Bárbara. B) Rocas de dique y cuerpos menores intrusivos en el Monzogranito de Santa Bárbara

Los diques y cuerpos intrusivos menores corresponden a la serie calcoalcalina alta en K, y únicamente la muestra IGM-900940 (MIA-634) se aparta del comportamiento general y gráfica en el campo de la serie calcoalcalina (figura 1 3B).

Las rocas del Monzogranito de Santa Bárbara se clasifican químicamente en el campo de los granitos y granitos de feldespato alcalino, en la serie subalcalina. La muestra IGM-900910 (JGB-464) pertenece al campo de las tonalitas, si bien se separa de las demás muestras, con una agrupación de los datos alrededor de los granitos en el diagrama TAS de Middlemost (1994) (figura 14A) y buena concordancia con la clasificación petrográfica. Los diques y cuerpos menores intrusivos se reparten químicamente en tres campos:

- Las muestras IGM-900940 (MIA-634) e IGM-900907 (JGB-456) pertenecen al campo de los gabros. La primera de ellas tiene bajos contenidos de álcalis y es más básica que la clasificación petrográfica (cuarzodiorita).
- Las muestras IGM-900934 (MIA-629A) y IGM-900858 (AMC-0125A) se clasifican como andesita y dacita, respectivamente, en el diagrama TAS de Le Bas *et al.* (1986), en la serie subalcalina, con una buena concordancia con la clasificación petrográfica.

Las restantes muestras grafican en el campo de los granitos en el diagrama TAS de Middlemost (1994) (figura 14B) y fueron clasificadas en la petrografía como monzogranitos, sienogranitos y fenodacitas.

La clasificación petrográfica basada en la química indica la presencia de al menos tres eventos de intrusión de diques y cuerpos menores en el Monzogranito de Santa Bárbara, con composiciones mineralógica y química diferentes.

Los granitos que componen el Monzogranito de Santa Bárbara grafican en el campo peraluminoso del gráfico de Shand (1943), con valores de A/NK >1 y valores de A/CNK >1, lo que sugiere un importante aporte al magma de material de corteza continental. Otros son granitos altamente diferenciados, con valores altos de SiO₂ > 71 % (figura 15A).

En el diagrama de Debon y Le Fort (1983), modificado por Villaseca *et al.* (1998) (figura 15B), las rocas se agrupan en el campo peraluminoso. La mayoría de muestras grafica dentro o alrededor del campo de los granitos peraluminosos félsicos y en el campo de los granitoides moderadamente peraluminosos. Únicamente la muestra IGM-900910 (JGB-464), clasificada como tonalita, se aparta de las demás muestras y grafica en el campo de los granitoides altamente peraluminosos, lo cual sugiere que corresponde a otro evento magmático.

Figura 14. Diagramas de clasificación química de rocas del Monzogranito de Santa Bárbara. A) Diagrama de Middlemost (1985) para rocas graníticas. B) Rocas de dique y cuerpos menores intrusivos

Figura 15. Diagrama de alcalinidad-aluminosidad correspondiente a rocas del Monzogranito de Santa Bárbara. A) Diagrama de Shand (1943). B) diagrama de Debon y Le Fort (1983) modificado por Villaseca *et al.* (1998): f-P granitoides peraluminosos félsicos, h-P granitoides altamente peraluminosos, m-P granitoides medianamente peraluminosos

El índice de saturación de alúmina, en la mayoría de rocas, oscila entre 1 y 2, la relación A/CNK > 1, tienen valores de A/NK > 1, y la relación K_2O/Na_2O presenta una variación entre 1,37 y 1,8, con el Al_2O_3 > Cao+Na₂O+K₂O. La muestra IGM-900910 (JGB-464) tiene un índice de saturación de alumina > 2.

Sylvester (1998) afirma que las concentraciones de CaO y Na₂O en granitoides tipo S son controladas por la proporción original de plagioclasa en la roca fuente. Así, fuentes ricas en arcillas (por ej., lutitas), pobres en plagioclasas, producen fundidos con bajas relaciones de CaO/Na₂O (<0,3). En caso contrario, fundidos obtenidos a partir de fuentes pobres en arcillas y ricas en plagioclasas (por ej., grauvacas) generarán relaciones más altas que la anterior (CaO/Na₂O > 0,3). Las rocas del Monzogranito de Santa Bárbara presentan valores de CaO/Na_oO mayores y menores de 0,3, aunque generalmente se considera que la fuente de estos granitos peraluminosos son sedimentos o metasedimentos (Chappell y White, 1974). Los fundidos peraluminosos pueden formarse a partir de fusión de rocas félsicas metaluminosas con biotita (Miller, 1985).

Las características mineralógicas del Monzogranito de Santa Bárbara, como la presencia de feldespato potá-

sico rosado, biotita parda y magnetita, son más frecuentes en granitos tipo I altamente diferenciados, de acuerdo con Chappell y White (1992, 2001).

Los diques y cuerpos menores intrusivos grafican en el campo peraluminoso (figura 16A). Únicamente las muestras IGM-900859 (AMC-0125C), IGM-900907 (JGB-456) e IGM-900940 (MIA-634) pertenecen al campo metaluminoso, con valores de A/CNK <1 y valores de A/NK>1, y se clasificaron químicamente como gabros y riolitas, mientras los diques de composición granítica corresponden al campo peraluminoso, con valores de A/ CNK >1. Estos diques presentan valores altos de SiO₂, entre 72,2 % y 79,45 % (figura 16B), y se agrupan en el campo de los granitoides peraluminosos félsicos en el diagrama de Debon y Le Fort (1983) modificado por Villaseca *et al.* (1998). Únicamente la muestra IGM-900859 grafica en el campo metaluminoso.

3.2. Elementos traza y tierras raras

En la tabla 5 se resumen los resultados de los análisis químicos de elementos traza y tierras raras de rocas del Monzogranito de Santa Bárbara, diques y cuerpos menores que atraviesan el plutón.

Figura 16. Diagrama de alcalinidad-aluminosidad correspondiente a diques y cuerpos menores intrusivos en el Monzogranito de Santa Bárbara A) Diagrama de Shand (1943). B) diagrama de Debon y Le Fort (1983) modificado por Villaseca *et al.* (1998), f-P granitoides peraluminosos félsicos, h-P granitoides altamente peraluminosos, m-P granitoides medianamente peraluminosos

Tabla 5. Resultados de elementos traza y tierras en rocas del Monzogranito de Santa Bárbara y diques

IGM	N campo	w	N		Li	Be	s s	ic	v	Cr	Co	Ni	c	u	Zn	Ga	As	Rb		Sr	Cd	Cs
								Ro	cas de	Monzo	ograni	to de S	Santa	Bárba	ara							
900857	AMC-0123	1131987	1255	454	9,7	3,9	9 6	,8	29,4	15,2	15,0	16,	75	,9	39,3	18,4	1,7	184,	4	199,7	<0,08	2,1
900870	AMC-0138 ^a	1126314	1238	798	10,4	2,1	3	,1	16,0	21,4	14,9	5,6	6 6	,0	23,0	15,3	1,8	200,	4	162,3	<0,08	1,3
900881	GR-6718	1135523	1280	563	11,0	6,3	3 4	,9	6,2	2,9	7,0	0,6	3 3	,0	11,6	16,8	1,2	326,	7	75,8	0,1	6,4
900882	GR-6719	1138272	1285	445	39,6	4,0) 7	,5	32,3	8,3	17,4	7,2	2 4	,8	47,6	17,6	2,2	185,	4	270,2	0,1	2,6
900896	GZ-6820	1130042	1257	023	38,4	4,5	5 6	,5	19,2	11,3	15,6	6,0) 5	,0	36,5	18,9	2,4	191,	7	232,3	<0,08	3,4
900908	JGB-457	1126936	1261	464	21,7	4,5	5 3	,8	9,9	1,9	13,1	2,3	3 4	,3	8,4	15,8	1,0	230,	4	115,6	<0,08	2,7
900910	JGB-464	1132151	1237	861	56,5	2,7	33	3,1	100,3	10,7	24,3	9,6	6 15	5,8	80,4	21,4	2,8	97,0)	290,5	0,1	3,3
900911	JGB-465	1127462	1237	751	6,0	2,1	7	,2	7,3	2,1	15,5	2,5	54	,1	7,8	13,8	1,1	274,	1	85,0	<0,08	3,0
900920	LMC-062	1138946	1285	633	31,5	4,4	8	,5	34,3	8,2	18,5	3,8	3 4	,8	40,9	18,7	2,3	205,	5	253,9	<0,08	3,9
900933	MIA-628A	1124047	1259	950	16,0	6,1	7	,1	15,6	6,9	20,4	5,5	5 5	,0	39,4	18,8	2,1	252,	7	198,5	<0,08	3,4
900935	MIA-629B	1128475	1260	575	7,2	4,0) 4	,2	5,3	3,5	8,9	2,3	3 10),7	7,7	17,3	1,1	275,	1	41,0	<0,08	6,4
900941	MIA-635	1127633	1239	321	21,1	3,1	7	,2	27,0	9,1	18,0	5,9	96	,8	42,7	17,4	2,7	168,	1	318,0	<0,08	1,9
	_							[Diques	y cuer	pos m	enores	s intru	isivos	5							
900858	AMC-0125A	1130530	1256	893	10,9	4,1	4	,8	8,2	2,4	13,7	3,2	2 6	,0	15,2	17,3	1,3	212,	8	42,1	<0,08	2,4
900859	AMC-0125B	1130530	1256	893	47,7	3,1	13	3,6	109,2	76,6	24,4	37,	0 6	,2	77,8	29,5	2,2	98,	1	785,3	0,1	1,3
900860	AMC-0127	1129934	1258	935	15,0	3,2	2 3	,5	7,7	2,6	5,9	2,6	3 5	,9	20,7	14,2	1,6	226,	2	173,7	<0,08	3,1
900880	GR-6717	1134180	1284	660	35,8	3,7	7	,1	26,0	6,5	12,6	4,2	2 5	,1	24,3	16,8	2,5	189,	2	325,3	0,1	2,9
900907	JGB-456	1126023	1260	523	94,4	2,1	45	5,1	181,8	200,5	37,2	78,	0 13	3,7 3	807,8	23,4	3,3	49,9	9	766,3	0,3	0,8
900918	LMC-059A	1133364	1285	807	15,2	4,1	5	,2	5,8	0,4	13,5	0,9) 3	,7	6,2	10,4	1,3	265,	5	73,8	0,1	5,5
900919	LMC-061	1134263	1285	805	5,4	3,2	2 3	,3	11,0	0,6	10,5	0,8	3 3	,5	12,3	13,5	0,8	267,	2	125,4	0,1	3,6
900934	MIA-629A	1128475	1260	207	51,9	3,0) 30),4 	141,9	208,8	33,9	83,	4 17	0,5 4	158,5	21,9	2,7	157,	4	196.4	1,9	3,2
900940	WIA-034	1129437	1230	307	51,5	0,0	5 00 5 50	o, i	229,4	249,0	54,4	70,	0 /(n n	J,0	02,0	17,1	2,3	22,		100,4	0,2	0,5
	Límit	es			0.5	0.1	0 D	1	0.2	0.5	0.8	ppi	n pp	1		0.2	0.4	0 2	1	1	0.08	0.1
					0,5	0,1	0	, I	0,2	0,5	0,0	0,0	,		4	0,2	0,4	0,2			0,00	0,1
						_															·	
IGM	Ba	_a Ce	Pr	Nd	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb	Lu	ті	Pb	Bi	Th	U	Zr	Nb	W
IGM	Ba I	_a Ce	Pr	Nd	Sm	Eu	Gd Ro	Tb cas d	Dy el Mon	Ho zogran	Er ito de	Tm Santa	Yb Bárb	Lu ara	TI	Pb	Bi	Th	U	Zr	Nb	W
IGM 900857	Ba I 860,6 6	_a Ce	Pr 14,0	Nd 48,7	Sm 8,1	Eu 1,0	Gd Ro 5,6	Tb cas d 1,0	Dy el Mon 5,3	Ho zogran	Er hito de 3,0	Tm Santa 0,4	Yb Bárb 2,5	Lu ara 0,3	TI 1,1	Pb	Bi	Th 23,5	U 5,2	Z r 203,7	Nb 15,0	W 49,9
IGM 900857 900870	Ba 1 860,6 6 931,1 3	_a Ce 8,0 118,6 9,4 72,2	Pr 14,0 8,0	Nd 48,7 24,8	Sm 8,1 4,4	Eu 1,0 0,8	Gd Ro 5,6 3,3	Tb ocas d 1,0 0,5	Dy el Mon 5,3 2,7	Ho zogran 1,0 0,5	Er iito de 3,0 1,6	Tm Santa 0,4 0,2	Yb Bárb 2,5 1,4	Lu ara 0,3 0,2	TI 1,1 1,1	Pb 14,1 16,3	Bi 0,1 0,0	Th 23,5 21,8	U 5,2 3,0	Zr 203,7 120,6	Nb 15,0 9,5	W 49,9 49,2
IGM 900857 900870 900881 900882	Ba I 860,6 6 931,1 3 64,0 1	.a Ce 8,0 118,6 9,4 72,2 5,4 28,2	Pr 14,0 8,0 3,3	Nd 48,7 24,8 10,2	Sm 8,1 4,4 1,8 6,1	Eu 1,0 0,8 0,2	Gd 5,6 3,3 1,3 4,1	Tb bcas d 1,0 0,5 0,2	Dy el Mon 5,3 2,7 1,3 3.9	Ho zogran 1,0 0,5 0,3 0,8	Er aito de 3,0 1,6 1,0 2.4	Tm Santa 0,4 0,2 0,2	Yb Bárb 2,5 1,4 1,5	Lu ara 0,3 0,2 0,3	TI 1,1 1,1 2,3	Pb 14,1 16,3 31,8 22.7	Bi 0,1 0,0 0,1	Th 23,5 21,8 35,4 20,7	U 5,2 3,0 9,2	Zr 203,7 120,6 55,4	Nb 15,0 9,5 14,3	W 49,9 49,2 29,0 52.4
IGM 900857 900870 900881 900882 900882	Ba H 860,6 6 931,1 3 64,0 1 870,9 4	Ce R ,0 118,6 9 ,4 72,2 5 ,4 28,2 0 ,1 79,3 8 ,8 95,5	Pr 14,0 8,0 3,3 9,5	Nd 48,7 24,8 10,2 31,4	Sm 8,1 4,4 1,8 6,1	Eu 1,0 0,8 0,2 1,0	Gd Ro 5,6 3,3 1,3 4,1	Tb cas d 1,0 0,5 0,2 0,8	Dy el Mon 5,3 2,7 1,3 3,9 4,1	Ho zogran 1,0 0,5 0,3 0,8	Er iito de 3,0 1,6 1,0 2,4 2,6	Tm Santa 0,4 0,2 0,2 0,3	Yb Bárb 2,5 1,4 1,5 2,2	Lu ara 0,3 0,2 0,3 0,3 0,3	TI 1,1 1,1 2,3 1,2	Pb 14,1 16,3 31,8 22,7 21,5	Bi 0,1 0,0 0,1 0,1	Th 23,5 21,8 35,4 20,7	U 5,2 3,0 9,2 3,9 7,3	Zr 203,7 120,6 55,4 147,4	Nb 15,0 9,5 14,3 12,1	W 49,9 49,2 29,0 52,4 52,7
IGM 900857 900870 900881 900882 900896 900908	Ba B	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2	Pr 14,0 8,0 3,3 9,5 10,8 3,4	Nd 48,7 24,8 10,2 31,4 32,1 9,8	Sm 8,1 4,4 1,8 6,1 5,9	Eu 1,0 0,8 0,2 1,0 1,0	Gd Ro 5,6 3,3 1,3 4,1 4,4	Tb cas d 1,0 0,5 0,2 0,8 0,8 0,8	Dy el Mon 5,3 2,7 1,3 3,9 4,1	Ho zogran 1,0 0,5 0,3 0,8 0,8 0,8	Er iito de 3,0 1,6 1,0 2,4 2,6 1,3	Tm Santa 0,4 0,2 0,2 0,3 0,4 0,2	Yb Bárb 2,5 1,4 1,5 2,2 2,4 1 6	Lu ara 0,3 0,2 0,3 0,3 0,3 0,4	TI 1,1 1,1 2,3 1,2 1,2 1,2	Pb 14,1 16,3 31,8 22,7 21,5 26,7	Bi 0,1 0,0 0,1 0,1 0,1 0,1	Th 23,5 21,8 35,4 20,7 25,1 25,4	U 5,2 3,0 9,2 3,9 7,3 5,1	Z r 203,7 120,6 55,4 147,4 148,0 62.2	Nb 15,0 9,5 14,3 12,1 16,1 9,9	W 49,9 49,2 29,0 52,4 52,7 42,2
IGM 900857 900870 900881 900882 900886 900908 900908	Ba H 860,6 6 931,1 3 64,0 1 870,9 4 866,8 4 312,0 1 1469,0 3	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2 7,7 81.8	Pr 14,0 8,0 3,3 9,5 10,8 3,4 12,1	Nd 48,7 24,8 10,2 31,4 32,1 9,8 48,0	Sm 8,1 4,4 1,8 6,1 5,9 1,8 11,3	Eu 1,0 0,8 0,2 1,0 1,0 0,4 2,3	Gd Ro 5,6 3,3 1,3 4,1 4,4 1,6 8.0	Tb ccas d 1,0 0,5 0,2 0,8 0,8 0,8 0,3 1,8	Dy el Mon 5,3 2,7 1,3 3,9 4,1 1,7 9,6	Ho zogran 1,0 0,5 0,3 0,8 0,8 0,8 0,4 2,1	Er iito de 3,0 1,6 1,0 2,4 2,6 1,3 5.6	Tm Santa 0,4 0,2 0,2 0,3 0,4 0,2 0,2	Yb Bárb 2,5 1,4 1,5 2,2 2,4 1,6 4,5	Lu ara 0,3 0,2 0,3 0,3 0,4 0,3 0,4	TI 1,1 1,1 2,3 1,2 1,2 1,4 0,6	Pb 14,1 16,3 31,8 22,7 21,5 26,7 8,3	Bi 0,1 0,0 0,1 0,1 0,1 <0,05 0,1	Th 23,5 21,8 35,4 20,7 25,1 25,4 5.9	U 5,2 3,0 9,2 3,9 7,3 5,1 1,4	Zr 203,7 120,6 55,4 147,4 148,0 62,2 341,6	Nb 15,0 9,5 14,3 12,1 16,1 9,9 13.0	W 49,9 49,2 29,0 52,4 52,7 42,2 36,6
IGM 900857 900870 900881 900882 900886 900908 900908 900910	Ba I 860,6 6 931,1 3 64,0 1 870,9 4 866,8 4 312,0 1 1469,0 3 293,2 1	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2 7,7 81,8 3,9 26,1	Pr 14,0 8,0 3,3 9,5 10,8 3,4 12,1 3,0	Nd 48,7 24,8 10,2 31,4 32,1 9,8 48,0 9,0	Sm 8,1 4,4 1,8 6,1 5,9 1,8 11,3 2,3	Eu 1,0 0,8 0,2 1,0 1,0 0,4 2,3 0,4	Gd 5,6 3,3 1,3 4,1 4,4 1,6 8,0 1.7	Tb pcas d 1,0 0,5 0,2 0,8 0,8 0,8 0,3 1,8 0,4	Dy el Mon 5,3 2,7 1,3 3,9 4,1 1,7 9,6 2,6	Ho zogran 1,0 0,5 0,3 0,8 0,8 0,8 0,4 2,1 0,5	Er iito de 3,0 1,6 1,0 2,4 2,6 1,3 5,6 1.6	Tm Santa 0,4 0,2 0,2 0,3 0,4 0,2 0,7 0,7	Yb Bárb 2,5 1,4 1,5 2,2 2,4 1,6 4,5 1.8	Lu ara 0,3 0,2 0,3 0,3 0,3 0,4 0,4 0,3 0,7 0,3	TI 1,1 1,1 2,3 1,2 1,2 1,2 1,4 0,6	Pb 14,1 16,3 31,8 22,7 21,5 26,7 8,3 33,5	Bi 0,1 0,0 0,1 0,1 0,1 <0,05 0,1	Th 23,5 21,8 35,4 20,7 25,1 25,1 25,4 5,9 10,9	U 5,2 3,0 9,2 3,9 7,3 5,1 1,4 2,4	Z r 203,7 120,6 55,4 147,4 148,0 62,2 341,6 46,5	Nb 15,0 9,5 14,3 12,1 16,1 9,9 13,0 10.8	W 49,9 49,2 29,0 52,4 52,7 42,2 36,6 60,2
IGM 900857 900870 900881 900882 900896 900908 900908 900910 900911	Ba I 860,6 6 931,1 3 64,0 1 870,9 4 866,8 4 312,0 1 1469,0 3 293,2 1 1113,4 5	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2 7,7 81,8 3,9 26,1 5,0 98,2	Pr 14,0 8,0 3,3 9,5 10,8 3,4 12,1 3,0 12,2	Nd 48,7 24,8 10,2 31,4 32,1 9,8 48,0 9,0 34,0	Sm 8,1 4,4 1,8 6,1 5,9 1,8 11,3 2,3 6,4	Eu 1,0 0,8 0,2 1,0 1,0 0,4 2,3 0,4 1,2	Gd 5,6 3,3 1,3 4,1 4,4 1,6 8,0 1,7 4,7	Tb pcas d 1,0 0,5 0,2 0,8 0,8 0,8 0,3 1,8 0,4 0,4 0,8	Dy el Mon 5,3 2,7 1,3 3,9 4,1 1,7 9,6 2,6 3,6	Ho zogran 1,0 0,5 0,3 0,8 0,8 0,8 0,4 2,1 0,5 0,7	Er iito de 3,0 1,6 1,0 2,4 2,6 1,3 5,6 1,6 2,3	Tm Santa 0,4 0,2 0,2 0,3 0,4 0,2 0,7 0,3 0,3 0,3	Yb Bárb 2,5 1,4 1,5 2,2 2,4 1,6 4,5 1,8 2,2	Lu ara 0,3 0,2 0,3 0,3 0,3 0,4 0,3 0,7 0,3 0,3	TI 1,1 1,1 2,3 1,2 1,2 1,4 0,6 1,7 1,4	Pb 14,1 16,3 31,8 22,7 21,5 26,7 8,3 33,5 19,0	Bi 0,1 0,1 0,1 0,1 <0,05 0,1 0,1 <0,05	Th 23,5 21,8 35,4 20,7 25,1 25,1 5,9 10,9 31,5	U 5,2 3,0 9,2 3,9 7,3 5,1 1,4 2,4 5,8	Z r 203,7 120,6 55,4 147,4 148,0 62,2 341,6 46,5 135,5	Nb 15,0 9,5 14,3 12,1 16,1 9,9 13,0 10,8 13,1	W 49,9 49,2 29,0 52,4 52,7 42,2 36,6 60,2 49,5
IGM 900857 900870 900881 900882 900886 900908 900908 900910 900911 900920 900933	Ba I 860,6 6 931,1 3 64,0 1 870,9 4 866,8 4 312,0 1 1469,0 3 293,2 1 1113,4 5 636,1 2	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2 7,7 81,8 3,9 26,1 5,0 98,2 6,6 54,6	Pr 14,0 8,0 3,3 9,5 10,8 3,4 12,1 3,0 12,2 6,1	Nd 48,7 24,8 10,2 31,4 32,1 9,8 48,0 9,0 34,0 20,3	Sm 8,1 4,4 1,8 6,1 5,9 1,8 11,3 2,3 6,4 4,0	Eu 1,0 0,8 0,2 1,0 1,0 0,4 2,3 0,4 1,2 0,9	Gd Fcc 5,6 3,3 1,3 4,1 4,4 1,6 8,0 1,7 4,7 2,8	Tb pcas d 1,0 0,5 0,2 0,8 0,8 0,3 1,8 0,4 0,4 0,8 0,6	Dy el Mon 5,3 2,7 1,3 3,9 4,1 1,7 9,6 2,6 3,6 2,8	Ho zogran 1,0 0,5 0,3 0,8 0,8 0,8 0,4 2,1 0,5 0,7 0,6	Er 3,0 1,6 1,0 2,4 2,6 1,3 5,6 1,6 2,3 1,8	Tm Santa 0,4 0,2 0,2 0,3 0,4 0,2 0,7 0,3 0,3 0,3 0,3	Yb Bárb 2,5 1,4 1,5 2,2 2,4 1,6 4,5 1,8 2,2 1,6	Lu ara 0,3 0,2 0,3 0,3 0,3 0,4 0,3 0,7 0,3 0,3 0,2	TI 1,1 1,1 2,3 1,2 1,2 1,4 0,6 1,7 1,4 1,5	Pb 14,1 16,3 31,8 22,7 21,5 26,7 8,3 33,5 19,0 21,1	Bi 0,1 0,1 0,1 0,1 0,1 <0,05 0,1 <0,05 0,1	Th 23,5 21,8 35,4 20,7 25,1 25,4 5,9 10,9 31,5 26,5	U 5,2 3,0 9,2 3,9 7,3 5,1 1,4 2,4 5,8 4,8	Zr 203,7 120,6 55,4 147,4 148,0 62,2 341,6 46,5 135,5 101,4	Nb 15,0 9,5 14,3 12,1 16,1 9,9 13,0 10,8 13,1 8,9	W 49,9 49,2 29,0 52,4 52,7 42,2 36,6 60,2 49,5 61,7
IGM 900857 900870 900881 900882 900886 900908 900908 900910 900911 900920 900933 900935	Ba I 860,6 6 931,1 3 64,0 1 870,9 4 866,8 4 312,0 1 1469,0 3 293,2 1 1113,4 5 636,1 2 61,7 1	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2 7,7 81,8 3,9 26,1 5,0 98,2 6,6 54,6 3,6 29,8	Pr 14,0 8,0 3,3 9,5 10,8 3,4 12,1 3,0 12,2 6,1 3,5	Nd 48,7 24,8 10,2 31,4 32,1 9,8 48,0 9,0 34,0 20,3 12,1	Sm 8,1 4,4 1,8 6,1 5,9 1,8 11,3 2,3 6,4 4,0 2,2	Eu 1,0 0,8 0,2 1,0 1,0 0,4 2,3 0,4 1,2 0,9 0,2	Gd Fcc 5,6 3,3 4,1 4,4 1,6 8,0 1,7 4,7 2,8 1,5	Tb accas d 1,0 0,5 0,2 0,8 0,3 1,8 0,4 0,8 0,4 0,6 0,4	Dy el Mon 5,3 2,7 1,3 3,9 4,1 1,7 9,6 2,6 3,6 2,8 1,9	Ho zogran 1,0 0,5 0,3 0,8 0,8 0,8 0,4 2,1 0,5 0,7 0,6 0,5	Er 3,0 1,6 1,0 2,4 2,6 1,3 5,6 1,6 2,3 1,8 1,6	Tm Santa 0,4 0,2 0,2 0,3 0,4 0,2 0,7 0,3 0,3 0,3 0,3 0,3	Yb Bárb 2,5 1,4 1,5 2,2 2,4 1,6 4,5 1,8 2,2 1,6 2,0	Lu ara 0,3 0,2 0,3 0,3 0,4 0,3 0,7 0,3 0,3 0,3 0,2 0,3	TI 1,1 1,1 2,3 1,2 1,2 1,4 0,6 1,7 1,4 1,5 1,6	Pb 14,1 16,3 31,8 22,7 21,5 26,7 8,3 33,5 19,0 21,1 22,4	Bi 0,1 0,0 0,1 0,1 <0,05 0,1 <0,05 0,1 0,1 0,2	Th 23,5 21,8 35,4 20,7 25,1 25,4 5,9 10,9 31,5 26,5 37,4	U 5,2 3,0 9,2 3,9 7,3 5,1 1,4 2,4 5,8 4,8 9,8	Zr 203,7 120,6 55,4 147,4 148,0 62,2 341,6 46,5 135,5 101,4 40,3	Nb 15,0 9,5 14,3 12,1 16,1 9,9 13,0 10,8 13,1 8,9 15,7	W 49,9 49,2 29,0 52,4 52,7 42,2 36,6 60,2 49,5 61,7 27,2
IGM 900857 900870 900880 900882 900896 900908 900910 900911 900920 900933 900935 900941	Ba I 860,6 6 931,1 3 64,0 1 870,9 4 866,8 4 312,0 1 1469,0 3 293,2 1 1113,4 5 636,1 2 61,7 1 1490,8 6	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2 7,7 81,8 3,9 26,1 5,0 98,2 6,6 54,6 3,6 29,8 4,3 112,9	Pr 14,0 8,0 3,3 9,5 10,8 3,4 12,1 3,0 12,2 6,1 3,5 12,3	Nd 48,7 24,8 10,2 31,4 32,1 9,8 48,0 9,0 34,0 20,3 12,1 41,4	Sm 8,1 4,4 1,8 6,1 5,9 1,8 11,3 2,3 6,4 4,0 2,2 6,3	Eu 1,0 0,8 0,2 1,0 1,0 0,4 2,3 0,4 1,2 0,9 0,2 1,6	Gd Rc 5,6 3,3 1,3 4,1 4,4 1,6 8,0 1,7 4,7 2,8 1,5 4,9	Tb ccas d 1,0 0,5 0,2 0,8 0,3 1,8 0,4 0,6 0,4 0,9	Dy el Mon 5,3 2,7 1,3 3,9 4,1 1,7 9,6 2,6 3,6 2,8 1,9 4,1	Ho zogran 1,0 0,5 0,3 0,8 0,8 0,8 0,4 2,1 0,5 0,7 0,6 0,5 0,8	Er 3,0 1,6 1,0 2,4 2,6 1,3 5,6 1,6 2,3 1,8 1,6 2,5	Tm Santa 0,4 0,2 0,3 0,4 0,2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	Yb Bárb 2,5 1,4 1,5 2,2 2,4 1,6 4,5 1,8 2,2 1,6 2,2 1,6 2,2 1,6 2,2,2 1,6 2,2,2 1,6 2,2,2 1,6 2,2,1	Lu ara 0,3 0,2 0,3 0,3 0,4 0,3 0,4 0,3 0,7 0,3 0,2 0,2 0,3 0,3 0,3	TI 1,1 1,1 2,3 1,2 1,2 1,4 0,6 1,7 1,4 1,5 1,6 0,9	Pb 14,1 16,3 31,8 22,7 21,5 26,7 8,3 33,5 19,0 21,1 22,4 20,1	Bi 0,1 0,1 0,1 0,1 <0,05 0,1 <0,05 0,1 0,2 0,1	Th 23,5 21,8 35,4 20,7 25,1 25,4 5,9 10,9 31,5 26,5 37,4 25,8	U 5,2 3,0 9,2 3,9 7,3 5,1 1,4 2,4 5,8 4,8 9,8 4,3	Zr 203,7 120,6 55,4 147,4 148,0 62,2 341,6 46,5 135,5 101,4 40,3 167,7	Nb 15,0 9,5 14,3 12,1 16,1 9,9 13,0 10,8 13,1 8,9 15,7 10,5	W 49,9 49,2 29,0 52,4 52,7 42,2 36,6 60,2 49,5 61,7 27,2 46,1
IGM 900857 900870 900881 900882 900896 900908 900910 900911 900920 900933 900935	Ba I 860,6 6 931,1 3 64,0 1 870,9 4 866,8 4 312,0 1 1469,0 3 293,2 1 1113,4 5 636,1 2 61,7 1 1490,8 6	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2 7,7 81,8 3,9 26,1 5,0 98,2 6,6 54,6 3,6 29,8 4,3 112,9	Pr 14,0 8,0 3,3 9,5 10,8 3,4 12,1 3,0 12,2 6,1 3,5 12,3	Nd 48,7 24,8 10,2 31,4 32,1 9,8 48,0 9,0 34,0 20,3 12,1 41,4	Sm 8,1 4,4 1,8 6,1 5,9 1,8 11,3 2,3 6,4 4,0 2,2 6,3	Eu 1,0 0,8 0,2 1,0 1,0 2,3 0,4 1,2 0,9 0,2 1,6	Gd Fc 5,6 3,3 1,3 4,1 1,6 8,0 1,7 4,7 2,8 1,5 4,9	Tb accas d 1,0 0,5 0,2 0,8 0,3 1,8 0,4 0,6 0,4 0,6 0,4 0,9 Diquet	Dy el Mon 5,3 2,7 1,3 3,9 4,1 1,7 9,6 2,6 3,6 2,8 1,9 4,1	Ho zogran 1,0 0,5 0,3 0,8 0,4 2,1 0,5 0,7 0,6 0,5 0,8	Er 3,0 1,6 1,0 2,4 2,6 1,3 5,6 1,6 2,3 1,8 1,6 2,5 menore	Tm Santa 0,4 0,2 0,3 0,4 0,2 0,3 0,4 0,7 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	Yb Bárb 2,5 1,4 1,5 2,2 2,4 1,6 4,5 1,8 2,2 1,8 2,2 1,6 2,0 2,1	Lu ara 0,3 0,2 0,3 0,3 0,4 0,3 0,4 0,3 0,7 0,3 0,3 0,2 0,3 0,3 5	TI 1,1 2,3 1,2 1,2 1,4 0,6 1,7 1,4 1,5 1,6 0,9	Pb 14,1 16,3 31,8 22,7 21,5 26,7 8,3 33,5 19,0 21,1 22,4 20,1	Bi 0,1 0,0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,2 0,1	Th 23,5 21,8 35,4 20,7 25,1 25,4 5,9 10,9 31,5 26,5 37,4 25,8	U 5,2 3,0 9,2 3,9 7,3 5,1 1,4 2,4 5,8 4,8 9,8 4,3	Zr 203,7 120,6 55,4 147,4 148,0 62,2 341,6 46,5 135,5 101,4 40,3 167,7	Nb 15,0 9,5 14,3 12,1 16,1 9,9 13,0 10,8 13,1 8,9 15,7 10,5	W 49,9 49,2 29,0 52,4 52,7 42,2 36,6 60,2 49,5 61,7 27,2 46,1
IGM 900857 900870 900881 900882 900896 900908 900910 900911 900920 900933 900933 900935 900941	Ba I 860,6 6 931,1 3 64,0 1 870,9 4 866,8 4 312,0 1 1469,0 3 293,2 1 1113,4 5 636,1 2 61,7 1 1490,8 6 89,3 1	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2 7,7 81,8 3,9 26,1 5,0 98,2 6,6 54,6 3,6 29,8 4,3 112,9 9,1 40,7	Pr 14,0 8,0 3,3 9,5 10,8 3,4 12,1 3,0 12,2 6,1 3,5 12,3 4,8	Nd 48,7 24,8 10,2 31,4 32,1 9,8 48,0 9,0 34,0 20,3 12,1 41,4 41,4	Sm 8,1 4,4 1,8 6,1 5,9 1,8 11,3 2,3 6,4 4,0 2,2 6,3 3,2	Eu 1,0 0,8 0,2 1,0 1,0 0,4 1,2 0,9 0,2 1,6 0,3	Gd Fc 5,6 3,3 1,3 4,1 1,6 8,0 1,7 4,7 2,8 1,5 4,9 2,3	Tb incass dd 1,0 0,5 0,2 0,8 0,3 1,8 0,4 0,9 Diquee 0,5	Dy el Mon 5,3 2,7 1,3 3,9 4,1 1,7 9,6 2,6 3,6 2,8 1,9 4,1 9,6 2,6	Ho zogran 1,0 0,5 0,3 0,8 0,8 0,8 0,4 2,1 0,5 0,7 0,6 0,5 0,8 0,8 0,7 0,6 0,5 0,7 0,6 0,5 0,7 0,6 0,5 0,7 0,6 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7	Er 3,0 1,6 1,0 2,4 2,6 1,3 5,6 1,3 1,6 2,3 1,8 1,6 2,5 menore 1,8	Tm Santa 0,4 0,2 0,3 0,4 0,2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	Yb Bárb 2,5 1,4 1,5 2,2 2,4 1,6 4,5 1,8 2,2 1,6 2,2 1,6 2,1 usivo: 2,0	Lu ara 0,3 0,2 0,3 0,4 0,3 0,4 0,3 0,7 0,3 0,3 0,2 0,3 0,3 0,3 8 0,3	TI 1,1 1,1 2,3 1,2 1,2 1,2 1,2 1,2 1,2 1,4 0,6 6 1,7 1,4 1,5 1,6 0,9 0,9 1,2	Pb 14,1 16,3 31,8 22,7 21,5 26,7 8,3 33,5 19,0 21,1 22,4 20,1 25,2	Bi 0,1 0,0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,2 0,1 0,1 0,1	Th 23,5 21,8 35,4 20,7 25,1 25,4 5,9 10,9 31,5 26,5 37,4 25,8 32,8	U 5,2 3,0 9,2 3,9 7,3 5,1 1,4 2,4 5,8 4,8 9,8 4,3 7,5	Zr 203,7 120,6 55,4 147,4 148,0 62,2 341,6 46,5 135,5 101,4 40,3 167,7 72,0	Nb 15,0 9,5 14,3 12,1 16,1 9,9 13,0 10,8 13,1 8,9 15,7 10,5 17,2	W 49,9 49,2 29,0 52,4 52,7 42,2 36,6 60,2 49,5 61,7 27,2 46,1 54,3
IGM 900857 900870 900881 900882 900896 900910 900910 900910 900911 900920 900933 900935 900935 900941	Ba I 860,6 6 931,1 3 64,0 1 870,9 4 866,8 4 312,0 1 1469,0 3 293,2 1 1113,4 5 636,1 2 61,7 1 1490,8 6	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2 7,7 81,8 3,9 26,1 5,0 98,2 6,6 54,6 3,6 29,8 4,3 112,9 9,1 40,7 7,7 87,6	Pr 14,0 8,0 3,3 9,5 10,8 3,4 12,1 3,0 12,2 6,1 3,5 12,3 4,8 10,7	Nd 48,7 24,8 10,2 31,4 32,1 9,8 48,0 9,0 34,0 20,3 12,1 41,4 41,4 15,5 38,1	Sm 8,1 4,4 1,8 6,1 5,9 1,8 11,3 2,3 6,4 4,0 2,2 6,3 3,2 6,6	Eu 1,0 0,8 0,2 1,0 1,0 0,4 2,3 0,4 1,2 0,9 0,2 1,6 0,3 1,2	Gd Fc 5,6 3,3 1,3 4,1 4,4 1,6 8,0 1,7 4,7 2,8 1,5 4,9 2,3 4,6	Tb incass d 1,0 0,5 0,2 0,8 0,3 1,8 0,4 0,6 0,4 0,9 Diquee 0,5 0,8	Dy el Mon 5,3 2,7 1,3 3,9 4,1 1,7 9,6 2,6 3,6 2,8 1,9 4,1 9,6 2,6 3,6 2,8 1,9 4,1 2,6 4,2	Ho zogran 1,0 0,5 0,3 0,8 0,8 0,4 2,1 0,5 0,7 0,6 0,5 0,5 0,5 0,5 0,8	Er ito de 3,0 1,6 1,0 2,4 2,6 1,3 5,6 1,6 2,3 1,8 1,6 2,5 menore 1,8 2,3	Tm Santa 0,4 0,2 0,3 0,4 0,2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	Yb Bárba 2,5 1,4 1,5 2,2 2,4 1,6 4,5 1,8 2,2 1,6 2,2 1,6 2,0 1,6	Lu ara 0,3 0,2 0,3 0,3 0,3 0,4 0,4 0,3 0,7 0,3 0,3 0,3 0,2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	TI 1,1 1,1 2,3 1,2 1,2 1,2 1,2 1,4 0,6 1,7 1,4 1,5 1,6 0,9 1,2 0,7	Pb 14,1 16,3 31,8 22,7 21,5 26,7 8,3 33,5 19,0 21,1 22,4 20,1 22,4 20,1 11,2	Bi 0,1 0,0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,2 0,1 0,1 0,1 0,2 0,1 0,1 1,1	Th 23,5 21,8 35,4 20,7 25,1 25,4 5,9 10,9 31,5 26,5 37,4 25,8 32,8 9,8	U 5,2 3,0 9,2 3,9 7,3 5,1 1,4 2,4 4,8 9,8 4,3 4,3 7,5 3,4	Zr 203,7 120,6 55,4 147,4 148,0 62,2 341,6 46,5 135,5 101,4 40,3 167,7 72,0 180,3	Nb 15,0 9,5 14,3 12,1 16,1 9,9 13,0 10,8 13,1 8,9 15,7 10,5	W 49,9 49,2 29,0 52,4 52,7 42,2 36,6 60,2 49,5 61,7 27,2 46,1 54,3 37,5
IGM 900857 900870 900881 900882 900896 900908 900910 900911 900920 900933 900935 900941 	Ba I 860,6 6 931,1 3 64,0 1 870,9 4 866,8 4 312,0 1 1469,0 3 293,2 1 1113,4 5 636,1 2 61,7 1 1490,8 6	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2 7,7 81,8 3,9 26,1 5,0 98,2 6,6 54,6 3,6 29,8 4,3 112,9 9,1 40,7 7,7 87,6 5,7 78,5	Pr 14,0 8,0 3,3 9,5 10,8 3,4 12,1 3,0 12,2 6,1 3,5 12,3 4,8 10,7 8,7	Nd 48,7 24,8 10,2 31,4 32,1 9,8 48,0 9,0 34,0 20,3 12,1 41,4 41,4 15,5 38,1 25,1	Sm 8,1 4,4 1,8 6,1 5,9 1,8 11,3 2,3 6,4 4,0 2,2 6,3 3,2 6,6 4,6	Eu 1,0 0,8 0,2 1,0 1,0 0,4 2,3 0,4 1,2 0,9 0,2 1,6 0,3 1,2 0,8	Gd Fc 5,6 3,3 1,3 4,1 4,4 1,6 8,0 1,7 4,7 2,8 1,5 4,9 2,3 4,6 3,4	Tb ccase d 1,0 0,5 0,2 0,8 0,3 1,8 0,4 0,9 0,4 0,9 Diquee 0,5 0,8 0,6 0,9 Dique 0,5 0,8 0,6	Dy el Mon 5,3 2,7 1,3 3,9 4,1 1,7 9,6 2,6 3,6 2,8 1,9 4,1 2,6 4,1 2,6 4,2 3,2	Ho zogran 1,0 0,5 0,3 0,8 0,8 0,4 2,1 0,5 0,7 0,6 0,5 0,8 erpos n 0,5 0,8 0,6	Er ito de 3,0 1,6 1,0 2,4 2,6 1,3 5,6 1,6 2,3 1,8 1,6 2,5 nencre 1,8 2,3 1,8 1,9	Tm Santa 0,4 0,2 0,3 0,4 0,2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	Yb Bárb 2,5 1,4 1,5 2,2 2,4 1,6 4,5 1,8 2,2 1,6 2,0 1,6 1,6 1,6 1,7	Lu ara 0,3 0,2 0,3 0,3 0,3 0,4 0,3 0,7 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	TI 1,1 1,1 2,3 1,2 1,2 1,4 0,6 1,7 1,4 1,5 1,6 0,9 0,9 1,2 0,7 1,4	Pb 14,1 16,3 31,8 22,7 21,5 26,7 8,3 33,5 19,0 21,1 22,4 20,1 22,4 20,1 11,2 16,3	Bi 0,1 0,0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	Th 23,5 21,8 35,4 20,7 25,1 25,4 5,9 10,9 31,5 26,5 37,4 25,8 32,8 9,8 23,7	U 5,2 3,0 9,2 3,9 7,3 5,1 1,4 2,4 5,8 4,8 9,8 4,3 4,3 7,5 3,4 6,9	Zr 203,7 120,6 55,4 147,4 148,0 62,2 341,6 46,5 135,5 101,4 40,3 167,7 72,0 180,3 89,6	Nb 15,0 9,5 14,3 12,1 16,1 9,9 13,0 10,8 13,1 8,9 15,7 10,5	W 49,9 49,2 29,0 52,4 52,7 42,2 36,6 60,2 49,5 61,7 27,2 46,1 54,3 37,5 27,1
IGM 900857 900870 900881 900882 900882 900988 900908 900910 900910 900933 900935 900935 900935 900935 900858 900858 900858	Ba I 860,6 6 931,1 3 64,0 1 870,9 4 866,8 4 312,0 1 1469,0 3 293,2 1 1113,4 5 636,1 2 61,7 1 1490,8 6 89,3 1 803,0 4 1031,7 4 964,9 5	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2 7,7 81,8 3,9 26,1 5,0 98,2 6,6 54,6 3,6 29,8 4,3 112,9 9,1 40,7 7,7 87,6 5,7 78,5 4,8 71,0	Pr 14,0 8,0 3,3 9,5 10,8 3,4 12,1 3,0 12,2 6,1 3,5 12,3 4,8 10,7 8,7 10,9	Nd 48,7 24,8 10,2 31,4 32,1 9,8 48,0 9,0 34,0 20,3 12,1 41,4 15,5 38,1 25,1 33,6	Sm 8,1 4,4 1,8 6,1 5,9 1,8 11,3 2,3 6,4 4,0 2,2 6,3 3,2 6,6 4,6 6,2	Eu 1,0 0,8 0,2 1,0 1,0 0,4 2,3 0,4 1,2 0,9 0,2 1,6 0,3 1,2 0,8 1,2 0,8 1,2 0,3 1,2 0,8 1,2 0,3 1,2 0,3 1,2 0,3 1,2 0,3 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	Gd Fc 5,6 3,3 1,3 4,1 4,4 1,6 8,0 1,7 4,7 2,8 1,5 4,9 2,3 4,6 3,4 5,0	Tb ccase d 1,0 0,5 0,2 0,8 0,3 1,8 0,4 0,8 0,4 0,9 Diquee 0,5 0,8 0,4 0,9 Diquee 0,5 0,8 0,6 0,7 0,8 0,6 0,6 0,6 0,6 0,6 0,6 0,6 1,0	Dy el Mon 5,3 2,7 1,3 3,9 4,1 1,7 9,6 2,6 3,6 2,8 1,9 4,1 2,6 3,6 2,8 1,9 4,1 2,6 3,2 5,8	Ho zogran 1,0 0,5 0,3 0,8 0,8 0,4 2,1 0,5 0,7 0,6 0,5 0,6 0,5 0,8 0,5 0,8 0,5 0,8 1,2	Er iito de 3,0 1,6 1,0 2,4 2,6 1,3 5,6 1,6 2,3 1,8 1,8 2,5 nenore 1,8 2,3 1,9 4,1	Tm Santa 0,4 0,2 0,3 0,4 0,2 0,3 0,4 0,2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	Yb Bárba 2,5 1,4 1,5 2,2 2,4 1,6 4,5 1,8 2,2 1,6 2,0 2,1 usivos 2,0 1,6 1,8 3,7	Lu ara 0,3 0,2 0,3 0,3 0,3 0,4 0,3 0,7 0,3 0,3 0,2 0,3 0,3 0,2 0,2 0,3 0,2 0,3 0,2 0,3 0,2 0,3 0,2 0,3 0,2	TI 1,1 1,1 2,3 1,2 1,2 1,4 0,6 1,7 1,4 1,5 1,6 0,9 1,2 0,7 1,4 1,1	Pb 14,1 16,3 31,8 22,7 21,5 26,7 8,3 33,5 19,0 21,1 22,4 20,1 25,2 11,2 16,3 18,2	Bi 0,1 0,0 0,1 0,1 0,1 0,1 0,1 0,1	Th 23,5 21,8 35,4 20,7 25,1 25,4 5,9 10,9 31,5 26,5 37,4 25,8 32,8 9,8 23,7 23,8	U 5,2 3,0 9,2 3,9 7,3 5,1 1,4 2,4 2,4 4,8 9,8 4,3 7,5 3,4 6,9 3,6	Zr 203,7 120,6 55,4 147,4 148,0 62,2 341,6 46,5 135,5 101,4 40,3 167,7 72,0 180,3 89,6 118,7	Nb 15,0 9,5 14,3 12,1 16,1 9,9 13,0 10,8 13,1 8,9 15,7 10,5 17,2 8,6 13,8 10,0	W 49,9 49,2 29,0 52,4 52,7 42,2 36,6 60,2 49,5 61,7 27,2 46,1 54,3 37,5 27,1 41,9
IGM 900857 900870 900882 900882 900886 900908 900910 900911 900920 900933 900935 900941 900858 900858 900858 900858 900858 900859 900860 900880 900907	Ba I 860,6 6 931,1 3 64,0 1 870,9 4 866,8 4 312,0 1 1469,0 3 293,2 1 1113,4 5 636,1 2 61,7 1 1490,8 6 89,3 1 803,0 4 1031,7 4 964,9 5 440,9 4	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2 7,7 81,8 3,9 26,1 5,0 98,2 6,6 54,6 3,6 29,8 4,3 112,9 9,1 40,7 7,7 87,6 5,7 78,5 4,8 71,0 7,8 98,6	Pr 14,0 8,0 3,3 9,5 10,8 3,4 12,1 3,0 12,2 6,1 3,5 12,3 4,8 10,7 8,7 10,9 13,8	Nd 48,7 24,8 10,2 31,4 32,1 9,8 48,0 9,0 34,0 20,3 12,1 41,4 41,4 15,5 38,1 25,1 33,6 45,2	Sm 8,1 4,4 1,8 6,1 5,9 1,8 11,3 2,3 6,4 4,0 2,2 6,3 3,2 6,6 4,6 6,2 10,7	Eu 1,0 0,8 0,2 1,0 1,0 0,4 1,2 0,9 0,2 1,6 0,3 1,2 0,8 1,3 1,8	Gd Rc 5,6 3,3 1,3 4,1 1,6 8,0 1,7 4,7 2,8 1,5 4,9 2,3 4,6 3,4 5,0 6,9	Tb ccass d 1,0 0,5 0,2 0,8 0,3 1,8 0,4 0,9 0,5 0,5 0,6 0,4 0,9 Diquee 0,5 0,8 0,6 1,0 1,5	Dy el Mon 5,3 2,7 1,3 3,9 4,1 1,7 9,6 2,6 3,6 2,8 1,9 4,1 3,6 2,8 1,9 4,1 s y cute 2,6 4,2 3,2 5,8 7,1	Ho zogran 1,0 0,5 0,3 0,8 0,8 0,4 2,1 0,5 0,7 0,6 0,5 0,8 0,5 0,8 erpos n 0,5 0,8 0,6 1,2 1,3	Er ito de 3,0 1,6 1,0 2,4 2,6 1,3 5,6 1,6 2,3 1,8 1,6 2,5 1,6 2,5 1,8 1,6 2,5 1,8 1,9 4,1 3,7	Tm Santa 0,4 0,2 0,3 0,4 0,2 0,3 0,4 0,2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	Yb Bárb 2,5 1,4 1,5 2,2 2,4 1,6 2,2 1,6 2,0 2,1 usivo: 2,0 1,6 2,0 1,6 3,7 2,5	Lu ara 0,3 0,2 0,3 0,3 0,3 0,4 0,3 0,4 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	TI 1,1 1,1 2,3 1,2 1,2 1,4 0,6 1,7 1,4 1,5 1,6 0,9 1,2 0,7 1,4 1,1 0,6	Pb 14,1 16,3 31,8 22,7 21,5 26,7 8,3 33,5 19,0 21,1 22,4 20,1 11,2 16,3 18,2 18,2 18,7	Bi 0,1 0,0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,2 0,1 0,1 1,1 0,3 0,1 2,0	Th 23,5 21,8 35,4 20,7 25,1 25,4 5,9 10,9 31,5 26,5 37,4 25,8 32,8 9,8 23,7 23,8 9,8 23,7 23,8 5,1	U 5,2 3,0 9,2 3,9 7,3 5,1 1,4 2,4 4,8 9,8 4,3 7,5 3,4 6,9 3,6 1,0	Zr 203,7 120,6 55,4 147,4 148,0 62,2 341,6 46,5 135,5 101,4 40,3 167,7 72,0 180,3 89,6 118,7 245,2	Nb 15,0 9,5 14,3 12,1 16,1 9,9 13,0 10,8 13,1 8,9 15,7 10,5 17,2 8,6 13,8 10,0 11,6	W 49,9 49,2 29,0 52,4 52,7 42,2 36,6 60,2 49,5 61,7 27,2 46,1 54,3 37,5 27,1 41,9 23,6
IGM 900857 900870 900882 900896 900908 900908 900910 900911 900920 900933 900935 900941 900858 900858 900858 900858 900858 900859 900860 900880 900907 900918	Ba I 860,6 6 931,1 3 64,0 1 870,9 4 866,8 4 312,0 1 1469,0 3 293,2 1 1113,4 5 636,1 2 61,7 1 1490,8 6 93,3 1 89,3 1 803,0 4 1031,7 4 964,9 5 440,9 4 262,9 2	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2 7,7 81,8 3,9 26,1 5,0 98,2 6,6 54,6 3,6 29,8 4,3 112,9 9,1 40,7 7,7 87,6 5,7 78,5 4,8 71,0 7,8 98,6 3,0 40,8	Pr 14,0 8,0 3,3 9,5 10,8 3,4 12,1 3,0 12,2 6,1 3,5 12,3 4,8 10,7 8,7 10,9 13,8 4,5	Nd 48,7 24,8 10,2 31,4 32,1 9,8 48,0 9,0 34,0 20,3 12,1 41,4 41,4 15,5 38,1 25,1 33,6 45,2 12,1	Sm 8,1 4,4 1,8 6,1 5,9 1,8 11,3 2,3 6,4 4,0 2,2 6,3 3,2 6,6 4,6 6,2 10,7 1,9	Eu 1,0 0,8 0,2 1,0 1,0 0,4 1,2 0,9 0,2 1,6 0,3 1,2 0,8 1,3 1,8 0,3	Gd Rc 5,6 3,3 1,3 4,1 4,4 1,6 8,0 1,7 4,7 2,8 1,5 4,9 2,3 4,6 3,4 5,0 6,9 1,7	Tb ccas d 1,0 0,5 0,2 0,8 0,3 1,8 0,4 0,9 0,4 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,10 1,0 1,0 1,5 0,3	Dy el Mon 5,3 2,7 1,3 3,9 4,1 1,7 9,6 2,6 3,6 2,8 1,9 4,1 3,6 2,8 1,9 4,1 5,8 7,1 1,4	Ho zogran 1,0 0,5 0,3 0,8 0,8 0,4 2,1 0,5 0,7 0,6 0,5 0,8 rpos n 0,5 0,8 0,6 1,2 1,3 0,3	Er ito de 3,0 1,6 1,0 2,4 2,6 1,3 5,6 1,3 5,6 1,6 2,3 1,8 1,6 2,5 menore 1,8 2,3 1,9 4,1 3,7 1,3	Tm Santa 0,4 0,2 0,3 0,4 0,2 0,3 0,4 0,2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,4 0,2	Yb Bárb 2,5 1,4 1,5 2,2 2,4 1,6 4,5 1,8 2,2 1,6 2,0 2,1 Usivoo 2,0 1,6 1,8 3,7 2,5 1,9	Lu ara 0,3 0,2 0,3 0,3 0,4 0,3 0,4 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	TI 1,1 1,2 1,2 1,2 1,4 0,6 1,7 1,4 1,5 1,6 0,9 1,2 1,4 1,5 1,6 0,9 1,2 0,7 1,4 1,1 0,6 1,8	Pb 14,1 16,3 31,8 22,7 21,5 26,7 8,3 33,5 19,0 21,1 22,4 20,1 12,2 11,2 16,3 18,2 18,7 13,4	Bi 0,1 0,0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,2 0,1 1,1 0,3 0,1 2,0 0,2	Th 23,5 21,8 35,4 20,7 25,1 25,4 5,9 10,9 31,5 26,5 37,4 25,8 32,8 9,8 23,7 23,8 5,1 33,9	U 5,2 3,0 9,2 3,9 7,3 5,1 1,4 2,4 5,8 4,8 9,8 4,3 7,5 3,4 6,9 3,6 1,0 10,7	Zr 203,7 120,6 55,4 147,4 148,0 62,2 341,6 46,5 135,5 101,4 40,3 167,7 72,0 180,3 89,6 118,7 245,2 60,2	Nb 15,0 9,5 14,3 12,1 16,1 9,9 13,0 10,8 13,1 8,9 15,7 10,5 17,2 8,6 13,8 10,0 11,6 13,0	W 49,9 49,2 29,0 52,4 52,7 42,2 36,6 60,2 49,5 61,7 27,2 46,1 54,3 37,5 27,1 41,9 23,6 47,3
IGM 900857 900870 900881 900882 900896 900908 900910 900911 900920 900933 900935 900941 900858 900858 900859 900858 900859 900860 900880 900880 900907 900918 900919	Ba I 860,6 6 931,1 3 64,0 1 870,9 4 866,8 4 312,0 1 1469,0 3 293,2 1 1113,4 5 636,1 2 61,7 1 1490,8 6 93,0 4 1031,7 4 964,9 5 440,9 4 262,9 2 171,5 7	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2 7,7 81,8 3,9 26,1 5,0 98,2 6,6 54,6 3,6 29,8 4,3 112,9 9,1 40,7 7,7 87,6 5,7 78,5 4,8 71,0 7,8 98,6 3,0 40,8 7,9 11,1	Pr 14,0 8,0 3,3 9,5 10,8 3,4 12,1 3,0 12,2 6,1 3,5 12,3 4,8 10,7 8,7 10,9 13,8 4,5 1,6	Nd 48,7 24,8 10,2 31,4 32,1 9,8 48,0 9,0 34,0 20,3 12,1 41,4 41,4 15,5 38,1 25,1 33,6 45,2 12,1 5,3	Sm 8,1 4,4 1,8 6,1 5,9 1,8 11,3 2,3 6,4 4,0 2,2 6,3 3,2 6,6 4,6 6,2 10,7 1,9 1,3	Eu 1,0 0,8 0,2 1,0 1,0 0,4 1,2 0,9 0,2 1,6 0,3 1,2 0,8 1,2 0,8 1,3 1,8 0,3 0,3 0,3	Gd Rc 5,6 3,3 1,3 4,1 4,4 1,6 8,0 1,7 2,8 1,5 4,9 2,3 4,6 3,4 5,0 6,9 1,7 1,0	Tb ccas d 1,0 0,5 0,2 0,8 0,3 1,8 0,4 0,9 0,6 0,4 0,9 0,5 0,6 0,5 0,6 0,5 0,6 1,0 1,5 0,3 0,2	Dy el Mon 5,3 2,7 1,3 3,9 4,1 1,7 9,6 2,6 3,6 2,8 1,9 4,1 2,6 4,2 3,2 5,8 7,1 1,4	Ho zogran 1,0 0,5 0,3 0,8 0,8 0,4 2,1 0,5 0,7 0,6 0,5 0,8 0,5 0,8 rpos n 0,5 0,5 0,8 0,5 0,8 0,5 0,5 0,5 0,3 0,5 0,3 0,5 0,5 0,5 0,7 0,7 0,5 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7	Er ito de 3,0 1,6 1,0 2,4 2,6 1,3 5,6 1,3 1,6 2,3 1,8 1,6 2,3 1,8 1,8 1,8 2,3 1,9 4,1 3,7 1,3 1,2	Tm Santa 0,4 0,2 0,3 0,4 0,2 0,3 0,4 0,2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,4 0,2 0,3 0,3 0,4 0,2 0,2	Yb Bárb 2,5 1,4 1,5 2,2 2,4 1,6 4,5 1,8 2,2 1,6 2,0 1,6 2,0 1,6 3,7 2,5 1,9 1,7	Lu ara 0,3 0,2 0,3 0,3 0,4 0,3 0,7 0,3 0,7 0,3 0,3 0,2 0,3 0,3 0,2 0,3 0,3 0,2 0,3 0,2 0,3 0,3 0,2 0,3 0,2 0,3 0,2 0,3 0,2 0,3 0,2 0,4 1,2 0,4 0,3 0,2 0,4 0,3 0,4 0,4 0,5 0,4 0,5 0,4 0,5 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7	TI 1,1 1,1 2,3 1,2 1,2 1,2 1,2 1,2 1,2 1,4 0,6 0,6 1,7 1,4 1,5 1,6 0,9 0,9 1,2 0,7 1,4 1,1 1,0 0,6 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	Pb 14,1 16,3 31,8 22,7 21,5 26,7 8,3 33,5 19,0 21,1 22,4 20,1 11,2 16,3 18,2 18,7 13,4 26,6	Bi 0,1 0,0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,2 0,1 1,1 0,3 0,1 2,0 0,2 0,1	Th 23,5 21,8 35,4 20,7 25,1 25,4 5,9 10,9 31,5 26,5 37,4 25,8 32,8 9,8 23,7 23,8 5,1 37,9 29,7	U 5,2 3,0 9,2 3,9 7,3 5,1 1,4 2,4 5,8 4,8 9,8 4,3 7,5 3,4 6,9 3,6 1,0 10,7 9,9	Zr 203,7 120,6 55,4 147,4 148,0 62,2 341,6 46,5 135,5 101,4 40,3 167,7 72,0 180,3 89,6 118,7 245,2 60,2 30,1	Nb 15,0 9,5 14,3 12,1 16,1 9,9 13,0 10,8 13,1 8,9 15,7 10,5 17,2 8,6 13,8 10,0 11,6 13,0 17,2	W 49,9 49,2 29,0 52,4 52,7 42,2 36,6 60,2 49,5 61,7 27,2 46,1 54,3 37,5 27,1 41,9 23,6 47,3 38,3
IGM 900857 900870 900881 900882 900883 900908 900910 900910 900920 900933 900935 900941 900858 900858 900858 900860 900880 900918 900934	Ba I 860,6 6 931,1 3 64,0 1 870,9 4 866,8 4 312,0 1 1469,0 3 293,2 1 1113,4 5 636,1 2 61,7 1 1490,8 6 93,0 4 1031,7 4 964,9 5 440,9 4 262,9 2 171,5 7 1460,7 4	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2 7,7 81,8 3,9 26,1 5,0 98,2 6,6 54,6 3,6 29,8 4,3 112,9 9,1 40,7 7,7 87,6 5,7 78,5 4,8 71,0 7,8 98,6 3,0 40,8 7,9 11,1 8,3 96,9	Pr 14,0 8,0 3,3 9,5 10,8 3,4 12,1 3,0 12,2 6,1 3,5 12,3 12,3 4,8 10,7 8,7 10,9 13,8 4,5 1,6 12,3	Nd 48,7 24,8 10,2 31,4 32,1 9,8 48,0 9,0 34,0 20,3 12,1 41,4 41,4 15,5 38,1 25,1 33,6 45,2 12,1 5,3 49,9	Sm 8,1 4,4 1,8 6,1 5,9 1,8 11,3 2,3 6,4 4,0 2,2 6,3 3,2 6,6 4,6 6,2 10,7 1,9 1,3 8,2	Eu 1,0 0,8 0,2 1,0 1,0 0,4 1,2 0,9 0,2 1,6 0,3 1,2 0,8 1,3 1,8 0,3 0,3 2,1	Gd Rc 5,6 3,3 1,3 4,1 4,4 1,6 8,0 1,7 2,8 1,5 4,7 2,8 1,5 4,9 2,3 4,6 3,4 5,0 6,9 1,7 1,0 5,5	Tb ccas d 1,0 0,5 0,2 0,8 0,3 1,8 0,4 0,9 0,6 0,4 0,9 Diquet 0,5 0,8 0,6 0,4 0,9 Diquet 0,5 0,8 0,6 0,4 0,9 Diquet 0,5 0,8 0,6 0,7 0,7 0,8 0,6 0,7 0,8 0,6 1,1	Dy el Mon 5,3 2,7 1,3 3,9 4,1 1,7 9,6 2,6 3,6 2,8 1,9 4,1 5,8 7,1 1,4 1,4 5,1	Ho zogran 1,0 0,5 0,3 0,8 0,8 0,4 2,1 0,5 0,7 0,6 0,5 0,8 0,5 0,8 0,5 0,8 0,5 0,8 0,5 0,8 0,6 1,2 1,3 0,3 0,3 0,3 0,3	Er ito de 3,0 1,6 1,0 2,4 2,6 1,3 5,6 1,3 1,6 2,3 1,8 1,6 2,3 1,8 1,6 2,3 1,8 1,6 2,3 1,8 1,6 2,3 1,8 1,8 1,6 2,3 1,8 1,6 2,3 1,8 1,9 4,1 3,7 1,9 4,1 3,7 1,3 1,2 2,3 1,9 4,1 1,9 2,3 1,9 4,1 1,9 2,3 1,9 4,1 1,9 2,3 1,9 4,1 1,9 2,3 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9	Tm Santa 0,4 0,2 0,3 0,4 0,2 0,3 0,4 0,2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,4 0,2 0,3 0,3 0,4 0,2 0,2 0,3	Yb Bárb 2,5 1,4 1,5 2,2 2,4 1,6 4,5 1,8 2,2 1,6 2,0 2,1 Usivos 2,0 1,6 1,8 3,7 2,5 1,9 1,7 2,0	Lu ara 0,3 0,2 0,3 0,3 0,4 0,3 0,7 0,3 0,7 0,3 0,3 0,2 0,3 0,3 0,2 0,3 0,3 0,2 0,3 0,2 0,3 0,2 0,3 0,2 0,3 0,2 0,3 0,2 0,3 0,2 0,3 0,4 0,7 0,2 0,4 0,4 0,5 0,4 0,5 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7	TI 1,1 1,1 2,3 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	Pb 14,1 16,3 31,8 22,7 21,5 26,7 8,3 33,5 19,0 21,1 22,4 20,1 11,2 24,2 11,2 11,2 11,2 11,2 11,2 11,3 18,2 18,7 13,4 26,6 13,4 26,7 13,4 26,7 13,5 19,0 21,5 26,7 19,0 21,5 26,7 19,0 21,5 26,7 19,0 21,5 26,7 19,0 21,1 22,4 20,1 20,2 20,	Bi 0,1 0,0 0,1 0,1 0,1 0,1 0,1 0,1	Th 23,5 21,8 35,4 20,7 25,1 25,4 5,9 10,9 31,5 26,5 37,4 25,8 32,8 9,8 23,7 23,8 5,1 37,9 29,7 5,6	U 5,2 3,0 9,2 3,9 7,3 5,1 1,4 2,4 5,8 4,8 9,8 4,3 7,5 3,4 6,9 3,6 1,0 10,7 9,9 1,1	Zr 203,7 120,6 55,4 147,4 148,0 62,2 341,6 46,5 135,5 101,4 40,3 167,7 72,0 180,3 89,6 118,7 245,2 60,2 30,1 236,5	Nb 15,0 9,5 14,3 12,1 16,1 9,9 13,0 10,8 13,1 8,9 15,7 10,5 17,2 8,6 13,8 10,0 11,6 13,0 11,6 13,0 17,4	W 49,9 49,2 29,0 52,4 52,7 42,2 36,6 60,2 49,5 61,7 27,2 46,1 54,3 37,5 27,1 41,9 23,6 47,3 38,3 22,0
IGM 900857 900870 900881 900882 900886 900908 900910 900911 900920 900933 900933 900941 900858 900860 900880 900907 900918 900919 900934 900940	Ba I 860,6 6 931,1 3 64,0 1 870,9 4 866,8 4 312,0 1 1469,0 3 293,2 1 1113,4 5 636,1 2 61,7 1 1490,8 6 9 4 963,9 1 803,0 4 1031,7 4 964,9 5 440,9 4 262,9 2 171,5 7 1460,7 4 120,2 1	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2 7,7 81,8 3,9 26,1 5,0 98,2 6,6 54,6 3,6 29,8 4,3 112,9 9,1 40,7 7,7 87,6 5,7 78,5 4,8 71,0 7,8 98,6 3,0 40,8 7,9 11,1 8,3 96,9 11,2 24,5	Pr 14,0 8,0 3,3 9,5 10,8 3,4 12,1 3,0 12,2 6,1 3,5 12,3 12,3 4,8 10,7 8,7 10,9 13,8 4,5 1,6 12,3 3,1	Nd 48,7 24,8 10,2 31,4 32,1 9,8 48,0 9,0 34,0 20,3 12,1 41,4 41,4 15,5 38,1 25,1 33,6 45,2 12,1 5,3 49,9 12,3	Sm 8,1 4,4 1,8 6,1 5,9 1,8 11,3 2,3 6,4 4,0 2,2 6,3 3,2 6,6 4,6 6,2 10,7 1,9 1,3 8,2 2,8	Eu 1,0 0,8 0,2 1,0 1,0 0,4 1,2 0,9 0,2 1,6 0,3 1,2 0,8 1,3 1,8 0,3 0,3 2,1 0,5	Gd Rc 5,6 3,3 1,3 4,1 4,4 1,6 8,0 1,7 2,8 1,5 4,9 2,3 4,6 3,4 5,0 6,9 1,7 1,0 5,5 2,1	Tb ccas d 1,0 0,5 0,2 0,8 0,3 1,8 0,4 0,9 Diquet 0,5 0,6 0,4 0,9 Diquet 0,5 0,8 0,6 1,0 1,5 0,3 0,2 1,1 0,6	Dy el Mon 5,3 2,7 1,3 3,9 4,1 1,7 9,6 2,6 3,6 2,8 1,9 4,1 5,8 7,1 1,4 1,4 5,1 3,4	Ho zogran 1,0 0,5 0,3 0,8 0,8 0,4 2,1 0,5 0,7 0,6 0,5 0,8 0,5 0,8 0,5 0,8 0,5 0,8 0,5 0,8 0,6 1,2 1,3 0,3 0,3 0,3 0,9 0,7	Er ito de 3,0 1,6 1,0 2,4 2,6 1,3 5,6 1,3 1,3 1,3 1,8 1,6 2,3 1,8 1,8 2,3 1,9 4,1 3,7 1,3 1,2 2,7 2,3	Tm Santa 0,4 0,2 0,3 0,4 0,2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,4 0,2 0,3 0,3 0,3 0,4 0,2 0,3 0,3 0,3 0,3 0,3 0,4 0,2 0,3 0,3	Yb Bárb 2,5 1,4 1,5 2,2 2,4 1,6 4,5 1,8 2,2 1,6 2,0 2,1 Usivos 2,0 1,6 1,8 3,7 2,5 1,9 1,7 2,0 2,2 2,0 1,6 1,7 2,0 1,6 1,7 1,6 1,7 1,6 1,7 1,6 1,7 1,6 1,7 1,7 1,6 1,6 1,7 1,6 1,6 1,7 1,6 1,7 1,6 1,7 1,6 1,7 1,6 1,7 1,6 1,6 1,7 1,6 1,7 1,6 1,7 1,6 1,7 1,6 1,7 1,6 1,7 1,6 1,7 1,6 1,7 1,6 1,7 1,6 1,7 1,6 1,7 1,6 1,7 1,6 1,7 1,7 1,6 1,7 1,7 1,6 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7	Lu ara 0,3 0,2 0,3 0,3 0,4 0,3 0,7 0,3 0,7 0,3 0,3 0,3 0,3 0,2 0,3 0,3 0,2 0,3 0,6 0,3 0,2 0,3 0,2 0,3 0,2 0,3 0,4 0,3 0,2 0,3 0,3 0,2 0,3 0,4 0,4 0,5 0,4 0,5 0,4 0,5 0,5 0,4 0,5 0,5 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7	TI 1,1 1,1 2,3 1,2 1,2 1,2 1,2 1,4 0,6 1,7 1,4 1,5 1,6 0,9 1,2 0,7 1,4 1,1 0,6 1,8 1,1 0,1	Pb 14,1 16,3 31,8 22,7 21,5 26,7 19,0 21,1 22,4 20,1 12,4 20,1 11,2 16,3 18,2 18,7 13,4 26,6 13,9 6,7	Bi 0,1 0,0 0,1 0,1 0,1 0,1 0,1 0,1	Th 23,5 21,8 35,4 20,7 25,1 25,2 10,9 31,5 26,5 37,4 25,8 9,8 23,7 23,8 9,8 23,7 23,8 5,1 37,9 29,7 5,6 1,0	U 5,2 3,0 9,2 3,9 7,3 5,1 1,4 2,4 5,8 4,8 9,8 4,3 7,5 3,4 6,9 3,6 1,0 10,7 9,9 1,1 0,3	Zr 203,7 120,6 55,4 147,4 148,0 62,2 341,6 46,5 135,5 101,4 40,3 167,7 72,0 180,3 89,6 118,7 245,2 60,2 30,1 236,5 26,7	Nb 15,0 9,5 14,3 12,1 16,1 9,9 13,0 10,8 13,1 8,9 15,7 10,5 17,2 8,6 13,8 10,0 11,6 13,0 17,4 12,2 3,4	W 49,9 49,2 29,0 52,4 52,7 42,2 36,6 60,2 49,5 61,7 27,2 46,1 54,3 37,5 27,1 41,9 23,6 47,3 38,3 22,0 9,9
IGM 900857 900870 900881 900882 900896 900908 900910 900911 900920 900933 900933 900935 900941 900858 900918 900918 900918 900918 900920 900918 900920 900935 900941 900858 900858 900948 900935 900948 900958 9	Ba I 860,6 6 931,1 3 64,0 1 870,9 4 866,8 4 312,0 1 1469,0 3 293,2 1 1113,4 5 636,1 2 61,7 1 1490,8 6 9 4 903,0 4 1031,7 4 964,9 5 440,9 4 262,9 2 171,5 7 1460,7 4 120,2 1 ppm p	a Ce 8,0 118,6 9,4 72,2 5,4 28,2 0,1 79,3 9,8 95,5 9,0 31,2 7,7 81,8 3,9 26,1 5,0 98,2 6,6 54,6 3,3 112,9 9,1 40,7 7,7 87,6 5,7 78,5 4,8 71,0 7,8 98,6 3,0 40,8 '1,9 11,1 8,3 96,9 1,2 24,5 pm ppm	Pr 14,0 8,0 3,3 9,5 10,8 3,4 12,1 3,0 12,2 6,1 3,5 12,3 12,3 4,8 10,7 8,7 10,9 13,8 4,5 1,6 12,3 3,1 ppm	Nd 48,7 24,8 10,2 31,4 32,1 9,8 48,0 9,0 34,0 20,3 12,1 41,4 41,4 15,5 38,1 25,1 33,6 45,2 12,1 5,3 49,9 12,3 ppm	Sm 8,1 4,4 1,8 6,1 5,9 1,8 11,3 2,3 6,4 4,0 2,2 6,3 3,2 6,6 4,6 6,2 10,7 1,9 1,3 8,2 2,8 ppm	Eu 1,0 0,8 0,2 1,0 1,0 0,4 1,2 0,9 0,2 1,6 0,3 1,2 0,8 1,3 1,8 0,3 0,3 2,1 0,5 ppm	Gd Rc 5,6 3,3 1,3 4,1 4,4 1,6 8,0 1,7 2,8 1,5 4,9 2,3 4,6 3,4 5,0 6,9 1,7 1,0 5,5 2,1 ppm	Tb ccas d 1,0 0,5 0,2 0,8 0,3 1,8 0,4 0,9 Diquet 0,5 0,6 0,4 0,9 Diquet 0,5 0,8 0,6 1,0 1,5 0,8 0,6 1,0 1,5 0,3 0,2 1,1 0,6 ppm	Dy el Mon 5,3 2,7 1,3 3,9 4,1 1,7 9,6 2,6 3,6 2,8 1,9 4,1 5,8 7,1 1,4 5,1 3,4	Ho zogran 1,0 0,5 0,3 0,8 0,8 0,4 2,1 0,5 0,7 0,6 0,5 0,8 0,5 0,8 0,5 0,8 0,5 0,8 0,6 1,2 1,3 0,3 0,3 0,3 0,9 0,7 7 0,7	Er ito de 3,0 1,6 1,0 2,4 2,6 1,3 5,6 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	Tm Santa 0,4 0,2 0,3 0,4 0,2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,4 0,2 0,3 0,3 0,3 0,4 0,2 0,3 0,3 0,3 0,4 0,2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	Yb Bárb 2,5 1,4 1,5 2,2 2,4 1,6 4,5 1,8 2,0 1,6 2,0 1,6 3,7 2,5 1,9 1,7 2,0 2,2	Lu ara 0,3 0,2 0,3 0,3 0,4 0,3 0,7 0,3 0,7 0,3 0,3 0,2 0,3 0,3 0,2 0,3 0,2 0,3 0,4 0,3 0,4 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	TI 1,1 1,1 2,3 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	Pb 14,1 16,3 31,8 22,7 26,7 8,3 33,5 19,0 21,1 22,4 20,1 12,4 20,1 13,2 18,2 18,2 18,7 13,4 26,6 13,9 6,7 ppm	Bi 0,1 0,0 0,1 0,1 0,1 0,1 0,1 0,1	Th 23,5 21,8 35,4 20,7 25,1 25,4 5,9 31,5 26,5 37,4 25,8 32,8 9,8 23,7 23,8 5,1 37,9 29,7 5,6 1,0 ppm	U 5,2 3,0 9,2 3,9 7,3 5,1 1,4 2,4 5,8 4,8 9,8 4,3 7,5 3,4 6,9 3,6 1,0 10,7 9,9 1,1 0,3 ppm	Zr 203,7 120,6 55,4 147,4 148,0 62,2 341,6 46,5 135,5 101,4 40,3 167,7 72,0 180,3 89,6 118,7 245,2 60,2 30,1 236,5 26,7 (mg/kg)	Nb 15,0 9,5 14,3 12,1 16,1 9,9 13,0 10,8 13,1 8,9 15,7 10,5 17,2 8,6 13,8 10,0 11,6 13,0 17,4 12,2 3,4 (mg/kg)	W 49,9 49,2 29,0 52,4 52,7 42,2 36,6 60,2 49,5 61,7 27,2 46,1 54,3 37,5 27,1 41,9 23,6 47,3 38,3 22,0 9,9 (mg/kg)

El diagrama de elementos de las tierras raras (REE), normalizado a condrito según los valores de Nakamura (1974), en rocas granitoides del Monzogranito de Santa Bárbara muestra al menos cuatro patrones de REE diferentes, que podrían sugerir diferentes eventos o pulsos magmáticos en el mismo plutón. El comportamiento general de los cuatro patrones es comparable al de rocas generadas en ambientes de subducción por encima de la placa subducida (arco), con enriquecimiento en tierras raras livianas (LREE), empobrecimiento hacia las tierras raras pesadas (HREE) y anomalía negativa de Eu, que crece con el aumento del contenido de SiO, en las rocas probablemente debido a fraccionamiento de la plagioclasa en el magma, lo cual permite que el Eu+3 cambie su estado de oxidación a Eu⁺² (figura 17). En todas las muestras, las relaciones Eu/Eu*<1 y (La/Sm)_N>2 evidencian un enriquecimiento de tierras raras ligeras con relación a las HREE.

Al analizar el comportamiento de los REE se encuentra una relación estrecha entre los diferentes patrones y el contenido de SiO₂: la muestra IGM-900910 (JGB-464), clasificada químicamente como tonalita, tiene un patrón con pendiente negativa menos pronunciado que las demás muestras (granitos y granitos feldespáticos), con mayores contenidos de LREE, débil anomalía negativa de Eu y Gd, relaciones más bajas de (Ce/Sm)_N de 1,71 y (La/Sm) _N de 2,6 (tabla 6) y valores de SiO₂ de 68,34%. El segundo y tercer patrón se encuentra en las muestras IGM-900908 (JGB-457) y IGM-900935 (MIA-629B), similares al patrón de las muestras IGM-900911 (JGB-465) y IGM-900881 (JGB-671B), que corresponden a rocas clasificadas químicamente como granitos de feldespato alcalino, con los mayores contenidos de SiO₂ (75 % a 79,5 %), las menores sumatorias de REE, la menor relación (Eu/Yb),, con mayores anomalías negativas de Eu. Además, estos dos patrones presentan un empobrecimiento progresivo en las tierras raras livianas (LREE) entre La y Eu y un enriquecimiento débil de las tierras raras pesadas (HREE) entre Gd y Lu, que los diferencia de los demás patrones (figura 17). Estos evidencian edades U/Pb de 203,8 ± 2,7 Ma, en el caso de la muestra IGM-900881 (GR-6718), y el otro patrón arrojó una edad de 195,1±1,9 Ma en la muestra IGM-900908 (JGB-457). Por último, un cuarto patrón corresponde a las muestras IGM-900941 (MIA-635), IGM-900857 (AMC-0123), IGM-900920 (LMC-062), IGM-900882 (GR-6719), IGM-900870 (AMC-138A), IGM-900896 (GZ-6820) e IGM-900933 (MIA-628A), clasificadas químicamente como granitos, con enriquecimiento en LREE y pendiente negativa hacia las HREE, anomalía negativa moderada de Eu, con sumatoria de REE entre 123,2 y 277,5; relación (La/Yb)_N y (Ce/Yb)_N mayor que la de los otros tres trenes (10,7 a 20,5) y (8,45 a 13,77), respectivamente (tabla 5); a la muestra IGM-900882 (GR-6719) se le calculó una edad de 196,8±2,0 Ma (figura 17).

Las edades U/Pb obtenidas en algunas muestras asociadas a diferentes patrones de REE normalizados al condrito de Nakamura (1974) (figura 17) sugieren que los patrones se relacionan con pulsos magmáticos de diferente edad y similar composición litológica en el plutón de Santa Bárbara.

Figura 17. Diagrama de REE normalizado respecto al condrito (Nakamura, 1974), correspondiente a muestras del Monzogranito de Santa Bárbara En negro, rocas clasificadas como granitos; en rojo, roca clasificada como tonalita, y en verde, rocas clasificadas como granitos de feldespato alcalino, y edades U/Pb de algunas muestras

IGM	SiO2	Eu/Eu*	LaN/YbN	LaN/SmN	CeN/YbN	CeN/SmN	EuN/YbN	Σ -REE
900910	68,34	0,76	5,55	2,06	4,6	1,71	1,48	226,12
900941	72,93	0,91	20,56	6,31	13,77	4,22	2,25	254,88
900857	73,04	0,47	18,25	5,17	12,14	3,44	1,2	277,55
900920	73,25	0,68	16,68	5,28	11,36	3,59	1,58	222,02
900882	73,72	0,62	12,06	4,02	9,09	3,03	1,3	182,25
900870	73,95	0,67	19,32	5,57	13,51	3,89	1,73	159,87
900896	74,48	0,59	13,57	5,2	9,93	3,8	1,15	211,01
900933	75,27	0,8	10,77	4,06	8,45	3,18	1,52	123,24
900908	76,21	0,73	7,91	6,45	4,97	4,06	0,71	73,01
900911	77,28	0,63	5,09	3,7	3,64	2,65	0,65	63,97
900881	77,75	0,37	7,06	5,19	4,95	3,63	0,37	65,17
900935	78,15	0,29	4,48	3,79	3,75	3,18	0,24	69,75

Tabla 6. Valores normalizados de REE según el condrito de Nakamura (1974) y valores de SiO,, en rocas del Monzogranito de Santa Bárbara

Colores concordantes con los diagramas multielementales

Los diques y cuerpos menores intrusivos muestran al menos cuatro patrones diferentes en el diagrama de REE contrastado con el valor de condrito de Nakamura (1974), cada uno de ellos con edades U/Pb diferentes (figura 18). Los patrones de los diques y cuerpos menores intrusivos están estrechamente relacionados con los tipos de roca que representan y el contenido de SiO₂, con un comportamiento general comparable al de rocas generadas en ambientes de subducción por encima de la placa subducida (arco), con enriquecimiento en tierras raras livianas (LREE) y empobrecimiento hacia las tierras raras pesadas (HREE), anomalía débil negativa de Eu que se asocia con fraccionamiento de plagioclasa. Las rocas, clasificadas químicamente como cuarzodioritas, cuarzomonzonitas y granodioritas, correspondientes a las muestras IGM-900907 (JGB-456), IGM-900934 (MIA-629A) e IGM-900859 (AMC-0125B) (tabla 5; figura 18), tienen un patrón paralelo entre ellas con enriquecimiento de LREE que progresivamente se empobrece hacia las HREE, similar al de rocas generadas en ambiente de arco. Las muestras IGM-900880 (GR-6717), IGM-900858 (AMC-0125A) e IGM-900860 (AMC-0127), clasificadas como granitos, tienen un patrón subparalelo que presenta un empobrecimiento progresivo en las tierras raras livianas (LREE) entre La y Eu, y comportamiento plano de las HREE entre Gd y Lu (tabla 5; figura 18). Las muestras IGM-900918 (LMC-059A) e IGM-900919 (LMC-061), clasificadas como granitos de feldespato alcalino-sienogranitos, conforman un patrón no paralelo en LREE y paralelo en las HREE, corresponden a las rocas

Figura 18. Diagrama de REE normalizado respecto al condrito (Nakamura, 1974) correspondiente a diques y cuerpos intrusivos menores asociados al Monzogranito de Santa Bárbara

En negro, rocas clasificadas como gabro (IGM-900940); en rojo, rocas clasificadas como granitos de feldespato alcalino-sienogranitos; en verde, rocas clasificadas como cuarzodioritas-cuarzomonzonitas y granodioritas (andesitas y dacitas), y en azul, rocas clasificadas como granitos-monzogranitos (riolitas) con los mayores contenidos de SiO₂ (75 % a 77 %), las menores sumatorias de REE (63,97 a 73,01), la menor relación (Eu/Yb)_N, entre 0,24 y 0,71, y con relación (Eu/Yb)_N > 1 (tabla 5), además, tienen la mayor anomalía negativas de Eu. El patrón de los granitos y sienograniros presenta un empobrecimiento progresivo en las tierras raras livianas (LREE) entre La y Eu y un enriquecimiento débil de las tierras raras pesadas (HREE) entre Gd y Lu que le imprime un tren cóncavo (rojo en la tabla 5 y figura 18). La muestra 900860 (AMC-0127) presenta un patrón independiente que se cruza con los demás patrones, y se clasificó como fenodacita.

El diagrama multielemental de tierras raras (Sun y McDonough, 1989, en Pearce, 2014) correspondiente a las rocas del Monzogranito de Santa Bárbara muestra empobrecimiento de los elementos inmóviles Nb, Ti y P, que puede corresponder a separación de fases minerales accesorias, como titanita, rutilo y apatito, y ser reflejo de la evolución magmática (Winter, 2001), donde el Nb se comporta geoquímicamente de modo similar al Ti (figura 19: A, B). Los mayores valores de los elementos litófilos de alto radio iónico (LILE) Cs, Ba y Th indican una afinidad de corteza continental (márgenes convergentes), donde abundan estos elementos altamente incompatibles. Los valores mayores en Sr, K, Ba y Rb se deben a su movilización desde fluidos que interactúan en la zona de subducción hacia el magma (figura 19A), y las anomalías negativas de Nb, Ti y P son características de arcos magmáticos relacionados con ambientes de subducción, con empobrecimiento progresivo hacia los elementos pesados; además, presentan anomalía negativa de Nb con respecto al Th y Ce, signatura geoquímica típica de magmas originados en ambientes tectónicos relacionados con arcos. Los elementos traza más móviles

(LILE) tienen concentraciones mayores que el N-MORB, mientras que los elementos traza menos móviles están por debajo del N-MORB.

Al analizar las diversas agrupaciones de rocas que sugieren diferentes pulsos magmáticos en el Monzogranito de Santa Bárbara (figura 19: A, B), en el diagrama multielemental de tierras raras (Sun y McDonough, 1989 en Pearce, 2014) presentan pequeñas diferencias en los trenes de los elementos traza, con mayores anomalías de titanio en las muestras IGM-900908 (JGB-457), IGM-900911 (JGB-465), IGM-900881 (GR-6718) e IGM-900935 (MIA-629B), y valores más bajos en tierras raras inmóviles (en verde y azul), desde La hasta Yb, en las rocas clasificadas químicamente como granitos de feldespato alcalino, y valores más altos en las tierras raras inmóviles en la muestra 900910 (JGB-464), clasificada como tonalita.

Los diques y cuerpos intrusivos menores presentan anomalía negativa o empobrecimiento de los elementos inmóviles Nb, Ti v P (figura 20 A v B). Los mayores valores de los elementos litófilos de alto radio iónico (LILE) Cs, Ba y Th indican una afinidad de corteza continental (márgenes convergentes). Los diques y cuerpos intrusivos menores presentan anomalías positivas en K, Ba, Th, Rb, Cs y Pb (figura 20A), y anomalías negativas de Nb, Ti y P características de arcos magmáticos relacionados con ambientes de subducción, con empobrecimiento progresivo hacia los elementos inmóviles de radio iónico pequeño; además, presentan anomalía negativa de Nb con respecto al Th y Ce, signatura geoquímica típica de magmas originados en ambientes tectónicos relacionados con arcos, con pequeñas diferencias en los patrones de los diversos diques.

Figura 19. Diagramas multielementales correspondientes a rocas del Monzogranito de Santa Bárbara. A) Diagrama multielemental normalizado al NMORB (Sun y McDonough, 1989, en Pearce, 2014). B) Diagrama de elementos traza inmóviles normalizados al NMORB (Sun y McDonough, 1989, en Pearce, 2014). En negro, rocas clasificadas como granitos; en rojo, roca clasificada como tonalita, y en verde y azul, rocas clasificadas como granitos de feldespato

En negro, rocas clasificadas como granitos; en rojo, roca clasificada como tonalita, y en verde y azul, rocas clasificadas como granitos de feldespato alcalino

Figura 20. Diagramas multielementales correspondientes a rocas de dique y cuerpos intrusivos menores

A) Diagrama multielemental normalizado al NMORB (Sun y McDonough, 1989 en Pearce, 2014). B) Diagrama de elementos traza inmóviles normalizados al NMORB (Sun y McDonough, 1989 en Pearce, 2014).

En negro, rocas clasificadas como gabro (IGM-900940); en rojo, roca clasificada como granitos de feldespato alcalino-sienogranitos; en verde, rocas clasificadas como cuarzodioritas-cuarzomonzonitas y granodiorita (andesitas y dacitas), y en azul, rocas clasificadas como granitos-monzogranitos y riolitas

3.3. Discriminación del ambiente tectónico

Las rocas del Monzogranito de Santa Bárbara grafican en el campo de los granitos tipo I y tipo S en el diagrama A/ CNK-SiO2 de Frost, Barnes, Collins, Arculus, Ellis y Frost (2001); la muestra IGM-900910 (JGB-464) es clasificada como tonalita, y las muestras IGM-900920 (LMC-062) e IGM-900870 (AMC-0138A), como granitos, grafican en el campo de los granitos tipo S (figura 21A), mientras el resto de muestras pertenecen a la interface entre granitos tipo S e I. En el gráfico de CaO vs. FeOt (Chappell y White, 2001), las rocas se distribuyen hacia los granitos tipo S. Las características mineralógicas del plutón indican que corresponde a un granito tipo I, pero los gráficos de discriminación del ambiente tectónico no son concluyentes en este aspecto. Mineralógicamente, algunas rocas analizadas del Monzogranito de Santa Bárbara tienen hornblenda y carecen de moscovita, presentan facies intermedias dioríticas a granodioríticas con hornblenda y biotita, esta última de color pardo; el feldespato potásico es de color rosado, características que se asocian a granitos tipo I altamente diferenciados (Chappell y White, 2001).

Según los diagramas Rb/Zr vs. Nb (Martin, 1994, figura 21C) y Nbn/Zrn vs. Zr (Thyeblemont y Tegyey,

1994, figura 21D), las rocas del Monzogranito de Santa Bárbara corresponden a granitos de arco magmático. El diagrama Rb/Zr vs. Nb de Martin (1994) indica que las rocas del Monzogranito de Santa Bárbara pertenecen a un arco magmático normal, donde la corteza continental pudo jugar un papel importante en la composición del magma (figura 21C). Además, los diagramas de elementos traza y tierras raras exhiben anomalías negativas de Ba, Nb y P, junto con positiva de Pb. El empobrecimiento de Nb se explica por una combinación de dos factores: por un lado, la presencia de rutilo residual que retiene el Nb en la región fuente de la losa subducida, y, por otra parte, está relacionado con la baja solubilidad del Nb en los fluidos ricos en agua y en los magmas, ambos generados en las partes someras de las zonas de subducción (Briqueu et al., 1984; Baier et al., 2007).

Los diques y cuerpos menores que intruyen el Monzogranito de Santa Bárbara grafican en el campo de los granitos tipo I y tipo S en el diagrama de Frost *et al.* (2001) y Whalen *et al.* (1987) (figuras 22 A y B); las muestras IGM-900940 (MIA-634), IGM-900858 (AMC-0125A) e IGM-900859 (AMC-0125B), en el diagrama A/CNK-SiO₂ de Frost *et al.* (2001) grafican en el campo de los granitos tipo S, mientras que el resto de muestras pertenecen a la

Figura 21. Diagramas discriminantes del ambiente tectónico de emplazamiento del Monzogranito de Santa Bárbara. A) Diagrama de Frost *et al.* (2001) de discriminación de granitoides tipo I y S. B) Diagrama de Whalen *et al.* (1987) de discriminación de granitos I, S, A. C) Diagrama Rb/Zr vs. Nb de Martin (1994). D) Diagrama Nb_n/Zr_n vs. Zr de Thyeblemont y Tegyey (1994)

Figura 22. Diagramas discriminantes del ambiente tectónico en diques y cuerpos menores intrusivos en el Monzogranito de Santa Bárbara. A) Diagrama de Frost *et al.* (2001) de discriminación de granitoides tipo I y S. B) Diagrama de Whalen *et al.* (1987) de discriminación de granitos I, S, A. C) Diagrama Rb/Zr vs. Nb de Martin (1994). D) Diagrama (Nb)n/(Zr)n vs. Zr de Thyeblemont y Tegyey (1994)

interface entre granitos tipo S e I; además, corresponden a granitos de arco magmático, según los diagramas Rb/ Zr vs. Nb de Martin (1994) (figura 22C) y Nbn/Zrn vs. Zr (Thyeblemont y Tegyey, 1994, figura 22D), con una fuerte dispersión de los datos.

4. Posición estratigráfica y edad

El Monzogranito de Santa Bárbara intruye las formaciones Floresta y Silgará, el Ortoneis de Berlín y el Neis de Bucaramanga (que separa el Monzogranito de Santa Bárbara del Granito de Pescadero), y al sur se encuentra en contacto fallado con el Batolito de Mogotes. La Formación Tambor, del Cretácico inferior, reposa de modo discordante sobre el Monzogranito de Santa Bárbara. Los conglomerados de la Formación Girón contienen fragmentos del Monzogranito de Santa Bárbara (Vargas *et al.*, 1981; Ward *et al.*, 1973). Además, el Monzogranito de Santa Bárbara está atravesado por diques y pequeños cuerpos de composición andesítica-diorítica y riolítica-granítica de edades triásicas y jurásicas, y aparentemente algunas facies intruyen cuerpos menores de monzogranitos aplíticos. En trabajos anteriores se han realizado algunas dataciones del Monzogranito de Santa Bárbara y de rocas metamorficas relacionadas, utilizando los métodos K/Ar y Ar/Ar (Goldsmith, 1971; Restrepo Page, 1995), cuyos resultados se resumen en la tabla 7.

Dos dataciones obtenidas con el método K/Ar en biotita (Goldsmith *et al.*, 1971), de rocas del Monzogranito de Santa Bárbara, dieron edades de cierre de 194±7 y 192±7 Ma, que son similares a las obtenidas por U-Pb en circones en el presente trabajo.

Restrepo Pace (1995) fechó, mediante el método Ar-Ar, rocas metamorficas localizadas en el Monzogranito de Santa Bárbara, y obtuvo edades de cierre de 204±0,6 Ma, 203,4 Ma, 187±4 Ma y 175,4±1,7 Ma, que fueron interpretadas como resultado de un evento termal sobreimpuesto relacionado con la cristalización del plutón.

En este trabajo se dataron nueve muestras de rocas y saprolitos de monzogranito, previa descripción petrográfica y análisis litogeoquímico de las rocas. Para la selección se tuvieron en cuenta los resultados geoquímicos, los posibles pulsos magmáticos y la distribución espacial de las muestras. Los resultados y la localización de las dataciones se presentan en la figura 1 y en la tabla 8. Tabla 7. Edades K/Ar y Ar/Ar en rocas del Monzogranito de Santa Bárbara y rocas metamorfas relacionadas (tomadas de Goldsmith *et al.*, 1971; Restrepo Page, 1995)

Muestra	IMN-11045	IMN-10924	CB-7	CB-7	CSB-3a	BV-4
Este	1129209	1125921	1128246	1128246	1126951	1129872
Norte	1252586	1255824	1277047	1277047	1260477	1277420
Plancha	121	121	121	121	121	121
Roca analizada	Cuarzomonzonita	Cuarzomonzonita	Ortoneis de Hbl-Pl-Qtz	Ortoneis de Hbl-Pl-Qtz	Paraneis de Qtz-PI-Bt	Ortoneis de Qtz-Bt-Pl
Material analizado	Biotita	Biotita	Hornblenda	Hornblenda	Biotita	Biotita
Unidad	Cuarzomonzonita de Santa Bárbara	Cuarzomonzonita de Santa Bárbara	Ortoneis de Berlín	Ortoneis de Berlín	Neis de Bucaramanga	Ortoneis de Berlín
Método de datación	K-Ar	K-Ar	Ar-Ar	Ar-Ar	Ar-Ar	Ar-Ar
Edad (Ma)	194±7	192±7	204±0,6	203,4	175,4±1,7	187±4
Observaciones			Edad de meseta. Evento termal sobreimpuesto	Edad de fusión total. Evento termal sobreimpuesto	Edad integrada. Evento termal sobreimpuesto	Edad integrada
Referencia	Goldsmith et al., 1971	Goldsmith et al., 1971	Restrepo-Page, 1995	Restrepo-Page, 1995	Restrepo-Page, 1995	Restrepo-Page, 1995

Tabla 8. Resultados de geocronología en muestras del Monzogranito de Santa Bárbara obtenidos por el método LA-MC-ICP-MS U-Pb en circón

IGM	N Campo	w	Ν	Plancha	Clasificación	Edad U/Pb	No. Zr
			Edades en facies g	raníticas del plutón	I		
900882	GR-6719	1138272	110	Monzogranito	196,8±2,0	50	
	GZ-6821	1129543	1257204	121	Monzogranito	198,0±2,7	52
900881	GR-6718	1135523	1280563	110	Monzogranito	203,8±2,7	50
900908	JGB-457A	1126936	1261464	121	Monzogranito	195,1±1,9	53
			Edades en diques	y cuerpos menores			
900880	GR-6717	1134180	1284660	110	Monzogranito	190,6±1,5	51
	AMC-0137	1126567	1238901	136	Monzogranito	191,9±1,1	52
900907	JGB-456B	1126023	1260523	121	Cuarzodiorita	201,6±4,0	58
900918	LMC-059A	1133364	1285807	110	Sienogranito	200,7±2,0	54
900860	AMC-0127	1129934	1258935	121	Fenodacita	203,0±2,6	57

La separación de minerales densos se realizó en el Laboratorio Químico del Servicio Geológico Colombiano, sede Medellín, utilizando separación hidrodinámica, magnética y, por último, el montaje de los circones. La muestra AMC-0127 fue enviada al Laboratorio de Estudios Isotópicos (LEI) del Centro de Geociencias de la Universidad Nacional Autónoma de México (UNAM), campus Juriquilla, donde se aplicó la siguiente metodología: las concentraciones de U y Th fueron calculadas empleando un circón estándar externo, de acuerdo con Paton et al. (2010). Las incertidumbres de sigma 2 propagadas se lograron según Paton et al. (2010). Las proporciones ²⁰⁷Pb/²⁰⁶Pb, edades y errores se calcularon según Petrus y Kamber (2012). Los puntos analizados son de 23 micrómetros, utilizando un protocolo de análisis modificado de Solari et al. (2010). Los datos se midieron empleando un Thermo X series QICPMS acoplado a un Resonetics, estación de trabajo láser excimer Resolución M050. Se realizó un análisis estadístico con el fin de mejorar el rango de confiabilidad de la edad proporcionada por el laboratorio, teniendo en cuenta la relación [(²⁰⁷Pb/²³⁵U)-(²⁰⁶Pb/²³⁸U)/²⁰⁶Pb/²³⁸U)], eliminando los datos de circones con valores discordantes que estuvieran, en general, por encima del 15 % y errores de más del 5 %. Los gráficos de concordia e histogramas se elaboraron en el software de Isoplot/Ex vers. 4,15 (Ludwig, 2008).

Las demás muestras se dataron por el método U-Pb en circones en el Laboratorio de Ablación Láser del Servicio Geológico Colombiano, que cuenta con un equipo de ablación láser Photon Machines, láser exímer de 193 nm y espectrómetro ICP-Masas Element 2. Se utilizaron como patrones de referencia Plesovice, 91500 y M, Dromedry. Los puntos analizados son de 20 micrones, y la reducción de datos se realizó utilizando el programa Iolite IGROpro y un espectrómetro de masas. Se utilizaron como tiempos de integración, en la línea base, 0 a 38 s, y en las muestras y patrones de referencia, 32,5 a 8 s, tiempos que concuerdan con el tiempo de corrida de los análisis. Los isótopos utilizados para la integración manual son 238 U, Pb 206 y Pb 204 . Los resultados finales corresponden a la media de los datos obtenidos luego de aplicar una discriminación de datos a dos desviaciones estándar. El procesamiento se lleva a cabo con las rutinas de Isoplot V3.5 y la corrección por plomo común se realiza de acuerdo con el modelo de evolución según Stacey y Krammers (1975). Se realizó un análisis estadístico con el fin de mejorar el rango de confiabilidad de la edad proporcionada por el laboratorio, teniendo en cuenta la relación [(207 Pb/ 235 U)-(206 Pb/ 238 U)/ 206 Pb/ 238 U)] y se eliminaron los datos de circones con valores discordantes que estuvieran por encima del 10% o 15%, según la muestra, o con errores mayores de 5%.

4.1. Edades en las rocas graníticas

De la litología granítica del Monzogranito de Santa Bárbara se dataron las muestras GR-6719 (IGM-900882), GZ-6821, GR-6718 (IGM-900881) y JGB-457A (IGM-900908) (saprolito). Los circones de la muestra 6719 (IGM-900882) son euhedrales a subhedrales prismáticos cortos, y algunos tabulares más largos de tonalidad rosada pálida; los circones de la muestra GZ-6821 son prismáticos euhedrales, inequigranulares, transparentes y con tinción de óxidos de color pardo, con inclusiones de puntos negros, algunos fracturados. Los circones de la muestra GR-6718 son euhedrales prismáticos, algunos con puntas achatadas y redondeadas; los circones de la muestra JGB-457A son anhedrales inequigranulares, prismáticos cortos, y unos pocos tienen formas de "tallos" y agujas. Las imágenes de catodoluminiscencia (CL) evidencian zonación oscilatoria en todas las muestras, con escasos núcleos menos luminiscentes que parecen heredados. Los tamaños de los cristales varían entre 100 y 300 µm (figura 28). En algunas muestras se observan diferentes edades entre los núcleos y bordes en el mismo circón, siendo ligeramente más viejos los núcleos que los bordes; esto puede incidir en la edad obtenida, que dependerá de si se analizaron más los núcleos que los bordes de los circones, aunque sean cristales ígneos.

Figura 23. Imágenes de catodoluminiscencia de las muestras GZ-6821, GR-6719, GR-6718 y JGB-457A

Los datos obtenidos de las muestras GR-6719, GZ-6821, GR-6718 y JGB-457A fueron procesados en el software de Isoplot/Ex vers. 4.15 (Ludwig, 2008; Anexo A), para su ploteo e interpretación. Inicialmente se realizó un filtro de los datos para descartar los circones con valores discordantes (discordancia > 10 %), de acuerdo con la relación [$(^{207}Pb/^{235}U)-(^{206}Pb/^{238}U)/^{206}Pb/^{238}U)$], y errores de edad corregida >5,5, con el fin de mejorar el rango de confiabilidad de la edad. En la muestra GR-6719 se trabajó con n=35 circones; en GZ-6821, con n=37 circones; en GR-6718, con n=37, y en JGB-457A, con n=41.

Se obtuvieron cuatro edades en rocas clasificadas como monzogranitos típicos de este plutón: la muestra GZ-6821 se localiza en el sur del cuerpo. Las edades varían en el rango de 185 a 222 Ma; la muestra arrojó una edad promedio ponderada de 198,0±2,7 con un MSWD=5,5, edad que se interpreta como la de cristalización de esta roca. Presenta edades heredadas del Proterozoico: 973,9 Ma (n=1), discordante; Ordovícico: 447,4 a 470 Ma (n=3); Silúrico: 417,8 a 427,9 Ma (n=3); Devónico: 380,8 a 395,6 Ma (n=3), y Triásico: 213,3 a 238,4 Ma (n=4) (figura 24A: A, B, C, D).

La muestra GR-6719, localizada en el norte del cuerpo, presenta edades entre 185 y 210 Ma, dio una edad promedio ponderada de 196,8±2,0 Ma, con un MSWD=5, que se interpreta como la edad de cristalización de la roca. Presenta una edad heredada del Ordovícico: 474 Ma (n=1), discordante, y del Triásico: 221 a 224 Ma (n=2), discordantes (figura 24A: E, F).

La muestra GR-6718 se localiza en el norte del cuerpo, presenta dos datos concordantes con edades de 157,2 y 160,1 Ma y un grupo coherente de datos de entre 188 y 219 Ma, que dieron una edad promedio ponderada de 203,8±2,7 Ma, con un MSWD=2,5, edad que se interpreta como la cristalización de la roca (figura 24B: A, B y C). Presenta en un núcleo de un cristal una edad heredada del Pérmico de 267 Ma (n=1), concordante.

La muestra JGB-457A se localiza hacia el centro del cuerpo, presenta edades que oscilan entre 186,2 y 206,9 Ma, con un amplio espectro, para una edad promedio ponderada de 195,1±1,9 Ma, con un MSWD=1,9, que se interpreta como la edad de cristalización de la roca. Presenta una edad heredada del Devónico de 392 Ma (n=1) (figura 24B: D, E y F).

El rango de las edades de cristalización de las cuatro muestras abarca del Triásico tardío al Jurásico temprano (Rhetiano-Sinemuriano), y se interpretan como edades de cristalización de diferentes pulsos magmáticos que en conjunto forman la facies típica granítica del Monzogranito de Santa Bárbara. Las edades coinciden con patrones geoquímicos diferentes de REE vs. condrito.

Las razones Th/U para las muestras GZ-6821, GR-6719, JGB-456B y JGB-457A son mayores de 0,1 y están alrededor de 1 en aquellos circones que definen la edad promedio ponderada, relación que sugiere cristalización ígnea (Rubatto, 2002). Los circones heredados tienen razones Th/U> 0,1, y probablemente son magmáticos (figura 25: A, B, C y D). Además, las imágenes de catodoluminiscencia muestran, en el interior de los circones, zonación concéntrica típica de circones magmáticos, y en algunos, los núcleos son menos luminiscentesy corresponden a núcleos heredados (figura 23).

Resultados geocronológicos de las muestras GZ-6821 y GR-6719

A) Gráfico de concordia. B) Gráfico Tera-Wasserburg. C) Edad promedio ponderada. D) Histograma de densidad de probabilidad. E) Gráfico de edad promedio ponderada. F) Gráfico de concordia

Figura 24B. Resultados geocronológicos de las muestras GR-6718 y JGB-457 A) Gráfico Tera-Wasserburg. B) Gráfico de edad promedio ponderada C) Histograma de densidad de probabilidad. D) Gráfico de edad promedio ponderada E) Gráfico de concordia. F) Histograma de densidad de probabilidad

Figura 25. Gráficos de relación Th/U vs. edad en circones de las muestras GZ-6821, GR-6719, GR-6718 y JGB-457

Las edades heredadas en núcleos de circones corresponden a edades del basamento metamórfico y plutonismo anterior presente en el Macizo de Santander.

4.2. Edades en cuerpos menores intrusivos y diques

Se fecharon cuatro muestras de cuerpos menores y diques: dos monzogranitos intrusivos en el Monzogranito de Santa Bárbara (GR-6717 y AMC-0137), un dique de sienogranito (LMC-059A) y una cuarzodiorita de borde (JGB-456B). La roca GR-6717 se colectó en un cuerpo pequeño de monzogranito aplítico que aflora en el páramo de Berlín; la segunda muestra, AMC-0137, corresponde a un saprolito granítico ligeramente pegmatítico localizado en el sur del cuerpo, sobre la vía Cepitá-Alto Laurel. La muestra JGB-456B se clasificó en campo como dique de microcuarzodiorita, se colectó en el centro del cuerpo, en la vía Los Curos-Santa Bárbara, y la muestra LMC-059A corresponde a un dique de sienogranito que aflora en el norte del plutón, en el páramo de Berlín.

Los circones de la muestra GR-6717 son euhedrales de formas prismáticas cortas, y traslúcidos (figura 26). Las imágenes de catodoluminiscencia muestran cristales con patrones similares y crecimiento zonado concéntrico (figura 26). La muestra AMC-0137 presenta circones euhedrales prismáticos y *stubby*, con tonalidad rosa claro, algunos con inclusiones fluidas (?), cuyo tamaño dominante oscila entre 100 y 150 μ m, y zonados de manera concéntrica (figura 26). Los circones de la muestra JGB-456B son prismáticos euhedrales cortos y achatados; aparecen junto a cristales euhedrales intermedios, con crecimiento concéntrico. Los circones de la muestra LMC-059A son euhedrales a subhedrales prismáticos cortos y achatados, algunos fracturados, con crecimiento concéntrico (figura 26). Los circones de la muestra GR-6717 arrojaron edades entre 180 y 194 Ma. Se realizó un filtro de los datos para descartar los circones con valores discordantes >10%, de acuerdo con la relación $[(^{207}Pb/^{235}U)-(^{206}P-b/^{238}U))^{206}Pb/^{238}U)]$. Se descartaron las edades con errores >5,5, con el fin de mejorar el rango de confiabilidad de la edad. Se obtuvo una edad promedio ponderada de $190,6\pm1,5$, MSWD=1,4 y n=19, que se interpreta como la edad de cristalización de la roca, con relaciones Th/U mayores de 0,1 y cercanas a 1. Presenta edades más antiguas heredadas del Silúrico (425,2 Ma) (n=1), discordante, y del Triásico (202,9 a 208 Ma) (n=3), una de ellas discordante (figura 27: A y B).

Figura 26. Imágenes de catodoluminiscencia en circones de las muestras GR-6717, AMC-0137, LMC-059A y JGB-458B

En la muestra AMC-0137, las edades varían entre 186 y 196 Ma. Se realizó un filtro de los datos para descartar los circones con valores discordantes>10%, de acuerdo con la relación $[(^{207}Pb/^{235}U)-(^{206}Pb/^{238}U))/^{206}P$ $b/^{238}U)]$. Se obtuvo una edad promedio ponderada de 191,9±1,1 Ma, con MSWD=1,3 y n=36, que se interpreta como la edad de cristalización de la roca, con relaciones Th/U de los circones cercanas a 1. La muestra presenta edades más antiguas heredadas del Mesoproterozoico, 1.122 y 1.158 Ma (n=2), discordantes, y del Triásico, entre 200,8 y 201,4 Ma (n=3) (figura 27: C y D).

Las relaciones de campo y las edades obtenidas de las muestras GR-6717 y AMC-0137 son coherentes e indican que ocurrió un pulso magmático alrededor de 191 Ma, que intruyó la facies monzogranítica del plutón, el cual se encuentra como diques y cuerpos menores intrusivos.

Figura 27. Resultados geocronológicos de las muestras GR-6717 y AMC-0137 A) Gráfico de concordia. B) Diagrama de edad promedio ponderada. C) Diagrama de Tera-Wasserburg. D) Diagrama de edad promedio ponderada

Figura 28. Imágenes de catodoluminiscencia en circones de las muestras LMC-059A y JGB-456B

Los circones de la muestra JGB-456B son euhedrales cortos y achatados, y aparecen junto a cristales euhedrales intermedios. Las imágenes de catodoluminiscencia muestran cristales con crecimiento zonado concéntrico (figura 28), algunos con núcleos menos luminiscentes. Los circones de la muestra LMC-059A son euhedrales a subhedrales cortos y achatados, y algunos están rotos. Las imágenes de catodoluminiscencia muestran cristales con núcleos heredados y bordes zonados concéntricos, y algunos con núcleos más homogéneos (figura 28).

En la muestra JGB-456B las edades varían entre 174,7 y 223,9 Ma. Se realizó un filtro de los datos para descartar los circones con valores discordantes>10%, de acuerdo con la relación $[(^{207}Pb/^{235}U)-(^{206}Pb/^{238}U)]$. Se obtuvo una edad promedio ponderada de 201,6±4,0, MSWD=1,6 y n=33, que se interpreta como la edad de cristalización de la roca (figura 29), con relación Th/U para los circones alrededor de 1, que sugiere origen ígneo. Presenta un circón con un núcleo y edad heredada del Carbonífero (304 Ma), n=1, concordante.

La muestra LMC-059A presenta un grupo de edades que varía entre 193 y 217 Ma, y edades concordantes, pero individuales, de 183 Ma (n=1) y 228 Ma (n=1). Se realizó un filtro de los datos para descartar los circones con valores discordantes>10%, de acuerdo con la relación [(²⁰⁷Pb/²³⁵U)-(²⁰⁶Pb/²³⁸U)/²⁰⁶Pb/²³⁸U)]. En el rango de edades entre 193 y 217 Ma se reconocen dos grupos coherentes: edades más antiguas con núcleos heredados que arrojaron una edad promedio ponderada del Triásico tardío (Noriano), de 213,9±4,3 Ma, n=9 y MSWD=1,4, y un segundo grupo coherente en bordes de cristales, que arrojaron una edad promedio ponderada de 200,7±2,0 Ma, n=18 y MSWD=0,85, que se interpreta como la edad de cristalización de la roca (figura 29). La relación Th/U en los circones con edades del Triásico-Jurásico es cercana a 1, lo que sugiere un origen ígneo. Se presentan circones con núcleos heredados que arrojaron edades concordantes del Triásico tardío de 228 Ma (n=1) y Neoproterozoico de 628 Ma (n=1), esta última con relación Th/U<0,1 que sugiere que el núcleo del circón es metamórfico.

Las edades y las relaciones espaciales de las muestras JGB-456B y LMC-059A sugieren que estos diques están intruyendo rocas monzograníticas anteriores a ellos, es decir, mayores a 200-201 Ma.

La muestra AMC-0127 fue clasificada petrográficamente como fenodacita y químicamente como riolita; se colecto en la vía Santa Bárbara-Guaca y corresponde a un cuerpo de pórfido intruido por rocas graníticas del Monzogranito de Santa Bárbara. Los circones de esta roca son euhedrales prismáticos largos bipiramidales (*stubby and stalky*), algunos equidimensionales de tamaños que fluctúanentre 70 y 200 µm. Bajocatodoluminiscencia, los cristales muestran débil zonación concéntrica, con núcleos

Figura 29. Resultados geocronológicos de las muestras JGB-456B y LMC-059A

A) Diagrama de Tera-Wasserburg. B) Diagrama de edad promedio ponderada. C) Diagrama de densidad de probabilidad. D) Diagrama de Tera-Wasserburg. E y F) Diagramas de edad promedio ponderada: edad de cristalización y edad en núcleos heredados

menos luminiscentes, probablemente heredados, y bordes luminiscentes; algunos escasos cristales tienen zonación plana y concéntrica (figura 30).

La distribución de los circones abarca un rango bastante amplio, desde ca. 160 a casi 1.600 Ma. Adicionalmente, el grupo más abundante es el que se ubica en el rango de 195 a 210 Ma. La media ponderada de las edades en este grupo arroja un valor de 203,0±2,6 Ma con MSWD=9,1 (n=18) (figura 30) con alta dispersión de las edades, que se interpreta como indicativa de la edad de cristalización de la roca, con relación Th/U para los circones cercana a 1. La muestra presenta edades más antiguas del Triásico (220,5 Ma) (n=1), discordante, Ordovícico (455 a 470 Ma) (n=2) y Proterozoico (1.012 a 1.685 Ma) (n=9) (figura 30). Las edades en núcleos de circones se interpretan como heredadas. Se halló un circón más joven que arrojó una edad cercana a 160 Ma, posiblemente por pérdida de Pb posterior a la cristalización, aunque es concordante.

La edad de cristalización asociada a la riolita es más antigua que la edad normal del plutón, siendo similares a las edades obtenidas por Mantilla *et al.* (2013) en los leucogranitos que llamaron alaskita II en el sector de Vetas-California.

Figura 30. Resultados geocronológicos de la muestra AMC-0127

Gráficos de concordia, diagrama de edad promedio ponderada y diagrama de densidad de probabilidad, con circones con edades heredadas y edades de cristalización (circón 1, edad 1.501 Ma; circón 20, edad 1.159 Ma; circón 32, edad 1.400 Ma; circón 31, edad 160 Ma; circón 9, edad 455,6 Ma; circón 3, edad 194,8 Ma, y circón 23, edad 202,7 Ma

4.3. Geoquímica de elementos traza en circones El análisis de ICP-MS permitió determinar la abundancia de los elementos traza de cada circón para la muestra AMC-0127 (tabla 9), los valores de REE se normalizaron al condrito (McDonough y Sun, 1995) y se calcularon las relaciones Pm* y Tm* de cada uno de ellos. En la figura 31 A se observa un comportamiento paralelo y homogéneo de los circones con edades entre 195 y 210 Ma, con un patrón de REE con anomalía positiva de Ce y negativa de Eu, que son características de circones ígneos. Los circones que arrojaron edades del Proterozoico muestran varios patrones de REE, la mayoría de ellos con anomalía positiva de Ce y negativa de Eu, que podrían indicar fuentes diferentes (figura 31C); en algunos la anomalía positiva de Ce es muy baja (Zr-25 y Zr-32) y la de Eu es más pronunciada, semejante a la de granitos S y A.

De acuerdo con los contenidos de Pb y Th, los circones con edades entre 195 y 210 Ma grafican en el campo de los granitos tipo I (diagrama de Wang *et al.*, 2012) (figura 31B), y los circones con edades heredadas grafican entre los granitos tipo I, A y S (figura 31B).

Figura 31. Patrones de los elementos de las tierras raras REE normalizados según el condrito de McDonough y Sun (1995), en circones de la muestra AMC-0127 y tipo de magma según los valores de Th y Pb (diagrama modificado de Wang *et al.*, 2012).

A) Patrón de REE en circones con edades de cristalización entre 194 y 210 Ma. B) Tipo de magma de circones jurásicos en azul, y heredados en ocre. C) Patrón de REE en circones con edades de cristalización proterozoicas

	Р	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
Zr-013*	397	530	983	4,96	1,85	8,2	0,39	2,93	4,57	0,73	22,3	7,52	89,8	33,9	151	326	68,6	9.550	38,3	66	270
Zr-006*	304	12,6	1354	3,94	0,01	40,1	0,1	2,38	4,06	1,71	23,1	8,07	104	42,3	210	448	97,2	8.680	9,39	228	288
Zr-017*	461	9,77	1087	3,35	0,72	57,6	0,28	2,86	4,57	1,36	21,1	7,51	87,4	35	168	374	80,3	9.920	9,86	273	300
Zr-003	135	11,1	1390	0,99	0,03	26,2	0,34	6,78	9,5	3,65	40,2	12,3	132	48,5	207	400	83,3	8.692	5,9	207	183
Zr-004	140	8,08	707	2,44	0,03	31,6	0,06	1,17	2,43	0,77	13,3	4,49	56,6	22,8	110	250	52,8	10.660	7,95	163	271
Zr-005	215	8,83	628	2,42	0	41	0,06	1,03	2,51	0,95	12,3	4,23	53,7	20,7	96,6	197	42,6	10.390	6,83	201	200
Zr-007	345	10,1	1.252	3,03	0,25	41,3	0,23	3,27	5,51	1,92	26,1	8,49	102	40,7	189	415	88,1	9.680	13,3	337	385
Zr-008	225	8,98	1.230	4,57	0	44,6	0,08	1,46	3,24	1,25	19,6	6,98	92,2	38,4	192	440	95,9	9.710	12,3	229	373
Zr-010	303	11,2	1.323	4,06	0,06	48,5	0,12	2,09	5,06	1,79	24,9	8,85	111	43,1	200	413	86,6	9.200	17,8	485	512
Zr-014	354	12,7	1.116	2,95	0,01	37,7	0,12	1,89	4,11	1,51	21,4	7,48	90,3	37	172	367	77,2	8.830	7,63	237	229
Zr-015	1.752	8,9	4.290	4,07	0,1	36,9	0,22	4,29	11,2	1,33	73,5	28,7	368	146	665	1.322	256	11.600	29,5	438	880
Zr-016	450	7,3	1.484	4,51	0	44,3	0,04	0,76	3,42	1,09	23,9	9,06	116	49,3	235	516	109	10.760	22,6	398	705
Zr-018	328	9,08	1.700	8,69	0,14	81,9	0,11	2,21	5,62	1,74	32,4	11,8	143	57,7	261	542	111	10.460	30,5	708	891
Zr-021	2.260	8,65	6.470	16,3	0,09	21,9	0,1	1,6	6,77	2,04	68	36,1	541	221	1.040	2.170	399	14.630	75,3	248	2.260
Zr-022	244	9,46	1.506	5,57	0	50,8	0,13	2,36	4,76	1,62	27,1	9,45	120	48,7	236	511	108	9.900	16,8	325	505
Zr-023	265	8,22	1.251	4,84	0	45,3	0,1	1,29	3,68	1,34	22,2	8,03	98,5	40,9	197	431	88,6	10.370	16,1	288	490
Zr-024	393	9,01	1.487	2,12	0	38,9	0,22	4,18	7,73	2,47	34	11,4	130	49,8	229	472	98,8	9.690	12,9	324	378
Zr-027	351	8,22	1.555	4,88	0	54,1	0,11	1,82	5,4	1,89	31,3	10,7	134	52,1	243	484	103	10.600	21,4	462	648
Zr-028	399	11	1.640	1,6	0,28	31,3	0,55	7	12,4	4,3	46,5	14,5	156	56,4	247	478	100	8.860	7,25	282	216
Zr-031	540	11	1.648	6,26	2,22	73,7	0,83	5,3	5,38	1,96	28	10,3	132	53,6	254	560	118	10.020	16	352	466
Zr-033	289	7,22	552	0,68	0	7,3	0	0,49	1,49	0,51	7,64	3,12	39,8	17,5	88,2	230	55,5	10.320	1,94	35	70,9
Zr-034	370	12,9	1.850	2,05	0,08	42	0,52	8,3	15,6	5,6	59	17,2	182	64	271	504	102	9.210	11,2	463	310
Zr-019	369	12,3	2.334	6,33	1,47	93,8	0,82	10,4	15	5,02	62,1	19,3	212	78,1	343	677	136	9.060	25,7	908	730
Zr-035	245	7,71	1.960	4,56	0,13	94	0,69	10,2	14,4	4,79	58,8	17	188	65,9	281	538	104	10.930	19	960	596
Zr-009	301	7,2	451	0,94	0,01	5,78	0,01	0,35	0,54	0,21	4,65	2,13	33,6	15	80,5	263	60,9	12.110	53,5	19,8	676
Zr-026	1.610	7,94	3.320	3,94	0,5	7,62	0,24	1,48	3,83	0,36	33,5	16,1	248	109	556	1.238	251	13.140	39,1	111	497
Zr-029	207	10,9	588	2,56	0	10,5	0,02	0,78	2,02	0,22	12,2	4,55	54,2	19,9	88,4	177	35,5	10.750	36,7	71,1	210
Zr-020	150	7,94	510	3,53	0	45,8	0,05	1,01	1,84	0,41	9,15	3,7	42,2	16	76,7	178	37,5	10.860	63,5	117	290
Zr-025	1.360	27	1.983	2,75	5,22	29,2	4,1	24,7	15,3	3,27	34,9	13,2	161	61,4	277	585	119	14.900	289	21	1.688
Zr-002	122	7,12	698	3,64	0	4,77	0,15	2,1	4,05	0,52	18,6	6,35	68,6	24,9	108	190	38,7	8.280	9,45	19,5	45
Zr-030	270	11,2	500	2,08	0,03	10	0,04	0,6	1,61	0,13	7,51	3,11	40,3	16,1	78,7	172	35,8	10.680	28,4	52,5	146
Zr-012	640	7,33	2.362	33,5	0	25,8	0,05	1,52	5,28	0,13	35,3	15,1	198	79,2	377	756	149	14.980	225	281	905
Zr-032	294	16,1	894	4,04	0,65	12,6	1,02	6,89	6,41	1,73	16,7	5,58	64,3	25,8	155	504	125	15.130	253	111	1.307
Zr-001	260	13,6	807	4,49	0	20,8	0,08	0,75	3,51	0,41	14,9	5,72	66,4	26,8	129	261	54,6	11.210	31,2	118	121
Zr-011	318	10,5	892	3,95	0,06	20,1	0,08	1,02	2,49	0,34	15	5,03	71,3	28,9	141	314	68,8	11.820	108	162	357

5. Correlaciones

El Monzogranito de Santa Bárbara se correlaciona por edad, composición litológica, química y posición tectónica con plutones con edades inscritas en el Triásico y el Jurásico, que afloran en el Macizo de Santander, entre los que se encuentra el Monzogranito de La Corcova, la tonalita y granodiorita de Páramo Rico, el Batolito de Mogotes, el Granito de Pescadero y el Monzogranito de Rionegro.

Ward *et al.* (1973) sugieren que el Batolito de Santa Bárbara, debido a la semejanza general de su litología, sus facies gradacionales, sus relaciones estratigráficas y estructurales y sus relaciones con las rocas sedimentarias más jóvenes y más antiguas, podría estar relacionado con el Batolito de Mogotes y con el Granito de Pescadero. Al comparar las edades de los pulsos encontrados en el Monzogranito de Santa Bárbara y las edades en diques y cuerpos menores asociados, se encuentra que algunos de estos pulsos son comunes a otros plutones del Macizo de Santander, pues se trata de un magmatismo multipulsos que formó en mayor o menor medida a cada plutón.

Al comparar las edades del magmatismo jurásico del Macizo de Santander con el del valle superior del Magdalena, se puede concluir que no están relacionados. Las edades del magmatismo triásico - jurásico del Macizo de Santander son anteriores al arco que dio origen a los plutones jurásicos del valle superior del Magdalena.

6. Génesis

El Monzogranito de Santa Bárbara presenta una mineralogía característica de granitoides tipo I, como son la presencia de feldespato potásico rosado, biotita parda, escasa hornblenda y presencia de magnetita, común en plutones altamente diferenciados, de acuerdo a Chappell y White (2001); además, se presentan gabarros de rocas ígneas intermedias con presencia de hornblenda.

Los monzogranitos están constituidos por ortosa pertítica, característica en rocas plutónicas que se forman en ambientes de temperaturas intermedias.

La química mineral obtenida en un cristal de biotita, relacionada con un monzogranito de la facies principal del plutón, se asocia a rocas de series calcoalcalinas orogénicas, de acuerdo con el diagrama de Abdel Rahman (1994), resultado que es concordante con la química de óxidos mayores, que clasifica las rocas como subalcalinas de la serie calcoalcalina alta en K.

El Monzogranito de Santa Bárbara grafica en el campo peraluminoso, que sugiere un abundante aporte al magma de material de corteza continental, lo cual parece corroborarse con la presencia en algunas rocas de edades heredadas en núcleos de circones. Estas rocas corresponden a granitos altamente diferenciados, con valores altos de SiO₂ > 71 %.

El comportamiento de las tierras raras (REE) y elementos trazas muestran varios patrones con diferentes edades U/Pb, que se interpretan como un cuerpo multipulsos, con al menos cuatro pulsos magmáticos de composición granítica y cuatro pulsos de intrusión de diques y cuerpos menores.

De acuerdo con la caracterización geoquímica de la roca y de los circones, corresponde a un granito tipo I formado en un ambiente de arco (márgenes convergentes).

Se puede interpretar que el magma parental de los granitoides es de zona de subducción y que habría tenido dos fuentes: por un lado, un componente relacionado con la losa oceánica más los sedimentos oceánicos subducidos, y, por otra parte, un componente perteneciente a la corteza continental. La mayoría de las rocas corresponden a la interface entre granitos tipo S e I, con algunas rocas pertenecientes a los granitos tipo S. Si se analiza la composición mineralógica, algunas rocas del Monzogranito de Santa Bárbara tienen hornblenda y carecen de moscovita, presentan facies intermedias tonalíticas con hornblenda y biotita y, asociados, aparecen diques intermedios. Este tipo de características se asocia más a granitos tipo I, altamente diferenciados, que a granitos tipo S, desarrollados a partir de sedimentos o metasedimentos.

La multiplicidad de pulsos y edades que presenta este plutón, así como la diferencia en las relaciones $La_N/$ Yb_N de los patrones de REE vs. condrito sugieren diferencias en la proporción manto-corteza involucrada en cada pulso magmático, aunque composicionalmente el resultado final corresponda a monzogranitos. Van der Lelij (2013) considera que los granitoides de Santander del Triásico y Jurásico presentan valores en roca total de «Ndt que se correlacionan bien con «Hft del circón y pertenecen a los trenes de plutones formados por areniscas orogénicas recicladas y material de manto.

7. Localidad tipo y recursos minerales

Las mejores secciones y afloramientos del Monzogranito de Santa Bárbara se presentan en la vía que conduce de Bucaramanga a Guaca, que se propone como sección tipo del plutón. Además, se presentan buenos afloramientos, aunque meteorizados y de fácil acceso en los alrededores de Berlín, sobre parte del páramo de Berlín, y en la carretera Los Curos-Guaca.

No se conocen mineralizaciones asociadas a este cuerpo ígneo.

Conclusiones

Este catálogo presenta nueva información del Monzogranito de Santa Bárbara, mejora el conocimiento petrográfico, litogeoquímico y geocronológico del cuerpo plutónico y define al menos cuatro pulsos magmáticos, sin incluir los pulsos que dieron origen a los diques y cuerpos intrusivos menores.

El Monzogranito de Santa Bárbara está constituido por monzogranitos y subordinadas granodioritas, sienogranitos y tonalitas. Se encuentra intruido por diques de andesita, fenodacita, microdiorita, cuarzodiorita, monzogranito y sienogranito.

El Monzogranito de Santa Bárbara es un plutón subalcalino de la serie calcoalcalina alta en K, peraluminoso con valores de A/NK > 1 y valores de A/CNK > 1, con valores de Al₂O₃>Cao+Na₂O+K₂O.

En los diagramas multielementales se reconocen al menos cuatro patrones con edades de cristalización, U/ Pb en circón, de entre 195,1±1,9 y 203,8±2,7 Ma, que representan las rocas del cuerpo principal, y sugieren que se trata de un cuerpo formado por varios pulsos magmáticos. Se encuentra intruido por diques de monzogranitos–sienogranitos aplíticos y cuarzodioritas, con edades que fluctúan entre 190,6±1 y 200,7±2,0. Además, el plutón intruye cuerpos porfídicos de dacitas, que arrojaron una edad U/Pb en circones de 204,0±2,3 Ma.

La química de rocas y la química de circones clasifican el Monzogranito de Santa Bárbara como un granito tipo I, formado en un ambiente de arco continental.

Referencias

- Abdel Rahman, A. M. (1994). Nature of biotites fromalkaline, calc-alkaline and peraluminous magmas. *Journal of Petrology*, 35 (12), 525-541. https://doi. org/10.1093/petrology/35.2.525
- Baier, J., Audetat, A. y Keppler, H. (2007). The origin of de negative niobium tantalum anomaly in subduction zone magmas. *Earth and Planetary Science Letters*, 267 (1-2), 290-300. https://doi.org/10.1016/j. epsl.2007.11.032
- Briqueu, I., Bougault, H. y Joron, J. L. (1984). Quantification of Nb, Ta, Ti and V anomalies in magmas associated with subduction zones: Petrogenetic implications. *Earth and Planetary Science Letters*, 68 (2), 297-308. https://doi.org/10.1016/0012-821X(84)90161-4
- Chappell, B. W. y White, A. J. (1992). I-and S-type granites in the Lachlan Fold Belt. *Transactions of the Royal Society of Edinburgh: Earth Sciences*, 83 (1-2), 1-26. https://doi.org/10.1017/S0263593300007720

Chappell, B. W. y White, A. J. R. (1974). Two contrasting granite types. *Pacific Geology*, 8, 173-174.

- Chappell, B. W. y White, A. J. R. (2001). Two contrasting granite types: 25 years later. *Australian Journal of Earth Sciences*, 48 (4), 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
- Clavijo, J. (1994). Mapa geológico generalizado del departamento de Norte de Santander: memoria explicativa. Escala 1:250.000. Informe interno. Ingeominas.
- Clavijo, J., Mantilla, F. L. C., Pinto, J., Bernal, L. y Pérez, A. (2008). Evolución geológica de la serranía de San Lucas, norte del valle medio del Magdalena y noroeste de la cordillera Oriental. *Boletín de Geología*, 30 (1), 45-62.
- Debon, F. y Le Fort, P. (1983). A chemical mineralogical classification of common plutonic rocks and associations. *Transactions of the Royal Society of Edinburgh: Earth Sciences*, 73 (3), 135-149. https://doi. org/10.1017/S0263593300010117

- Forero, A. (1990). The basement of the Eastern Cordillera, Colombia: An allochthonous terrane in northwestern South America. *Journal of South American Earth Sciences*, 3 (2-3), 141-151. https://doi. org/10.1016/0895-9811(90)90026-W
- Frost, R. B., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. y Frost, C. D. (2001). A geochemical classification for granitic rocks. *Journal of Petrology*, 42 (11), 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
- García, C. y Ríos, C. (1999). Metamorfismo y metalogenia asociada del Macizo de Santander, cordillera Oriental, Colombia. Informe final Proyecto de Investigación 1102-05-083-95. Colciencias y Universidad Industrial de Santander.
- Goldsmith, R., Marvin, R. F. y Mehnert, H. H. (1971). Radiometric ages in the Santander Massif, Eastern Cordillera, Colombian Andes. U. S. Geological Survey Professional Paper, 750 (D), 44-49.
- International Subcommision on Stratigraphic Classification. (1994). International Stratigraphic Guide: A guide to stratigraphic classification, terminology and procedure. 2nd ed. Boulder: Geological Society of America. https://doi.org/10.1130/9780813774022
- International Subcommission on Stratigraphic Classification. (1987). Stratigraphic classification and nomenclature of igneous and metamorphic rock bodies. *GSA Bulletin*, 99 (3), 440-442. https://doi. org/10.1130/0016-7606(1987)99<440:SCANOI>2.0. CO;2
- Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. y Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total Alkali-Silica diagram. *Journal of Petrology*, 27 (3), 745-750. https://doi.org/10.1093/ petrology/27.3.745
- Leal Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes: A tectono- magmatic approach [Ph.D Thesis]. Universitat de Barcelona.
- Ludwig, K. (2008). Isoplot version 4.15: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center.
- Mantilla, L, C., Mendoza, H., Bissig, T. y Craig, H. (2011). Nuevas evidencias sobre el magmatismo miocénico en el distrito minero de Vetas-California (Macizo de Santander, cordillera Oriental, Colombia). *Boletín de Geología*, 33 (1), 43-58.

- Mantilla, L. C., Bissig, T., Valencia, V. y Hart, C. (2013). The magmatic history of the Vetas-California mining district, Santander Massif Eastern Cordillera, Colombia. *Journal of South American Earth Sciences*, 45, 235-249. https://doi.org/10.1016/j.jsames.2013.03.006
- Martin, H. (1994). Archean grey gneisses and the genesis of the continental crust. En K. Codie (ed.), *Archean crustal evolution* (pp. 205-260). Netherland: Elsevier Scientific Publishers.
- McDonough, W. F. y Sun, S. S. (1995). The composition of the Earth. *Chemical Geology*, 120 (3-4), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
- Middlemost, E. A. K. (1985). *Magmas and magmatic rocks: An introduction to igneous petrology*. London, New York: Longman.
- Middlemost, E. A. K. (1994). Naming materials in magma-igneous rock system. *Earth-Science Reviews*, 37 (3-4), 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
- Miller, C. F. (1985). Are strongly peraluminous magmas derived from pelitic sedimentary sources? *The Journal of Geology*, 93 (6), 673-689. https://doi. org/10.1086/628995
- Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. *Geochimica et Cosmochimica Acta*, 38 (5), 757-775. https://doi.org/10.1016/0016-7037(74)90149-5
- Ordóñez Cardona, O., Restrepo Álvarez, J. J. y Pimentel, M. M. (2006). Geochronological and isotopical review of pre-Devonian crustal basement of the Colombian Andes. *Journal of South American Earth Sciences*, 21 (4), 372-382. https://doi.org/10.1016/j. jsames.2006.07.005
- Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A. y Maas, R. (2010). Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. *Geochemistry, Geophysics, Geosystems*, 11 (3). https://doi.org/10.1029/ 2009GC002618
- Pearce, J. A. (2014). Geochemical fingerprinting of the Earth's oldest rocks. *Geology*, 42 (2), 175-176. ht-tps://doi.org/10.1130/focus022014.1
- Peccerillo, A. y Taylor, T. S. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey. *Contributions to Mineralogy and Petrology*, 58 (1), 63-81. https://doi.org/10.1007/ BF00384745

- Petrus, J. A. y Kamber, B. S. (2012). Vizual age: A novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. *Geostandards and Geoanalytical Research*, 36 (3), 247-270. https://doi.org/10.1111/ j.1751-908X.2012.00158.x
- Restrepo Pace, P. A. (1995). Late Precambrian to early Mesozoic tectonic evolution of the Colombian Andes, based on new geochronological, geochemical and isotopic data [Ph. D. thesis]. University of Arizona.
- Restrepo, J. J. y Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. *Episodes*, 11 (3), 189-193. https://doi.org/10.18814/epiiugs/1988/v11i3/006
- Restrepo, J. J., Ordóñez Carmona, O., Armstrong, R. y Pimentel, M. (2011). Triassic metamorphism in the northern part of the Tahamí Terrane of the Central cordillera of Colombia. *Journal of South American Earth Sciences*, 32 (4), 497-507. https://doi. org/10.1016/j.jsames.2011.04.009
- Rieder, M., Cavazzini, G., Dyakonov, Yu, S., Frank Kamenetskii, V. A., Gottardi, G., Guggenheim, S., Koval, P. V., Muller, G., Neiva, A. M. R. y Radoslovich, E. W. (1998). Nomenclature of the micas. *Clays and Cley Minerals*, 46 (5), 586-595. https://doi.org/10.1346/ CCMN.1998.0460513
- Ríos, C., García, C. y Takusa, A. (2003). Tectono-metamorphic evolution of the Silgara Formation metamorphic rocks in the Southwestern Santander Massif, Colombian Andes. *Journal of South American Earth Sciences*, 16 (2), 133-154. https://doi. org/10.1016/S0895-9811(03)00025-7
- Royero, J. M. y Clavijo, J. (2001). Mapa geológico generalizado, departamento de Santander. Escala 1: 400.000. Informe. Ingeominas.
- Rubatto, D. (2002). Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. *Chemical Geology*, 184 (1-2), 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2
- Shand, S. J. (1943). *Eruptive rocks: Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite.* New York: John Wiley y Sons.
- Smith, J. V. y Brown, W. L. (1988). *Feldspar minerals*. I. *crystal structures, physical, chemical and microtextural properties* (2nd ed.). Berlin: Springer-Verlag.

- Solari, L., Gómez Tuena, A., Bernal, J., Pérez Arvizu, O. y Tanner, M. (2010). U-Pb zircon geochronology with an integrated LA-ICP-MS microanalytical workstation: Achievements in precision and accuracy. *Geostandards and Geoanalytical Research*, 34 (1), 5-18. https://doi.org/10.1111/j.1751-908X.2009.00027.x
- Stacey,J.S.yKramers,J.D.(1975). Approximation of terrestrial lead isotope evolution by a 2-Stage model. *Earth and Planetary Science Letters*, 26 (2), 207-221. https:// doi.org/10.1016/0012-821X(75)90088-6
- Streckeisen, A. (1976). Classification and nomenclature of plutonic rocks recommendations of the IUGS subcommission on the systematics of Igneous Rocks. *Geologische Rundschau*, 63 (2), 773-786. https://doi. org/10.1007/BF01820841
- Sun, S. y Mcdonough, W. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. En A. Sanders y M. Norry (eds.), Magmatism in oceanic basins, vol. 42. Londres: Tehe Geological Society. https://doi.org/10.1144/GSLSP.1989.042.01.19
- Sylvester, P. J. (1998). Post-collisional strongly peraluminous granites. *Lithos*, 45 (1-4), 29-44. https://doi. org/10.1016/S0024-4937(98)00024-3
- Thyeblemont, D. y Tegyey, M. (1994). Une discrimination géochimique des roches différenciées témoin de la diversité d'origine et de situation tectonique des magmas calco-alcalins. *Comptes Rendus Academic Scientific du Paris* 319, serie II, 87-94. Paris.
- Van der Lelij, R. (2013). Reconstructing North-Western Gondwana with implications for the evolution of the lapetus and Rheic Oceans: A geochronological, thermochronological and geochemical study [Thése de doctorat]. Université de Genève.
- Vargas, R., Arias, A., Jaramillo, L. y Téllez, N. (1976). *Geología de la plancha 136, Málaga.* Mapa, escala: 1:100.000. Bogotá: Ingeominas.

- Vargas, R., Arias, A., Jaramillo, L. y Téllez, N. (1981). Geología de las planchas 136, Málaga, y 152, Soatá, cuadrángulo I-13. Escala 1:100.000. Memoria explicativa. Boletín Geológico, 24 (3), 2-84
- Villaseca, C., Barbero, L. y Herreros. V. (1998). A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. *Earth* and Environmental Science Transactions of The Royal Society of Edinburgh, 89 (2), 113-119. https://doi. org/10.1017/S0263593300007045
- Wang, Q., Zhu, D. C., Zhao, Z. D., Guan, Q., Zhang, X. Q., Sui, Q. L., Chu Hu, Z. y Mo, X. X. (2012). Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. *Journal of Asian Earth Sciences*, 53, 59-66. https://doi.org/10.1016/j. jseaes.2011.07.027
- Ward, D. E., Goldsmith, R., Cruz, J., Jaramillo, L. y Vargas, R. (1970). *Geología de la plancha 110, Pamplona*. Escala 1:100.000. Versión digital 2010. Bogotá: Ingeominas.
- Ward, D. E., Goldsmith, R., Cruz, J., Jaramillo, L. y Vargas, R. (1977). *Geología de la plancha 121, Cerrito*. Escala 1:100.000. Versión digital 2010. Bogotá: Ingeominas.
- Ward, D. E., Goldsmith, R., Jimeno, A., Cruz, J., Restrepo, H. y Gómez, E. (1973). Cuadrángulo H-12, Bucaramanga. Planchas 109, Rionegro, y 120, Bucaramanga. Cuadrángulo H-13, Pamplona. Planchas 110, Pamplona, y 121, Cerrito. Escala 1:100.000. Memoria explicativa. *Boletín Geológico*, 21 (1-3), 1-134.
- Whalen, J. B., Currie, K. L. y Chappell, B. W. (1987). A-type granites: Geochemical characteristics, discrimination and petrogenesis. *Contributions to Mineralogy and Petrology*, 95 (4), 407-419. https://doi. org/10.1007/BF00402202
- Winter, J. (2001). An introduction to igneous and metamorphic petrology. New Jersey: Prentice Hall.

ANEXO A

Resultados de geocronología U-Pb en circón

Muestra GR-6719 (Laboratorio de la Universidad Nacional Autónoma de México)

Identificación muestra	Relación final ²⁰⁷ Pb/ ²³⁵ U	Error interno relación final ²⁰⁷ Pb/ ²³⁵ U a 2 D. F.	Relación final ²⁰⁶ Pb/ ²³⁸ U	Error interno relación final ²⁰⁶ Pb/ ²³⁵ U a 2 D.F.	Ajuste error de correlación (datos negativos)	Error de correlación ²⁰⁶ Pb/ ²³⁸ U vs, ²⁰⁷ Pb/ ²³⁵ U	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	% discordia	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	± 2σ	Relación final U/Th
GR_6719_31	0,6720	0,0650	0,03476	0,00081	0,7534	0,75336	197,51	487,00	146,57	197,51	7.14	0,96
GR_6719_35	0,4010	0,0320	0,03310	0,00050	0,2618	0,26182	200,59	335,00	67,01	200,59	5,40	1,38
GR_6719_29	0,3340	0,0250	0,03257	0,00058	0,1163	0,11628	200,10	304,00	51,93	200,10	5,57	0,55
GR_6719_7	0,2560	0,0140	0,02998	0,00050	0,0750	0,07503	187,68	229,00	22,01	187,68	4,97	0,83
GR_6719_13	0,2520	0,0190	0,03035	0,00060	0,1000	-0,01138	190,38	226,00	18,71	190,38	5,51	1,05
GR_6719_14	0,2362	0,0055	0,02885	0,00024	0,2980	0,29804	181,26	214,80	18,50	181,26	3,93	0,44
GR_6719_34	0,2184	0,0049	0,02823	0,00022	0,2365	0,23647	178,16	201,20	12,93	178,16	3,82	1,92
GR_6719_17	0,2470	0,0270	0,03070	0,00079	0,0205	0,02046	193,11	214,00	10,82	193,11	6,47	1,83
GR_6719_22	0,2234	0,0070	0,02951	0,00035	0,1141	0,11412	186,37	205,40	10,21	186,37	4,33	1,26
GR_6719_9	0,2684	0,0086	0,03515	0,00064	0,6643	0,66426	221,52	240,20	8,43	221,52	5,99	1,02
GR_6719_39	0,2700	0,0150	0,03560	0,00100	0,6909	0,69090	224,49	242,00	7,80	224,49	7,55	2,73
GR_6719_21	0,6410	0,0360	0,07660	0,00360	0,9392	0,93922	474,07	492,00	3,78	474,07	23,69	1,39
GR_6719_2	0,2105	0,0064	0,02893	0,00042	0,3087	0,30871	183,20	194,20	6,00	183,20	4,51	1,96
GR_6719_28	0,2034	0,0083	0,02969	0,00065	0,4020	0,40201	188,15	187,40	-0,40	188,15	5,58	1,39
GR_6719_26	0,2220	0,0150	0,03009	0,00041	0,0578	0,05783	190,14	203,00	6,76	190,14	4.70	1,12
GR_6719_16	0,2113	0,0043	0,02997	0,00022	0,1221	0,12209	190,17	194,30	2,17	190,17	4.08	1,52
GR_6719_40	0,2100	0,0120	0,02996	0,00035	0,1000	-0,02657	190,20	195,00	2,52	190,20	4.44	1,63
GR_6719_15	0,2219	0,0042	0,03024	0,00023	0,3402	0,34016	191,48	203,10	6,07	191,48	4.07	0,43
GR_6719_20	0,2037	0,0087	0,03013	0,00030	0,2160	0,21598	191,60	187,60	-2,09	191,60	4.29	1,16
GR_6719_44	0,2151	0,0071	0,03031	0,00028	0,0600	0,05998	192,38	197,40	2,61	192,38	4.28	1,66
GR_6719_25	0,2071	0,0078	0,03030	0,00038	0,1395	0,13951	192,41	190,60	-0,94	192,41	4.53	0,86
GR_6719_24	0,2197	0,0095	0,03057	0,00034	0,1814	0,18140	193,56	200,30	3,48	193,56	4.47	0,58
GR_6719_37	0,2273	0,0063	0,03064	0,00031	0,1485	0,14845	193,87	208,20	7,39	193,87	4.39	0,74
GR_6719_10	0,2160	0,0078	0,03060	0,00032	0,2906	0,29063	194,06	198,00	2,03	194,06	4 40	1,35
GR_6719_43	0,2198	0,0096	0,03086	0,00033	0,1000	-0,00634	195,84	200,10	2,18	195,84	4.48	1,33
GR_6719_27	0,2180	0,0170	0,03091	0,00055	0,2050	0,20498	196,20	197,00	0,41	196,20	5.34	1,10
GR_6719_12	0,2300	0,0160	0,03111	0,00047	0,1577	0,15771	196,67	209,00	6,27	196,67	5.02	0,82
GR_6719_18	0,2330	0,0140	0,03114	0,00049	0,1000	-0,11622	196,81	212,00	7,72	196,81	5.06	1,39
GR_6719_42	0,2090	0,0110	0,03098	0,00040	0,0366	0,03658	196,96	193,10	-1,96	196,96	4.75	1,15
GR_6719_41	0,2254	0,0062	0,03111	0,00024	0,0525	0,05248	197,19	205,70	4,32	197,19	4 27	1,64
GR_6719_6	0,2240	0,0100	0,03125	0,00039	0,2379	0,23785	197,94	205,80	3,97	197,94	4 66	0,98
GR_6719_23	0,2214	0,0089	0,03127	0,00036	0,0896	0,08957	198,34	202,50	2,10	198,34	4 60	0,96
GR_6719_19	0,2350	0,0083	0,03138	0,00034	0,0685	0,06851	198,39	213,30	7,52	198,39	4.52	1,21
GR_6719_8	0,2266	0,0090	0,03136	0,00033	0,0365	0,03645	198,51	207,60	4,58	198,51	4 53	0,76
GR_6719_11	0,2197	0,0074	0,03149	0,00043	0,3126	0,31258	199,65	202,20	1,28	199,65	4 83	0,95
GR_6719_38	0,2339	0,0088	0,03168	0,00041	0,2374	0,23742	200,51	212,10	5,78	200,51	4,00	1,04
GR 6719 32	0.2200	0.0100	0.03173	0.00034	0.0839	0.08393	201.25	200.90	-0.17	201.25	4,77	1.07
GR 6719 33	0.2255	0.0051	0.03196	0.00024	0.1386	0.13856	202.59	206.40	1.88	202.59	4,00	1.59
GR 6719 30	0,2274	0,0086	0,03205	0,00036	0,0913	0,09128	202,96	208,00	2,48	202,96	4,00	1,00
GR 6719 1	0,2310	0,0140	0,03210	0,00056	0,5338	0,53378	203.22	206.70	1,71	203.22	5 40	0,56
GR 6719 5	0,2327	0,0086	0,03242	0,00048	0,3703	0,37025	205.56	211.20	2,75	205.56	5.42	0,76
GR 6719 36	0,2501	0,0082	0,03289	0,00036	0,1880	0,18796	207.76	225.50	8,54	207.76	0,10	1,51
GR 6719 3	0.2273	0.0088	0.03292	0.00036	0,1159	0.11590	209.00	209.00	0,00	209.00	4,70	1.00
GR 6719 4	0,2327	0,0095	0,03322	0,00042	0,0658	0,06584	210,63	212,10	0,70	210,63	4,79	1,07
Muestra GR-6821 (Laboratorio del Servicio Geológico Colombiano)

ldentificación muestra	Relación final ²⁰⁷ Pb/ ²³⁵ U	Error interno relación final ²⁰⁷ Pb/ ²³⁵ U a 2 D E	Relación final ²⁰⁶ Pb/ ²³⁸ U	Error interno relación final ²⁰⁶ Pb/ ²³⁵ U a 2 D F	Ajuste error de correlación (datos negativos)	Error de correlación ²⁰⁶ Pb/ ²³⁸ U vs, ²⁰⁷ Pb/ ²³⁵ U	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	% discordia	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	± 2σ	Relación final U/Th
GZ_6821_50	1,3300	0,0610	0,04690	0,00130	0,1000	-0,23866	235,54	842,00	257,48	235,54	10,10	1,61
GZ_6821_51	0,8960	0,0420	0,03535	0,00044	0,5703	0,57028	188,17	641,00	240,65	188,17	5,51	2,03
GZ_6821_10	0,6000	0,0650	0,03401	0,00098	0,8535	0,85346	195,95	444,00	126,58	195,95	7,56	1,12
GZ_6821_33	0,5120	0,0220	0,03323	0,00055	0,1023	0,10226	194,79	421,00	116,13	194,79	5,37	0,82
GZ_6821_52	0,8280	0,0340	0,05780	0,00170	0,6962	0,69616	340,88	629,00	84,52	340,88	12,48	0,39
GZ_6821_21	0,4370	0,0430	0,03304	0,00063	0,8683	0,86827	198,72	358,00	80,15	198,72	5,87	0,53
GZ_6821_38	0,3020	0,0210	0,03262	0,00049	0,5449	0,54486	203,58	262,00	28,70	203,58	5,16	0,61
GZ_6821_31	0,4080	0,0270	0,04470	0,00190	0,1641	0,16410	277,06	346,00	24,88	277,06	13,00	0,84
GZ_6821_1	0,2630	0,0200	0,03118	0,00058	0,1426	0,14258	194,90	237,00	21,60	194,90	5,45	0,69
GZ_6821_44	0,2640	0,0160	0,03202	0,00054	0,1000	-0,08052	200,48	237,00	18,22	200,48	5,37	1,10
GZ_6821_27	0,2400	0,0180	0,03045	0,00057	0,0364	0,03639	191,92	218,00	13,59	191,92	5,38	1,26
GZ_6821_43	0,2410	0,0170	0,03089	0,00050	0,0734	0,07345	194,71	217,00	11,45	194,71	5,08	0,80
GZ_6821_4	0,2537	0,0057	0,03291	0,00030	0,1709	0,17093	207,29	229,60	10,76	207,29	4,56	1,96
GZ_6821_30	0,2550	0,0160	0,03293	0,00045	0,1543	0,15431	207,49	229,00	10,37	207,49	5,12	0,93
GZ_6821_6	1,1700	0,1500	0,11600	0,01100	0,3622	0,36220	702,55	708,00	0,78	702,55	64,87	2,66
GZ_6821_39	0,2013	0,0083	0,02763	0,00038	0,2638	0,26378	175,17	185,70	6,01	175,17	4,27	1,56
GZ_6821_15	0,2147	0,0058	0,02841	0,00032	0,4052	0,40520	179,26	197,10	9,95	179,26	4,13	1,37
GZ_6821_32	0,2023	0,0068	0,02928	0,00037	0,2405	0,24051	185,90	187,70	0,97	185,90	4,40	1,17
GZ_6821_41	0,2077	0,0067	0,02974	0,00039	0,3400	0,34003	188,63	191,30	1,41	188,63	4,52	0,77
GZ_6821_40	0,2180	0,0100	0,02994	0,00039	0,0303	0,03028	189,63	200,60	5,79	189,63	4,54	0,69
GZ_6821_24	0,2110	0,0120	0,03016	0,00040	0,0166	0,01658	191,39	193,00	0,84	191,39	4,62	0,88
GZ_6821_36	0,2060	0,0180	0,03030	0,00054	0,1000	-0,03946	192,41	186,00	-3,33	192,41	5,24	1,09
GZ_6821_2	0,2300	0,0130	0,03055	0,00044	0,1503	0,15027	193,19	208,00	7,67	193,19	4,79	0,92
GZ_6821_25	0,2173	0,0080	0,03051	0,00043	0,1321	0,13208	193,30	199,20	3,05	193,30	4,71	1,96
GZ_6821_46	0,2070	0,0170	0,03062	0,00054	0,0876	0,08765	194,64	188,00	-3,41	194,64	5,23	1,14
GZ_6821_49	0,2290	0,0120	0,03091	0,00036	0,0927	0,09269	195,47	208,60	6,72	195,47	4,55	1,14
GZ_6821_3	0,2240	0,0130	0,03114	0,00045	0,0895	0,08948	197,25	205,00	3,93	197,25	4,87	0,87
GZ_6821_13	0,2130	0,0110	0,03134	0,00042	0,0629	0,06290	198,53	195,00	-1,78	198,53	4,81	0,81
GZ_6821_14	0,2070	0,0200	0,03142	0,00062	0,1000	-0,05090	200,17	185,00	-7,58	200,17	5,69	1,12
GZ_6821_5	0,2206	0,0069	0,03171	0,00026	0,2515	0,25145	201,20	201,70	0,25	201,20	4,34	0,82
GZ_6821_20	0,2430	0,0140	0,03194	0,00047	0,0049	0,00487	201,34	219,00	8,77	201,34	5,05	0,86
GZ_6821_42	0,2150	0,0120	0,03173	0,00045	0,0917	0,09167	201,75	199,70	-1,02	201,75	4,99	0,80
GZ_6821_26	0,2020	0,0150	0,03168	0,00047	0,1000	-0,01682	201,93	185,00	-8,39	201,93	5,10	0,71
GZ_6821_29	0,2080	0,0180	0,03181	0,00055	0,0339	0,03385	202,40	192,00	-5,14	202,40	5,44	0,55
GZ_6821_23	0,2243	0,0091	0,03206	0,00031	0,1000	-0,01463	203,40	205,30	0,93	203,40	4,54	0,41
GZ_6821_35	0,2260	0,0058	0,03215	0,00031	0,4206	0,42056	204,01	207,60	1,76	204,01	4,52	1,45
GZ_6821_22	0,2260	0,0130	0,03219	0,00044	0,1000	-0,00803	204,06	207,00	1,44	204,06	5,00	0,68
GZ_6821_34	0,2308	0,0086	0,03294	0,00043	0,2130	0,21301	208,95	210,30	0,65	208,95	5,03	1,19
GZ_6821_12	0,2470	0,0120	0,03353	0,00049	0,2576	0,25757	211,73	223,90	5,75	211,73	5,21	1,09
GZ_6821_18	0,2510	0,0120	0,03383	0,00041	0,0347	0,03470	213,34	225,90	5,89	213,34	5,04	0,90
GZ_6821_45	0,2720	0,0140	0,03528	0,00081	0,4274	0,42741	222,22	239,00	7,55	222,22	6,94	0,69
GZ_6821_37	0,2615	0,0099	0,03523	0,00044	0,1618	0,16178	222,65	234,30	5,23	222,65	5,27	1,24
GZ_6821_16	0,2690	0,0180	0,03770	0,00110	0,4416	0,44159	238,40	238,00	-0,17	238,40	8,22	0,99
GZ_6821_28	0,4980	0,0140	0,06121	0,00063	0,2530	0,25302	380,92	410,00	7,63	380,92	8,71	2,31
GZ_6821_11	0,4859	0,0094	0,06312	0,00086	0,6468	0,64684	393,81	401,90	2,05	393,81	9,30	4,57
GZ_6821_9	0,4700	0,0140	0,06325	0,00081	0,3079	0,30792	395,64	391,90	-0,95	395,64	9,34	1,47
GZ_6821_19	0,5300	0,0120	0,06710	0,00100	0,7695	0,76948	417,81	431,30	3,23	417,81	10,50	1,26
GZ_6821_8	0,5270	0,0180	0,06870	0,00130	0,4871	0,48709	427,54	429,00	0,34	427,54	11,72	2,38
GZ_6821_47	0,5500	0,0140	0,06886	0,00082	0,3449	0,34492	427,94	444,20	3,80	427,94	9,89	1,38
GZ_6821_7	0,5680	0,0120	0,07204	0,00075	0,3638	0,36381	447,40	456,50	2,03	447,40	9,88	2,64
GZ_6821_17	0,5930	0,0120	0,07571	0,00056	0,2182	0,21816	470,10	471,80	0,36	470,10	9,89	5,70
GZ_6821_48	1,8130	0,0290	0,16470	0,00160	0,6702	0,67016	973,99	1051,00	7,91	973,99	21,11	5,25

indestra GR-07 10 (Laboratorio dei Servicio Geologico Colombian	Muestra GR-6718	(Laboratorio del	Servicio Geoló	ógico Colombianc
---	-----------------	------------------	----------------	------------------

Instruction Relation Financi metrico Number of the properties Number of the properties State of the properies State			(<u> </u>							
GR #7812 7 0.1800 0.0340 0.0398 161.77 149.00 -177.8 181.77 11.21 1.23 GR 5718_15 0.3580 0.05880 0.00110 0.1000 -0.68834 149.47 228.00 24.07 149.17 11.26 1.59 GR 5718_15 0.3580 0.0540 0.03190 0.00180 0.1001 20.02 21.00 28.00 24.07 149.17 11.24 1.52 GR 5718_10 0.2840 0.0640 0.03390 0.00190 0.01112 20.02 24.00 15.52 210.87 12.07 1.81 2.26 GR 5718_10 0.0640 0.03390 0.0010 0.1132 210.82 24.00 15.52 210.87 12.55 3.65 GR 5718_10 0.0640 0.02640 0.00100 0.1132 210.87 15.52 210.87 15.52 210.87 15.52 11.83 12.01 1.10 GR 5718_1 0.1900 0.02640 0.00000 0.01130 1172.24 17.2	Identificación muestra	Relación final ²⁰⁷ Pb/ ²³⁵ U	Error interno relación final ²⁰⁷ Pb/ ²³⁵ U a 2 D,E,	Relación final ²⁰⁶ Pb/ ²³⁸ U	Error interno relación final ²⁰⁶ Pb/ ²³⁵ U a 2 D,E,	Ajuste error de correlación (datos negativos)	Error de correlación ²⁰⁶ Pb/ ²³⁸ U vs, ²⁰⁷ Pb/ ²³⁵ U	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	% discordia	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	± 2σ	Relación final U/Th
GR_6718_24 Q2810 0.0040 0.02890 0.0010 -0.08834 184.57 228.00 40.40 184.57 11.85 1.89 GR_6718_15 0.3600 0.0100 0.00180 0.00120 0.0114 200.22 261.00 28.00 105.44 15.51 2.56 GR_6718_6 0.2490 0.00490 0.02820 0.00130 0.07190 198.92 348.00 74.44 189.82 13.81 2.08 GR_6718_1 0.2490 0.00190 0.01320 0.07190 198.22 248.00 14.32 21.087 15.52 21.087 15.55 3.66 GR_6718_1 0.1690 0.0480 0.06010 0.1532 157.24 178.00 13.20 157.24 178.00 13.20 157.24 178.00 13.20 157.24 178.00 13.20 157.24 178.00 13.20 157.24 178.00 13.20 157.24 178.00 13.20 157.24 178.00 13.20 157.24 178.00 13.20	GR_6718_7	0,1620	0,0340	0,02830	0,00140	0,0339	0,03389	181,17	149,00	-17,76	181,17	11,01	1,23
GR_6718_15 0.8500 0.1000 0.00190 0.00190 0.00190 0.00190 0.00191 20002 216.44 195.44 155.1 2.56 GR_6718_16 0.2480 0.00150 0.00150 0.00190 210.82 281.60 74.94 198.22 381.2 2.86 GR_6718_16 0.2820 0.00190 0.01120 210.82 284.00 16.52 219.87 15.55 3.85 GR_6718_19 0.3490 0.0440 0.00190 0.11120 219.87 284.00 16.32 219.87 15.55 3.85 GR_6718_19 0.3490 0.0440 0.00190 0.1123 172.82 150.12 176.00 9.02 10.14 3.33 GR_6718_13 0.1167 0.04290 0.00110 0.0514 0.05145 188.56 193.00 2.35 188.50 12.25 1.32 GR_6718_13 0.2280 0.0080 0.00064 0.1000 -0.0171 189.91 187.00 1.32 1.35 1.35 <td< td=""><td>GR_6718_24</td><td>0,2810</td><td>0,0640</td><td>0,02980</td><td>0,00110</td><td>0,1000</td><td>-0,06834</td><td>184,57</td><td>229,00</td><td>24,07</td><td>184,57</td><td>11,26</td><td>1,69</td></td<>	GR_6718_24	0,2810	0,0640	0,02980	0,00110	0,1000	-0,06834	184,57	229,00	24,07	184,57	11,26	1,69
GR_G718_16 0.2440 0.0540 0.00120 0.0101 0.01014 2002 211.00 200.02 11.14 1.07 GR_G716_6 0.2820 0.00150 0.00719 0.01190 198.62 346.00 74.94 198.62 13.61 2.08 GR_G716_6 0.2820 0.0410 0.03500 0.00710 0.0550 0.07190 198.62 346.00 74.94 198.92 13.61 22.68 27.00 18.32 22.58 27.00 18.32 22.58 27.00 18.32 25.60 27.00 18.32 25.60 27.00 18.32 15.67 4.76 4.76 GR_G716_3 0.1670 0.02690 0.02640 0.00110 0.1546 0.15472 178.00 18.20 15.24 17.80 18.25 19.25 18.85 10.20 11.55 10.05 12.25 18.85 10.20 11.55 10.05 12.25 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	GR_6718_15	0,3500	0,1000	0,03190	0,00180	0,1000	-0,07327	195,44	292,00	49,40	195,44	15,51	2,56
GR. 6718.2 0.4180 0.0680 0.03290 0.01150 0.07190 198.82 348.00 74.94 198.92 13.61 2.08 GR. 6718.6 0.2820 0.0410 0.03380 0.01130 0.0707 12182 245.00 15.82 210.82 12.07 1.82 210.82 12.07 1.82 210.82 12.07 1.82 210.82 12.07 1.82 211.87 15.55 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 12.01 1.04 3.38 GR, 6718.1 0.1870 0.02860 0.00284 0.01040 0.1728 107.224 160.12 10.14 3.38 1.84 1.34 1.38 1.84 1.34 1.35 GR, 6718.1 0.220 1.025 1.122 1.105 1.62.5 1.32 1.126 1.126 1.126 1.126 1.126 1.126 1.126 1.126 1.126 1.55	GR_6718_16	0,2940	0,0540	0,03230	0,00120	0,0101	0,01014	200,92	261,00	29,90	200,92	11,64	1,07
GR_6718_6 0.2820 0.0410 0.03360 0.0717 0.07086 210.82 245.00 15.32 210.82 12.07 1.82 GR_6718_10 0.0390 0.04100 0.01100 0.1112 211.87 254.00 115.32 210.87 15.55 3.85 GR_6718_10 0.0990 0.0440 0.00100 0.01540 0.1547 157.24 178.00 13.20 157.24 9.76 4.76 GR_6718_13 0.1870 0.02260 0.02240 0.00110 0.1540 0.5144 183.01 187.00 13.20 157.24 9.76 4.76 GR_6718_13 0.1870 0.02280 0.02944 0.00088 0.1000 -0.0511 189.01 187.00 -1.53 189.01 12.25 1.32 GR_6718_4 0.2320 0.0460 0.00004 0.1000 -0.0054 196.52 220.00 -4.05 194.00 11.13 17.66 8.84 1.94 GR_6718_18 0.2210 0.03150 0.00068 <t< td=""><td>GR_6718_2</td><td>0,4160</td><td>0,0990</td><td>0,03290</td><td>0,00150</td><td>0,0719</td><td>0,07190</td><td>198,92</td><td>348,00</td><td>74,94</td><td>198,92</td><td>13,61</td><td>2,08</td></t<>	GR_6718_2	0,4160	0,0990	0,03290	0,00150	0,0719	0,07190	198,92	348,00	74,94	198,92	13,61	2,08
GR_6718_8 0.2770 0.03820 0.00190 0.1112 0.11120 219.87 254.00 15.52 219.87 15.55 3.66 GR_6718_1 0.3990 0.0440 0.00510 0.1335 0.13358 228.60 12.01 1.00 GR_6718_1 0.1990 0.0440 0.0250 0.00110 0.0514 10.544 178.00 132.00 15.22 179.4 7.64 GR_6718_3 0.1870 0.0250 0.02940 0.02010 0.0514 165.12 176.00 9.92 160.12 1.014 3.93 GR_6718_14 0.2390 0.0290 0.0290 0.02904 0.02064 0.1569 195.00 1.157.00 1.55 1.92.0 1.15 190.05 12.00 11.55 190.5 1.26 1.32 1.27 1.92.0 1.15 190.01 11.55 190.73 190.73 190.73 190.73 190.73 190.73 190.73 190.73 190.73 190.73 190.73 190.73 190.79 180.73<	GR_6718_6	0,2820	0,0410	0,03350	0,00130	0,0707	0,07066	210,62	245,00	16,32	210,62	12,07	1,82
GR_G718_19 0.9380 0.0430 0.08810 0.00100 0.1383 0.13825 225,80 267,00 18,35 225,80 12,01 1,00 GR_G718_13 0.1670 0.02800 0.02910 0.01730 0.17228 10,122 176,00 9,82 190,12 10,14 3,83 GR_G718_13 0.1670 0.02904 0.00688 0.1000 -0,05171 189,91 187,00 -1,83 189,91 8,44 1,35 GR_G718_42 0.2280 0.0480 0.03068 0.1000 -0,05171 189,91 187,00 -4,05 194,90 8,23 1,14 GR_G718_44 0.2280 0.03169 0.00664 0.15607 194,90 187,00 -4,05 194,90 8,84 1,74 GR_G718_45 0.2450 0.03169 0.00664 0.0666 197,00 11,13 197,38 8,84 1,74 GR_G718_35 0.2170 0.03169 0.00676 0.0681 197,03 8,84 0,84 1,91	GR_6718_8	0,2770	0,0770	0,03520	0,00190	0,1112	0,11120	219,87	254,00	15,52	219,87	15,55	3,65
GR. 6718.1 0.1960 0.0480 0.02500 0.00110 0.1546 0.15477 157.24 178.00 13.20 157.24 9.76 4.76 GR. 6718.3 0.0250 0.02540 0.00130 0.07280 0.0712 10.14 3.83 GR. 6718.3 0.2190 0.02600 0.02940 0.00160 -0.05111 189.81 167.00 -1.53 188.94 1.35 GR. 6718.4 0.2390 0.0460 0.00064 0.16569 0.15697 149.00 2.22 1.10 GR. 6718.4 0.2280 0.0160 0.00160 0.1475 0.14772 190.05 11.75 190.05 12.28 1.32 GR. 6718.45 0.2480 0.0220 0.03120 0.00064 0.1600 -0.0204 196.52 280.00 5.84 196.52 8.85 0.90 GR. 6718.35 0.2170 0.0210 0.03160 0.00057 0.1608 201.47 211.00 7.88 9.89 0.49 GR. 6718.35 0.2170	GR_6718_19	0,3090	0,0430	0,03610	0,00100	0,1353	0,13525	225,60	267,00	18,35	225,60	12,01	1,00
GR_5718_3 0.1870 0.0250 0.02540 0.00130 0.1723 0.1726 160,12 176,00 9,92 160,12 10,14 3,93 GR_5718_10 0.2190 0.0280 0.0280 0.0280 0.0280 0.0280 1.02944 1.051 188,51 188,51 188,54 183,51 6.718,4 0.2320 0.0460 0.03006 0.0169 1.0475 1.1452 1.94.50 1.455 1.94.55<	GR_6718_1	0,1960	0,0480	0,02500	0,00110	0,1546	0,15457	157,24	178,00	13,20	157,24	9,76	4,76
GR_6718_13 0.2190 0.0310 0.02890 0.00110 0.0514 0.05145 188,56 133,00 2.35 188,56 10.22 1,10 GR_6718_18 0.2390 0.02994 0.00008 0.1000 -0.05171 189,91 187,00 -1.53 189,91 8.74 1.35 GR_6718_42 0.2320 0.0160 0.03068 0.1667 194,90 187,00 -4.05 194,90 8.23 1.14 GR_6718_45 0.2450 0.0160 0.03129 0.00064 0.1600 -0.02054 196,52 208.00 5.84 196,52 8.85 0.90 GR_6718_45 0.2420 0.03140 0.00088 0.1729 198,34 214.00 7.89 198,34 9.44 1.91 GR_6718_35 0.2170 0.0216 0.03161 0.00057 0.1602 200,47 201.00 0.83 199,73 8.98 0.98 GR_6718_18 0.2210 0.0330 0.03167 0.00076 0.0833 201,57	GR_6718_3	0,1870	0,0250	0,02540	0,00130	0,1723	0,17226	160,12	176,00	9,92	160,12	10,14	3,93
GR_6718_38 0.2080 0.0280 0.02894 0.00068 0.1000 -0.05171 189,91 187,00 -1.53 189,91 8,94 1,35 GR_6718_42 0.2050 0.01400 0.03008 0.00064 0.14752 190,05 122.00 11.55 190,05 122.8 1,22 GR_6718_18 0.2260 0.01100 0.03019 0.00064 0.00054 0.16867 194,90 187,00 -1.63 184,90 8,23 1,14 GR_6718_18 0.2450 0.0220 0.03149 0.00066 0.06058 196,52 210,00 11.3 197,06 8,44 1,74 GR_6718_38 0.2170 0.03161 0.00057 0.1608 210,07 198,34 214,00 7.8 198,34 9,44 1,51 GR_6718_38 0.2210 0.03160 0.00167 0.1608 210,07 198,34 10,62 198,38 0.051 5.2 0.64,37 194,30 3,20 GR_6718_39 0.2210 0.0330 <t< td=""><td>GR_6718_13</td><td>0,2190</td><td>0,0310</td><td>0,02980</td><td>0,00110</td><td>0,0514</td><td>0,05145</td><td>188,56</td><td>193,00</td><td>2,35</td><td>188,56</td><td>10,22</td><td>1,10</td></t<>	GR_6718_13	0,2190	0,0310	0,02980	0,00110	0,0514	0,05145	188,56	193,00	2,35	188,56	10,22	1,10
GR_6718_4 0.2320 0.0460 0.03000 0.0160 0.1475 0.14752 190.05 212.00 11.55 190.05 12.25 1.32 GR_6718_42 0.2260 0.0150 0.03068 0.00064 0.15667 194.90 187.00 -4.05 194.90 8.23 1.14 GR_6718_45 0.2260 0.03129 0.00066 0.0605 197.06 218.00 1.13 197.06 8.84 1.74 GR_6718_45 0.2410 0.03169 0.00068 0.1000 -0.01123 199.73 201.00 0.63 199.73 8.89 0.99 GR_6718_38 0.2210 0.03161 0.00057 0.16082 200.47 201.00 0.63 199.73 8.89 0.99 GR_6718_38 0.2210 0.0330 0.03167 0.00076 0.683 0.04324 201.97 9.63 1.53 GR_6718_5 0.2400 0.0330 0.03170 0.00110 0.1442 194.22 129.00 1.63 1.66 <t< td=""><td>GR_6718_36</td><td>0,2090</td><td>0,0260</td><td>0,02994</td><td>0,00068</td><td>0,1000</td><td>-0,05171</td><td>189,91</td><td>187,00</td><td>-1,53</td><td>189,91</td><td>8,94</td><td>1,35</td></t<>	GR_6718_36	0,2090	0,0260	0,02994	0,00068	0,1000	-0,05171	189,91	187,00	-1,53	189,91	8,94	1,35
GR. 6718_42 0.2050 0.0150 0.00064 0.1569 0.15687 194.90 187.00 -4.05 194.90 8.23 1.14 GR. 6718_16 0.2260 0.0180 0.00064 0.1000 -0.02054 196.52 208.00 5.84 196.52 8.85 0.90 GR. 6718_44 0.2410 0.0190 0.03140 0.00068 0.17279 198.34 214.00 7.89 198.34 9.44 1.91 GR. 6718_36 0.2170 0.0210 0.03161 0.00057 0.1608 0.1682 200.47 201.00 0.63 199.73 8.89 0.99 GR. 6718_31 0.2320 0.0330 0.03167 0.00076 0.0633 0.0834 201.07 1.042 1.94.88 1.01.62 198.88 1.01.61 1.66 GR. 6718_28 0.2480 0.0330 0.03170 0.00110 0.1544 1.94.22 1.0.76 3.20 1.73 8.85 1.85 GR. 6718_28 0.2480 0.0330 0.03170	GR_6718_4	0,2320	0,0460	0,03000	0,00160	0,1475	0,14752	190,05	212,00	11,55	190,05	12,25	1,32
GR_6718_18 0.2280 0.0180 0.03109 0.00064 0.1000 -0.02054 196.52 206.00 5.84 196.52 8.85 0.90 GR_6718_45 0.2280 0.03129 0.00066 0.06068 197.06 219.00 11,13 197.06 8.84 1,74 GR_6718_35 0.2170 0.0210 0.03161 0.00057 0.1128 91973 201.00 0.63 199.73 8.99 0.99 GR_6718_31 0.2210 0.0330 0.03167 0.00067 0.16082 200.47 201.00 0.26 200.47 8.85 0.96 GR_6718_28 0.2210 0.0330 0.03167 0.00076 0.14324 199.22 225.00 10.42 198.88 200.00 0.55 200.89 1.53 GR_6718_28 0.2440 0.0330 0.03170 0.00110 0.14424 199.22 225.00 1.54 1.64 1.82 GR_6718_30 0.2420 0.0380 0.03170 0.00110 0.2554	GR_6718_42	0,2050	0,0150	0,03068	0,00054	0,1569	0,15687	194,90	187,00	-4,05	194,90	8,23	1,14
GR_6718_45 0.2450 0.03129 0.00066 0.0606 197.06 219.00 11.13 197.06 8.84 1.74 GR_6718_44 0.2410 0.03146 0.00083 0.1728 0.17279 198.34 214.00 7.89 198.34 9.44 1.91 GR_6718_38 0.2170 0.0210 0.03150 0.00057 0.1600 200.47 201.00 0.63 199.73 8.89 0.99 GR_6718_38 0.2210 0.03150 0.00057 0.1608 0.16082 200.47 201.00 0.26 201.77 9.63 1.53 GR_6718_25 0.2210 0.0330 0.03170 0.00110 0.1442 199.22 25.00 12.94 199.22 10.76 3.20 GR_6718_5 0.1940 0.03170 0.00110 0.2544 202.18 10.21 1.82 GR_6718_39 0.2400 0.0380 0.03176 0.00120 0.257 0.2114 201.22 210.00 -0.35 201.22 10.21 1.82	GR_6718_18	0,2260	0,0180	0,03109	0,00064	0,1000	-0,02054	196,52	208,00	5,84	196,52	8,85	0,90
GR_6718_44 0.2410 0.0190 0.03146 0.00083 0.1728 0.17279 198.34 214.00 7.89 198.34 9.44 1.91 GR_6718_35 0.2170 0.0150 0.03160 0.00057 0.1608 2100 0.63 199.73 8.89 0.99 GR_6718_38 0.2210 0.0150 0.03165 0.00057 0.1608 210.07 0.262 200.47 8.85 0.99 GR_6718_38 0.2210 0.0330 0.03165 0.00076 0.1633 0.0834 201.57 194.00 -3.76 201.57 9.63 1.53 GR_6718_58 0.2440 0.0330 0.03170 0.00120 0.1442 0.1442 199.22 25.00 12.94 199.22 10.76 3.20 GR_6718_39 0.2400 0.03170 0.00110 0.25541 202.18 174.00 -13.94 202.18 10.221 1.82 GR_6718_39 0.2420 0.03170 0.00049 0.17279 201.72 201.00 <td< td=""><td>GR_6718_45</td><td>0,2450</td><td>0,0220</td><td>0,03129</td><td>0,00066</td><td>0,0606</td><td>0,06058</td><td>197,06</td><td>219,00</td><td>11,13</td><td>197,06</td><td>8,84</td><td>1,74</td></td<>	GR_6718_45	0,2450	0,0220	0,03129	0,00066	0,0606	0,06058	197,06	219,00	11,13	197,06	8,84	1,74
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GR_6718_44	0,2410	0,0190	0,03146	0,00083	0,1728	0,17279	198,34	214,00	7,89	198,34	9,44	1,91
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GR_6718_35	0,2170	0,0210	0,03150	0,00058	0,1000	-0,01123	199,73	201,00	0,63	199,73	8,89	0,99
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GR_6718_38	0,2210	0,0150	0,03161	0,00057	0,1608	0,16082	200,47	201,00	0,26	200,47	8,85	0,96
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GR_6718_31	0,2390	0,0320	0,03165	0,00087	0,1307	0,13072	198,88	220,00	10,62	198,88	10,15	1,06
GR_6718_28 0.2480 0.0330 0.03170 0.00120 0.1442 0.14424 199.22 225.00 12.94 199.22 0.76 3.20 GR_6718_14 0.2280 0.0300 0.03170 0.00110 0.15483 200.89 202.00 0.55 200.89 10.81 0.50 GR_6718_5 0.1940 0.0230 0.03170 0.00110 0.2554 0.25541 202.18 174.00 -13.94 202.18 10.21 1.82 GR_6718_30 0.2420 0.0380 0.03197 0.00092 0.1215 0.12154 201.22 211,00 -0.35 201.72 8.65 1.33 GR_6718_32 0.2320 0.00050 0.2375 0.23749 203.52 211.00 3.68 203.52 8.81 0.91 GR_6718_41 0.2200 0.00050 0.2375 0.23749 203.52 211.00 3.68 205.53 1.69 GR_6718_41 0.2200 0.0220 0.00057 0.1843 0.1843 205.83 <	GR 6718 25	0,2210	0,0330	0,03167	0,00076	0,0833	0,08334	201,57	194,00	-3,76	201,57	9,63	1,53
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GR 6718 28	0,2480	0,0330	0,03170	0,00120	0,1442	0,14424	199,22	225,00	12,94	199,22	10,76	3,20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GR 6718 14	0,2280	0,0300	0,03170	0,00110	0,1548	0,15483	200,89	202,00	0,55	200,89	10,81	0,50
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GR 6718 5	0,1940	0,0230	0,03170	0,00110	0,2554	0,25541	202,18	174,00	-13,94	202,18	10,21	1,82
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GR 6718 39	0,2190	0,0140	0,03178	0,00049	0,1728	0,17279	201,72	201,00	-0,35	201,72	8,85	1,38
$ \begin{array}{c} GR_{6718_32} & 0.2320 & 0.0120 & 0.03220 & 0.00050 & 0.2375 & 0.23749 & 203.52 & 211.00 & 3.68 & 203.52 & 8.81 & 0.91 \\ GR_{6718_34} & 0.2170 & 0.0250 & 0.03236 & 0.00059 & 0.0604 & 0.06043 & 205.31 & 197.00 & -4.05 & 205.31 & 8.93 & 1.69 \\ GR_{6718_21} & 0.2220 & 0.0230 & 0.03241 & 0.00073 & 0.1843 & 0.18434 & 205.83 & 204.00 & -0.89 & 205.83 & 9.53 & 1.07 \\ GR_{6718_21} & 0.2220 & 0.0100 & 0.03249 & 0.00049 & 0.0447 & 0.04475 & 205.66 & 209.00 & 1.62 & 205.66 & 8.82 & 0.95 \\ GR_{6718_29} & 0.2290 & 0.0160 & 0.03264 & 0.00060 & 0.0588 & 0.05884 & 206.78 & 208.00 & 0.59 & 206.78 & 9.46 & 1.52 \\ GR_{6718_43} & 0.2370 & 0.0120 & 0.03288 & 0.00050 & 0.0235 & 0.02352 & 206.25 & 236.40 & 14.62 & 206.25 & 9.36 & 1.31 \\ GR_{6718_43} & 0.2370 & 0.0150 & 0.0301 & 0.00057 & 0.1593 & 0.15929 & 208.90 & 212.00 & 1.49 & 208.90 & 8.83 & 1.42 \\ GR_{6718_43} & 0.2370 & 0.0150 & 0.0308 & 0.00082 & 0.1299 & 0.12992 & 209.28 & 221.00 & 5.60 & 209.28 & 10.18 & 1.16 \\ GR_{6718_40} & 0.2200 & 0.0310 & 0.03321 & 0.00076 & 0.0813 & 0.08133 & 210.64 & 207.00 & -1.73 & 210.64 & 10.20 & 0.92 \\ GR_{6718_40} & 0.2310 & 0.0150 & 0.03329 & 0.00062 & 0.2159 & 0.21588 & 211.25 & 210.00 & -0.59 & 211.25 & 9.47 & 1.59 \\ GR_{6718_27} & 0.2450 & 0.0310 & 0.03374 & 0.00079 & 0.0889 & 0.08893 & 212.12 & 239.00 & 12.67 & 212.12 & 10.17 & 2.51 \\ GR_{6718_27} & 0.2450 & 0.0150 & 0.03407 & 0.00065 & 0.1316 & 0.13164 & 215.53 & 223.00 & 3.47 & 215.53 & 9.45 & 2.02 \\ GR_{6718_27} & 0.2450 & 0.0150 & 0.03410 & 0.00120 & 0.1179 & 0.1179 & 216.52 & 218.00 & 0.68 & 216.52 & 11.56 & 1.30 \\ GR_{6718_27} & 0.2460 & 0.0170 & 0.03410 & 0.00120 & 0.0209 & 212.62 & 224.00 & 9.82 & 218.54 & 10.73 & 1.82 \\ GR_{6718_28} & 0.2750 & 0.0600 & 0.03410 & 0.00120 & 0.0209 & 212.62 & 224.00 & 9.82 & 218.54 & 10.73 & 1.82 \\ GR_{6718_29} & 0.2760 & 0.0000 & 0.03480 & 0.00100 & 0.1454 & 0.14538 & 218.54 & 240.00 & 9.82 & 218.54 & 10.73 & 1.82 \\ GR_{6718_28} & 0.2480 & 0.0170 & 0.03520 & 0.00100 & 0.102676 & 219.87 & 252.00 & 14.61 & 219.87 & 11.46 & 1.38 \\ GR_{6718_28} &$	GR 6718 33	0,2420	0,0380	0,03197	0,00092	0,1215	0,12154	201,22	219,00	8,83	201,22	10,25	1,54
GR_6718_34 0,2170 0,0250 0,03236 0,00059 0,0604 0,06043 205,31 197,00 -4,05 205,31 8,93 1,69 GR_6718_21 0,2220 0,0230 0,03241 0,00073 0,18434 205,83 204,00 -0,89 205,83 9,53 1,07 GR_6718_41 0,2300 0,0120 0,03249 0,00049 0,04475 205,66 209,00 1,62 205,66 8,82 0,95 GR_6718_70 0,2290 0,0160 0,03264 0,00060 0,0588 206,78 208,00 0,59 206,78 9,46 1,52 GR_6718_43 0,2370 0,0150 0,03301 0,00057 0,1533 0,15292 208,90 212,00 1,49 208,90 8,83 1,42 GR_6718_40 0,2310 0,0150 0,03308 0,00082 0,12992 209,28 221,00 5,60 209,28 1,16 GR_6718_40 0,2310 0,0150 0,03329 0,00062 0,2159 <t< td=""><td>GR 6718 32</td><td>0.2320</td><td>0.0120</td><td>0.03220</td><td>0.00050</td><td>0.2375</td><td>0.23749</td><td>203.52</td><td>211.00</td><td>3.68</td><td>203.52</td><td>8.81</td><td>0.91</td></t<>	GR 6718 32	0.2320	0.0120	0.03220	0.00050	0.2375	0.23749	203.52	211.00	3.68	203.52	8.81	0.91
GR_6718_21 0.2220 0.03241 0.00073 0.18434 205,83 204,00 -0.89 205,83 9,53 1,07 GR_6718_41 0.2300 0.0120 0.03249 0.00049 0.0447 205,66 209,00 1,62 205,66 8,82 0.95 GR_6718_29 0.2290 0.0160 0.03264 0.00060 0.0588 206,78 208,00 0.59 206,78 9,46 1,52 GR_6718_43 0.2370 0.0120 0.03288 0.00057 0.1593 201,252 206,25 236,40 14,62 206,25 9,36 1,31 GR_6718_43 0.2370 0.0150 0.03301 0.00057 0,1593 0,15929 208,90 212,00 1,49 208,90 8,83 1,42 GR_6718_40 0.2210 0.03308 0.00082 0,1299 212,90 1,49 208,90 8,83 1,42 GR_6718_40 0.2310 0.03321 0.00076 0.0813 210,64 207,00 -1,73 210	GR 6718 34	0,2170	0,0250	0,03236	0,00059	0,0604	0,06043	205,31	197,00	-4,05	205,31	8,93	1,69
GR_6718_41 0,2300 0,0120 0,03249 0,00049 0,0447 0,04475 205,66 209,00 1,62 205,66 8,82 0,95 GR_6718_29 0,2290 0,0160 0,03264 0,00060 0,0588 0,02352 206,78 206,00 0,59 206,78 9,46 1,52 GR_6718_37 0,2620 0,0120 0,03288 0,00057 0,1593 0,15929 206,25 236,40 14,62 206,25 9,36 1,31 GR_6718_43 0,2370 0,0150 0,03301 0,00057 0,1593 0,15929 208,90 212,00 1,49 208,90 8,83 1,42 GR_6718_11 0,2450 0,0290 0,03308 0,00082 0,1299 209,28 221,00 5,60 209,28 10,18 1,16 GR_6718_40 0,2310 0,0150 0,03329 0,00062 0,2159 210,59 232,00 10,17 210,59 10,14 1,60 GR_6718_30 0,2590 0,0340 0	GR 6718 21	0,2220	0,0230	0,03241	0,00073	0,1843	0,18434	205,83	204,00	-0,89	205,83	9,53	1,07
GR_6718_29 0,2290 0,0160 0,03264 0,00060 0,0588 0,05884 206,78 208,00 0,59 206,78 9,46 1,52 GR_6718_37 0,2620 0,0120 0,03288 0,00057 0,1593 206,25 236,40 14,62 206,25 9,36 1,31 GR_6718_43 0,2370 0,0150 0,03301 0,00057 0,1593 0,15929 208,90 212,00 1,49 208,90 8,83 1,42 GR_6718_11 0,2450 0,0290 0,03308 0,00062 0,1299 0,12992 209,28 221,00 5,60 209,28 10,18 1,16 GR_6718_20 0,2200 0,0310 0,0329 0,00062 0,2159 0,21588 211,25 210,00 -0,59 211,25 9,47 1,59 GR_6718_30 0,2550 0,0310 0,0339 0,00079 0,0889 208893 212,12 239,00 12,67 212,12 10,17 2,51 GR_6718_27 0,2450 0,	 GR 6718 41	0.2300	0.0120	0.03249	0.00049	0.0447	0.04475	205.66	209.00	1.62	205.66	8.82	0.95
GR_6718_37 0,2620 0,0120 0,03288 0,00050 0,0235 0,02352 206,25 236,40 14,62 206,25 9,36 1,31 GR_6718_43 0,2370 0,0150 0,03301 0,00057 0,1593 0,15929 208,90 212,00 1,49 208,90 8,83 1,42 GR_6718_11 0,2450 0,0290 0,03308 0,00082 0,1299 0,12992 209,28 221,00 5,60 209,28 10,18 1,16 GR_6718_20 0,2200 0,0310 0,03321 0,00076 0,0813 0,06133 210,64 207,00 -1,73 210,64 10,20 0,92 GR_6718_40 0,2310 0,0150 0,03329 0,00062 0,2159 0,21588 211,25 210,00 -0,59 211,25 9,47 1,59 GR_6718_30 0,2590 0,0340 0,0374 0,00079 0,0889 212,12 239,00 12,67 212,12 10,17 2,51 GR_6718_27 0,2450 0,0150 0,03407 0,00065 0,1316 0,13164 215,53 223,00	GR 6718 29	0.2290	0.0160	0.03264	0.00060	0.0588	0.05884	206.78	208.00	0.59	206.78	9.46	1.52
GR_6718_43 0,2370 0,0150 0,03301 0,00057 0,1593 0,15929 208,90 212,00 1,49 208,90 8,83 1,42 GR_6718_11 0,2450 0,0290 0,03308 0,00082 0,1299 209,28 221,00 5,60 209,28 10,18 1,16 GR_6718_20 0,2200 0,0310 0,03321 0,00076 0,0813 0,08133 210,64 207,00 -1,73 210,64 10,20 0,92 GR_6718_40 0,2310 0,0150 0,03329 0,00062 0,2159 0,21588 211,25 210,00 -0,59 211,25 9,47 1,59 GR_6718_17 0,2560 0,0310 0,03339 0,00087 0,0963 0,09629 210,59 232,00 10,17 210,17 2,51 GR_6718_27 0,2450 0,0150 0,03407 0,00065 0,1316 0,13164 215,53 223,00 12,67 212,12 10,17 2,51 GR_6718_27 0,2450 0,0150 0,03407 0,00065 0,1316 0,13164 215,53 223,00 3,47	GR 6718 37	0.2620	0.0120	0.03288	0.00050	0.0235	0.02352	206.25	236.40	14.62	206.25	9.36	1.31
GR_6718_11 0,2450 0,0290 0,03308 0,00082 0,1299 0,12992 209,28 221,00 5,60 209,28 1,16 GR_6718_20 0,2200 0,0310 0,03321 0,00076 0,0813 0,0133 210,64 207,00 -1,73 210,64 10,20 0,92 GR_6718_40 0,2310 0,0150 0,03329 0,00062 0,2159 0,21588 211,25 210,00 -0,59 211,25 9,47 1,59 GR_6718_17 0,2560 0,0310 0,03339 0,00087 0,0963 0,09629 210,59 232,00 10,17 210,59 10,14 1,60 GR_6718_17 0,2450 0,0150 0,03407 0,00079 0,0889 212,12 239,00 12,67 212,12 10,17 2,51 GR_6718_12 0,2450 0,0150 0,03407 0,00065 0,1316 0,13164 215,53 223,00 3,47 215,53 9,45 2,02 GR_6718_12 0,2610 0,0400	GR 6718 43	0.2370	0.0150	0.03301	0.00057	0.1593	0.15929	208.90	212.00	1.49	208.90	8.83	1.42
GR_6718_20 0,2200 0,0310 0,03321 0,00076 0,0813 0,08133 210,64 207,00 -1,73 210,64 10,20 0,92 GR_6718_40 0,2310 0,0150 0,03329 0,00062 0,2159 0,21588 211,25 210,00 -0,59 211,25 9,47 1,59 GR_6718_17 0,2560 0,0310 0,03339 0,00087 0,0963 0,09629 210,59 232,00 10,17 210,59 10,14 1,60 GR_6718_30 0,2590 0,0340 0,03374 0,00079 0,08893 212,12 239,00 12,67 212,12 10,17 2,51 GR_6718_27 0,2450 0,0150 0,03407 0,00065 0,1316 0,13164 215,53 223,00 3,47 215,53 9,45 2,02 GR_6718_12 0,2610 0,0400 0,03410 0,00120 0,1179 216,52 218,00 0,68 216,52 11,56 1,30 GR_6718_22 0,2750 0,0600	GR 6718 11	0.2450	0.0290	0.03308	0.00082	0.1299	0.12992	209.28	221.00	5.60	209.28	10.18	1.16
GR_6718_40 0,2310 0,0150 0,03329 0,00062 0,2159 0,21588 211,25 210,00 -0,59 211,25 9,47 1,59 GR_6718_17 0,2560 0,0310 0,03339 0,00087 0,0963 0,09629 210,59 232,00 10,17 210,59 10,14 1,60 GR_6718_30 0,2590 0,0340 0,03374 0,00079 0,0889 212,12 239,00 12,67 212,12 10,17 2,51 GR_6718_27 0,2450 0,0150 0,03407 0,00065 0,1316 0,13164 215,53 223,00 3,47 215,53 9,45 2,02 GR_6718_12 0,2610 0,0400 0,03410 0,00120 0,1179 216,52 218,00 0,68 216,52 11,56 1,30 GR_6718_22 0,2750 0,0600 0,03410 0,00120 0,02093 213,34 223,00 4,53 213,34 11,75 2,24 GR_6718_26 0,2480 0,0170 0,03515 <	GR 6718 20	0,2200	0.0310	0,03321	0,00076	0,0813	0,08133	210,64	207,00	-1,73	210,64	10,20	0,92
GR_6718_17 0,2560 0,0310 0,03339 0,00087 0,0963 0,09629 210,59 232,00 10,17 210,59 10,14 1,60 GR_6718_30 0,2590 0,0340 0,03374 0,00079 0,0889 0,08893 212,12 239,00 12,67 212,12 10,17 2,51 GR_6718_27 0,2450 0,0150 0,03407 0,00065 0,1316 0,13164 215,53 223,00 3,47 215,53 9,45 2,02 GR_6718_12 0,2610 0,0400 0,03410 0,00120 0,1179 216,52 218,00 0,68 216,52 11,56 1,30 GR_6718_22 0,2750 0,0600 0,03410 0,00120 0,0209 0,02093 213,34 223,00 4,53 213,34 11,75 2,24 GR_6718_9 0,2760 0,0300 0,03480 0,00100 0,14538 218,54 240,00 9,82 218,54 10,73 1,82 GR_6718_26 0,2480 0,0170 <t< td=""><td> GR 6718 40</td><td>0.2310</td><td>0.0150</td><td>0.03329</td><td>0.00062</td><td>0.2159</td><td>0.21588</td><td>211.25</td><td>210.00</td><td>-0.59</td><td>211.25</td><td>9.47</td><td>1.59</td></t<>	 GR 6718 40	0.2310	0.0150	0.03329	0.00062	0.2159	0.21588	211.25	210.00	-0.59	211.25	9.47	1.59
GR_6718_30 0,2590 0,0340 0,03374 0,00079 0,08893 212,12 239,00 12,67 212,12 10,17 2,51 GR_6718_27 0,2450 0,0150 0,03407 0,00065 0,1316 0,13164 215,53 223,00 3,47 215,53 9,45 2,02 GR_6718_12 0,2610 0,0400 0,03410 0,00120 0,1179 0,11790 216,52 218,00 0,68 216,52 11,56 1,30 GR_6718_22 0,2750 0,0600 0,03410 0,00120 0,0209 0,02093 213,34 223,00 4,53 213,34 11,75 2,24 GR_6718_9 0,2760 0,0300 0,03480 0,00100 0,1453 218,54 240,00 9,82 218,54 10,73 1,82 GR_6718_9 0,2760 0,0300 0,03480 0,00172 0,0785 0,07853 222,62 224,00 9,82 218,54 10,73 1,82 GR_6718_10 0,2870 0,0470 0,03520 0,00100 0,1085 222,62 224,00 0,62 222,62	GR 6718 17	0.2560	0.0310	0.03339	0.00087	0.0963	0.09629	210.59	232.00	10.17	210.59	10.14	1.60
GR_6718_27 0,2450 0,0150 0,03407 0,00065 0,1316 0,13164 215,53 223,00 3,47 215,53 9,45 2,02 GR_6718_12 0,2610 0,0400 0,03410 0,00120 0,1179 0,11790 216,52 218,00 0,68 216,52 11,56 1,30 GR_6718_22 0,2750 0,0600 0,03410 0,00120 0,0209 0,02093 213,34 223,00 4,53 213,34 11,75 2,24 GR_6718_9 0,2760 0,0300 0,03480 0,00100 0,1454 0,14538 218,54 240,00 9,82 218,54 10,73 1,82 GR_6718_26 0,2480 0,0170 0,03515 0,0072 0,07853 222,62 224,00 0,62 222,62 10,09 2,70 GR_6718_10 0,2870 0,0470 0,03520 0,00100 0,1000 -0,06276 219,87 252,00 14,61 219,87 11,46 1,38 GR_6718_23 0,3230 <t< td=""><td>GR 6718 30</td><td>0,2590</td><td>0,0340</td><td>0,03374</td><td>0,00079</td><td>0,0889</td><td>0,08893</td><td>212,12</td><td>239,00</td><td>12,67</td><td>212,12</td><td>10,17</td><td>2,51</td></t<>	GR 6718 30	0,2590	0,0340	0,03374	0,00079	0,0889	0,08893	212,12	239,00	12,67	212,12	10,17	2,51
GR_6718_12 0,2610 0,0400 0,03410 0,00120 0,1179 0,11790 216,52 218,00 0,68 216,52 11,56 1,30 GR_6718_12 0,2750 0,0600 0,03410 0,00120 0,0209 0,02093 213,34 223,00 4,53 213,34 11,75 2,24 GR_6718_9 0,2760 0,0300 0,03480 0,00100 0,1454 0,14538 218,54 240,00 9,82 218,54 10,73 1,82 GR_6718_26 0,2480 0,0170 0,03515 0,0072 0,0785 0,07853 222,62 224,00 0,62 222,62 10,09 2,70 GR_6718_10 0,2870 0,0470 0,03520 0,00100 0,1000 -0,06276 219,87 252,00 14,61 219,87 11,46 1,38 GR_6718_23 0,3230 0,0210 0,04250 0,00100 0,2887 0,28870 267,06 282,00 5,59 267,06 11,86 1,01	GR_6718 27	0,2450	0,0150	0,03407	0,00065	0,1316	0,13164	215,53	223.00	3,47	215,53	9,45	2,02
GR_6718_22 0,2750 0,0600 0,03410 0,00120 0,0209 213,34 223,00 4,53 213,34 11,75 2,24 GR_6718_9 0,2760 0,0300 0,03480 0,00100 0,1454 0,14538 218,54 240,00 9,82 218,54 10,73 1,82 GR_6718_26 0,2480 0,0170 0,03515 0,00072 0,0785 0,07853 222,62 224,00 0,62 222,62 10,09 2,70 GR_6718_10 0,2870 0,0470 0,03520 0,00100 0,1000 -0,06276 219,87 252,00 14,61 219,87 11,46 1,38 GR_6718_23 0,3230 0,0210 0,04250 0,00100 0,2887 0,28870 267,06 282,00 5,59 267,06 11.86 1.01	GR_6718 12	0,2610	0,0400	0,03410	0,00120	0,1179	0,11790	216.52	218.00	0,68	216,52	11,56	1,30
GR_6718_9 0,2760 0,03400 0,00100 0,1454 0,14538 218,54 240,00 9,82 218,54 10,73 1,82 GR_6718_26 0,2480 0,0170 0,03515 0,00072 0,0785 0,07853 222,62 224,00 0,62 222,62 10,09 2,70 GR_6718_10 0,2870 0,0470 0,03520 0,00100 0,1000 -0,06276 219,87 252,00 14,61 219,87 11,46 1,38 GR_6718_23 0,3230 0,0210 0,04250 0,00100 0,2887 0,28870 267,06 282,00 5,59 267,06 11.86 1.01	GR 6718 22	0,2750	0,0600	0,03410	0,00120	0,0209	0,02093	213.34	223.00	4,53	213.34	11.75	2,24
GR_6718_26 0,2870 0,0470 0,03515 0,00072 0,0785 0,07853 222,62 224,00 0,62 222,62 10,09 2,70 GR_6718_23 0,2870 0,0470 0,03520 0,00100 0,1000 -0,06276 219,87 252,00 14,61 219,87 11,46 1,38 GR_6718_23 0,3230 0,0210 0,04250 0,00100 0,2887 0,28870 267,06 282,00 5,59 267,06 11.86 1.01	GR 6718 9	0.2760	0.0300	0.03480	0.00100	0.1454	0.14538	218.54	240.00	9.82	218.54	10.73	1.82
GR_6718_23 0,2230 0,0470 0,0450 0,00100 0,0887 0,28870 267,06 282,00 14,61 219,87 11,46 1,38	GR 6718 26	0,2480	0,0170	0,03515	0,00072	0,0785	0,07853	222.62	224.00	0,62	222.62	10.09	2,70
GR_6718_23 0,3230 0,0210 0,04250 0,00100 0,2887 0,28870 267,06 282,00 5,59 267,06 11,86 1,01	GR_6718 10	0,2870	0,0470	0,03520	0,00100	0,1000	-0,06276	219.87	252,00	14,61	219,87	11,46	1,38
	GR_6718_23	0,3230	0,0210	0,04250	0,00100	0,2887	0,28870	267,06	282,00	5,59	267,06	11,86	1,01

Muestra JGB-457 (Laboratorio del Servicio Geológico Colombiano)

ldentificación muestra	Relación final ²⁰⁷ Pb/ ²³⁵ U	Error interno relación final ²⁰⁷ Pb/ ²³⁵ U a 2 D E	Relación final ²⁰⁶ Pb/ ²³⁸ U	Error interno relación final ²⁰⁶ Pb/ ²³⁵ U a 2 D F	Ajuste error de correlación (datos negativos)	Error de correlación ²⁰⁶ Pb/ ²³⁸ U vs, ²⁰⁷ Pb/ ²³⁵ U	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	% discordia	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	±2σ	Relación final U/ Th
JGB_457_8	0,426	0,029	0,03269	0,00059	0,1955	0,1955	196,484	360	83,221	196,48	4,64	1,37
JGB_457_40	0,402	0,03	0,03239	0,00081	0,1	-0,0071747	196,76082	343	74,3233	196,76	4,69	1,41
JGB_457_11	0,239	0,01	0,02394	0,00034	0,16277	0,16277	148,28971	217,8	46,8747	148,29	4,14	2,08
JGB_457_7	0,313	0,024	0,03369	0,00066	0,47976	0,47976	208,94779	281	34,4834	208,95	4,45	1,39
JGB_457_38	0,261	0,015	0,03017	0,00062	0,11627	0,11627	188,71807	233	23,4646	188,72	4,62	0,75
JGB_457_49	0,247	0,015	0,03051	0,00076	0,2991	0,2991	191,66607	225	17,3917	191,67	4,89	1,47
JGB_457_5	0,261	0,011	0,03269	0,00046	0,40676	0,40676	205,47859	234,7	14,2211	205,48	4,25	0,98
JGB_457_42	0,229	0,01	0,0299	0,00044	0,19055	0,19055	189,07185	208,8	10,4342	189,07	4,32	0,64
JGB_457_36	0,215	0,01	0,02929	0,00044	0,14511	0,14511	185,80492	197	6,02518	185,80	4,43	0,82
JGB 457 41	0,2	0,016	0,02925	0,00058	0,12486	0,12486	186,22262	184	-1,19353	186,22	4,38	1,33
 JGB_457_45	0,2084	0,0095	0,0295	0,00053	0,2388	0,2388	187,31059	190,9	1,91629	187,31	4,36	0,81
 JGB_457_46	0,226	0,011	0,02963	0,00051	0,20266	0,20266	187,38059	205,5	9,66985	187,38	4,34	0,83
JGB 457 47	0,217	0,011	0,02976	0,00053	0,23827	0,23827	188,54686	198,6	5,33191	188,55	4,33	0,60
JGB 457 14	0,208	0,012	0,02983	0,00049	0,13733	0,13733	189,52695	190,2	0,35512	189,53	4,30	1,05
JGB 457 29	0,2252	0,0093	0,03001	0,00039	0,16306	0,16306	189,61889	205,6	8,42801	189,62	4,31	0,98
JGB 457 27	0,2148	0,0083	0,02995	0,00038	0,1039	0,1039	189,6683	197,5	4,12916	189,67	4,31	1,17
JGB 457 18	0.2114	0.009	0.02996	0.00041	0.26014	0.26014	190.0616	194.4	2.28263	190.06	4.29	1.33
JGB 457 31	0,22	0,011	0,0301	0,00041	0,038074	0,038074	190,44307	200,8	5,43833	190,44	4,29	0,78
JGB 457 21	0.21	0.01	0.03007	0.00037	0.12586	0.12586	190.8001	193.5	1.41504	190.80	4.62	1.19
JGB 457 48	0.218	0.012	0.03014	0.00066	0.28675	0.28675	191.02622	198	3.65069	191.03	4.29	0.71
JGB 457 19	0,207	0,014	0,03018	0,00047	0,1839	0,1839	191,77668	191	-0,40499	191,78	4,26	1,22
JGB 457 37	0.215	0.013	0.03034	0.00048	0.11788	0.11788	192.35324	198	2.93562	192.35	4.58	0.75
JGB 457 25	0,225	0,015	0,03044	0,00054	0,1522	0,1522	192,62139	206	6,94555	192,62	4,25	1,49
JGB 457 20	0.22	0.011	0.03042	0.00046	0.16735	0.16735	192.78362	201.7	4.62507	192.78	4.57	1.06
JGB 457 43	0.221	0.013	0.03046	0.00051	0.16758	0.16758	193,13062	202	4.59242	193.13	4.23	0.79
JGB 457 15	0.2164	0.0097	0.03051	0.00045	0.18572	0.18572	193.39649	199.6	3.20766	193.40	4.55	1.27
JGB 457 39	0.233	0.016	0.03064	0.00055	0.090812	0.090812	193.72988	210	8.39835	193.73	4.54	1.03
JGB 457 50	0.22	0.014	0.03067	0.00063	0.18118	0.18118	194,54568	206	5.88773	194.55	4.20	1.29
JGB 457 33	0.223	0.011	0.03081	0.00039	0.010182	0.010182	195.20665	204.6	4.812	195.21	4.20	0.70
JGB 457 24	0.208	0.014	0.03078	0.00046	0.26955	0.26955	195.62433	191	-2.36388	195.62	4.18	1.61
JGB 457 10	0.232	0.013	0.03093	0.0004	0.087009	0.087009	195.69159	209	6.80071	195.69	4.18	1.10
JGB 457 17	0.2207	0.0094	0.03089	0.00036	0.22091	0.22091	195.90308	200.9	2.55071	195.90	4.17	1.08
JGB 457 32	0.2201	0.0094	0.03092	0.00039	0.39551	0.39551	196.23751	201.7	2.78361	196.24	4.15	0.66
JGB 457 28	0.239	0.014	0.03121	0.00048	0.1	-0.068479	197.1508	216	9.56081	197.15	4.14	1.30
JGB 457 22	0.227	0.011	0.03124	0.00049	0.032428	0.032428	197.75641	206.8	4.5731	197.76	4.43	1.08
JGB 457 12	0,2385	0,0089	0,03136	0,00044	0,27096	0,27096	197,86683	217,5	9,92242	197,87	4,13	0,61
JGB 457 3	0.221	0.012	0.03126	0.00051	0.14233	0.14233	198.00476	200.2	1.10868	198.00	4.43	1.37
JGB 457 35	0.226	0.012	0.03136	0.0004	0.056689	0.056689	198.97732	205.5	3.2781	198.98	4.71	0.45
JGB 457 34	0.232	0.014	0.03163	0.00059	0.20126	0.20126	200.17551	210	4.90794	200.18	4.41	0.64
JGB 457 13	0.24	0.022	0.03176	0.00055	0.1	-0.00088479	200.19054	216	7.89721	200.19	4.40	1.14
JGB 457 9	0.226	0.011	0.03161	0.00047	0.23147	0.23147	200.39832	207.6	3.59368	200.40	4.41	1.00
JGB 457 44	0.22	0.012	0.03154	0.00058	0.22015	0.22015	200.65375	201.5	0.42174	200.65	4.33	1.22
JGB 457 2	0.212	0.014	0.03212	0.00053	0.12262	0.12262	203.80047	195	-4.31818	203.80	4.29	1.13
JGB 457 30	0.236	0.011	0.03238	0.00041	0.040798	0.040798	204,97501	215.1	4.93962	204.98	4.26	0.96
JGB 457 1	0.241	0.011	0.03264	0.0005	0.15797	0.15797	205.80875	216.9	5.38911	205.81	4 27	1 25
JGB 457 23	0.241	0.014	0.03259	0.00061	0.10267	0.10267	206.03452	218	5.80751	206.03	4 28	0.92
JGB 457 16	0.223	0,013	0.03247	0.00042	0.11544	0.11544	206,5085	206	-0.24624	206.51	4.25	1.42
JGB 457 4	0.235	0.011	0.03268	0.00047	0 19718	0 19718	206 6233	215.1	4 10240	206.62	4 28	0.90
JGB 457 6	0.212	0.013	0 03240	0,0005	0.09254	0 09254	206 91521	199	_3 82534	206.92	4 86	1.31
JGB 457 26	0,464	0.02	0.0627	0.0015	0.58285	0.58285	392,21832	389	-0.82054	392.22	4.64	2.03

Muestra GR-6717 (Laboratorio del Servicio Geológico Colombiano)

	-	(- /					
Identificación muestra	Relación final ²⁰⁷ Pb/ ²³⁵ U	Error interno relación final ²⁰⁷ Pb/ ²³⁵ U a 2 D,E,	Relación final ²⁰⁶ Pb/ ²³⁸ U	Error interno relación final ²⁰⁶ Pb/ ²³⁵ U a 2 D,E,	Ajuste error de correlación (datos	Error de correlación ²⁰⁶ Pb/ ²³⁸ U vs, ²⁰⁷ Pb/ ²³⁵ U	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	% discordia	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	± 2σ	Relación final U/ Th
GR_6717_22	0,0171	0,0047	0,00011	0,00003	0,3093	0,30929	0,24	16,90	6857,27	0,24	0.37	1,58
GR_6717_36	1,1450	0,0210	0,01601	0,00029	0,8038	0,80376	41,33	775,40	1776,14	41,33	3.84	2,58
GR_6717_20	0,0017	0,0022	0,00002	0,00002	0,1000	-0,05380	0,15	1,60	990,76	0,15	0.18	3,54
GR_6717_12	0,4920	0,0130	0,01355	0,00048	0,1000	-0,73472	61,99	406,10	555,06	61,99	3.41	2,00
GR_6717_15	0,3660	0,0780	0,01515	0,00072	0,1084	0,10835	81,12	275,00	239,00	81,12	6.78	2,56
GR_6717_6	39,0000	10,0000	0,49000	0,18000	0,7574	0,75743	1261,55	3730,00	195,67	1261,55	850.07	0,08
GR_6717_25	0,2644	0,0086	0,01413	0,00080	0,9057	0,90573	80,26	237,30	195,66	80,26	4.90	1,62
GR_6717_41	0,4990	0,0330	0,02864	0,00056	0,7728	0,77280	163,89	404,00	146,51	163,89	4.96	1,13
GR_6717_47	0,2810	0,0160	0,01968	0,00041	0,1000	-0,62371	116,50	250,00	114,59	116,50	3.62	1,92
GR_6717_18	0,5220	0,0280	0,03403	0,00030	0,2774	0,27738	199,78	424,00	112,23	199,78	4.83	1,07
GR_6717_37	0,3510	0,0330	0,02548	0,00062	0,6098	0,60980	151,88	298,00	96,21	151,88	0.37	1,19
GR_6717_45	0,4940	0,0660	0,03276	0,00088	0,9263	0,92630	196,31	360,00	83,39	196,31	3.84	1,31
GR_6717_40	0,4060	0,0150	0,03252	0,00038	0,3109	0,31091	195,83	343,00	75,15	195,83	0.18	0,65
GR_6717_39	0,3930	0,0370	0,03191	0,00037	0,5287	0,52869	193,37	324,00	67,56	193,37	3.41	1,09
GR_6717_44	0,3010	0,0130	0,02745	0,00045	0,2447	0,24466	168,03	267,40	59,14	168,03	6.78	2,79
GR_6717_3	0,2670	0,0110	0,02488	0,00063	0,8124	0,81244	152,37	242,30	59,02	152,37	850.07	0,49
GR_6717_2	0,3200	0,0410	0,03095	0,00044	0,5772	0,57717	190,09	263,00	38,36	190,09	4.90	0,48
GR_6717_32	0,2960	0,0210	0,03109	0,00041	0,3950	0,39500	192,97	261,00	35,25	192,97	4.96	0,97
GR_6717_29	0,2730	0,0120	0,02979	0,00038	0,1530	0,15300	185,14	243,90	31,74	185,14	3.62	1,05
GR_6717_46	0,2750	0,0130	0,03022	0,00030	0,1575	0,15752	188,03	246,00	30,83	188,03	4.83	1,44
GR_6717_26	0,1940	0,0065	0,02241	0,00088	0,7217	0,72174	140,02	179,30	28,06	140,02	5.11	2,91
 GR_6717_16	0,2562	0,0093	0,02992	0,00036	0,2494	0,24936	187,15	232,60	24,29	187,15	7.02	1,68
GR_6717_27	0,2270	0,0140	0,02660	0,00066	0,2090	0,20896	166,40	206,00	23,80	166,40	4.71	1,17
GR_6717_10	0,1160	0,0130	0,01403	0,00030	0,2698	0,26978	88,42	109,00	23,28	88,42	4.91	1,30
GR_6717_31	0,2450	0,0210	0,02914	0,00059	0,1021	0,10213	182,54	219,00	19,97	182,54	4.40	1,30
GR_6717_17	0,1963	0,0086	0,02450	0,00150	0,2882	0,28822	152,34	180,90	18,75	152,34	4.95	2,28
GR_6717_24	1,9850	0,0420	0,16380	0,00210	0,3288	0,32879	957,76	1113,00	16,21	957,76	5.22	2,64
GR_6717_19	0,2470	0,0160	0,03073	0,00043	0,1712	0,17124	192,89	223,00	15,61	192,89	4.75	1,91
GR_6717_38	0,2560	0,0130	0,03201	0,00048	0,3914	0,39139	200,74	229,00	14,08	200,74	4.45	1,24
GR_6717_7	0,2370	0,0100	0,03065	0,00041	0,1000	-0,02734	192,92	214,50	11,18	192,92	4.28	0,81
GR_6717_30	0,2142	0,0052	0,02860	0,00029	0,2867	0,28671	180,72	197,10	9,06	180,72	6.18	0,46
GR_6717_9	0,1962	0,0068	0,02942	0,00037	0,4938	0,49383	186,46	181,70	-2,55	186,46	4.37	0,78
GR_6717_23	0,2210	0,0120	0,02960	0,00044	0,3256	0,32560	187,29	202,40	8,07	187,29	5.32	1,21
GR_6717_11	0,2208	0,0081	0,02970	0,00027	0,2997	0,29970	187,73	201,60	7,39	187,73	2.70	1,35
GR_6717_1	0,2138	0,0089	0,02978	0,00029	0,1377	0,13773	188,79	196,60	4,14	188,79	5.35	1,18
GR_6717_48	0,2140	0,0100	0,02986	0,00037	0,2202	0,22021	189,10	196,60	3,96	189,10	9.97	2,24
GR_6717_21	0,2029	0,0079	0,02982	0,00031	0,1867	0,18669	189,56	187,10	-1,30	189,56	22.72	1,54
GR_6717_42	0,2187	0,0049	0,03000	0,00027	0,3213	0,32131	189,93	200,70	5,67	189,93	4.82	1,18
GR_6717_35	0,2125	0,0073	0,03010	0,00029	0,0216	0,02160	190,73	195,90	2,71	190,73	5.03	1,27
GR_6717_49	0,2040	0,0110	0,03003	0,00033	0,1000	-0,03154	191,00	188,10	-1,52	191,00	4.71	1,68
GR_6717_43	0,2060	0,0130	0,03031	0,00045	0,1540	0,15403	192,67	190,00	-1,38	192,67	4.07	1,22
GR_6717_34	0,2172	0,0075	0,03050	0,00029	0,0941	0,09411	193,12	199,60	3,36	193,12	4.39	0,91
GR_6717_33	0,2200	0,0092	0,03062	0,00035	0,0504	0,05039	193,68	203,60	5,12	193,68	4.73	1,09
 GR_6717_5	0,2100	0,0054	0,03055	0,00030	0,3005	0,30049	193,86	193,00	-0,45	193,86	4.15	1,37
 GR_6717 8	0,2150	0,0071	0,03065	0,00027	0,1135	0,11350	194,37	198,40	2,07	194,37	4.22	0,83
 GR_6717_4	0,2279	0,0079	0,03202	0,00035	0,2457	0,24565	202,92	207,90	2,45	202,92	4.41	0,94
GR_6717_13	0,2060	0,0110	0,03186	0,00037	0,0521	0,05206	202,94	190,10	-6,33	202,94	4.28	1,04
GR_6717_28	0,2254	0,0063	0,03295	0,00032	0,2298	0,22981	208,91	206,60	-1,10	208,91	4.14	0,93
GR_6717_14	0,5390	0,0130	0,06837	0,00069	0,6326	0,63258	425,27	437,30 2,83		425,27	4.22	1,00

Muestra AMC-0137 (Laboratorio del Servicio Geológico Colombiano)

Identificación muestra	Relación final ²⁰⁷ Pb/ ²³⁵ U	Error interno relación final ²⁰⁷ Pb/ ²³⁵ U a 2 D,E,	Relación final ²⁰⁶ Pb/ ²³⁸ U	Error interno relación final ²⁰⁶ Pb/ ²³⁵ U a 2 D,E,	Ajuste error de correlación (datos negativos)	Error de correlación ²⁰⁶ Pb/ ²³⁸ U vs, ²⁰⁷ Pb/ ²³⁵ U	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	% discordia	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	±2σ	Relación final U/Th
AMC_137_11	0,0139	0,0031	0,000465	0,00004	0,41014	0,41014	2,2611486	13,9	514,732	2,26	0.30	3,86
AMC_137_1	0,319	0,02	0,0306	0,00052	0,28907	0,28907	188,32051	279	48,1517	188,32	6.15	1,31
AMC_137_27	0,295	0,02	0,0317	0,0004	0,28803	0,28803	196,97286	257	30,4748	196,97	6.00	2,30
AMC_137_32	0,251	0,0087	0,02933	0,00043	0,66204	0,66204	183,7427	227,2	23,6512	183,74	5.61	1,38
AMC_137_36	0,246	0,01	0,03019	0,00036	0,18706	0,18706	189,91268	223,4	17,633	189,91	5.58	0,99
AMC_137_44	0,88	0,017	0,09187	0,00095	0,34099	0,34099	559,32971	640,3	14,4763	559,33	15.98	2,04
AMC_137_33	0,25	0,011	0,03184	0,0004	0,40298	0,40298	200,36415	223,9	11,7465	200,36	5.95	1,90
AMC_137_19	0,205	0,0055	0,02938	0,0003	0,23802	0,23802	186,55584	190	1,84618		5.32	1,87
AMC 137 2	0,216	0,0069	0,02905	0,00029	0,26736	0,26736	183,65486	198,3	7,97428	183,65	5.26	0,48
AMC 137 20	0,2014	0,0065	0,02915	0,00032	0,17258	0,17258	185,06308	186,4	0,72241	185,06	5.33	1,82
AMC 137 16	0,2006	0,0053	0,02956	0,00032	0,39415	0,39415	187,96764	185,5	-1,3128	187,97	5.39	1,09
AMC 137 42	0.2036	0.006	0.02961	0.00033	0.17924	0.17924	188,18916	187.9	-0.15366	188.19	5.45	0.64
AMC 137 39	0.2087	0.0069	0.02968	0.00028	0.21589	0.21589	188.25542	192.2	2.09534	188.26	5.33	0.81
AMC 137 18	0,21	0,0081	0,02988	0,00035	0,25243	0,25243	189,46475	194,6	2,7104	189,46	5.52	1,59
AMC 137 35	0.2	0.01	0.02986	0.00038	0.10507	0.10507	189.99815	184.3	-2.99906	190.00	5.60	1.65
AMC 137 38	0,219	0,011	0,03003	0,0004	0,036862	0,036862	190,17007	200,2	5,27419	190,17	5.72	0,91
AMC 137 34	0,2116	0,0055	0,03	0,00035	0,35617	0,35617	190,33656	194,8	2,34502	190,34	5.57	1,69
AMC 137 17	0.2045	0.0065	0.03004	0.00031	0.09685	0.09685	190.84831	188.7	-1.12566	190.85	5.46	1.41
AMC 137 3	0.2114	0.0067	0.0301	0.00031	0.23379	0.23379	190.89375	194.9	2.09868	190.89	5.45	0.97
AMC 137 43	0.2123	0.004	0.03014	0.00027	0.37781	0.37781	191.2851	195.8	2.3603	191.29	5.38	0.73
AMC 137 23	0.208	0.0073	0.03013	0.00034	0.29376	0.29376	191,36707	191	-0.19182	191.37	5.52	1.54
AMC 137 29	0.2213	0.0078	0.03024	0.00039	0.37917	0.37917	191.39182	203.2	6.16964	191.39	5.69	0.67
AMC 137 25	0.2208	0.0067	0.03027	0.00032	0.23699	0.23699	191.53217	202.3	5.62194	191.53	5.51	1.37
AMC 137 28	0.2126	0.007	0.03023	0.00037	0.2208	0.2208	191,94841	195.4	1,79819	191.95	5.64	1.50
AMC 137 22	0.2053	0.0063	0.03026	0.00031	0.13434	0.13434	192.32777	189.4	-1.52228	192.33	5.52	1.11
AMC 137 40	0.2121	0.0062	0.03033	0.0003	0.254	0.254	192,40993	195.5	1.60598	192.41	5.45	1.24
AMC 137 10	0 2119	0.0082	0.03037	0.00032	0 18327	0 18327	192 6373	195.8	1 64179	192 64	5.52	1 78
AMC 137 24	0.2032	0.0048	0.03036	0.00029	0.18191	0.18191	193,14847	187.8	-2.7691	193.15	5.45	1.40
AMC 137 8	0.2065	0.0053	0.03051	0.00026	0.21017	0.21017	193.97323	190.8	-1.63591	193.97	5.39	1.96
AMC 137 5	0.2115	0.0099	0.03057	0.00038	0.1996	0.1996	194.0861	193.2	-0.45655	194.09	5.72	1.82
AMC 137 45	0.2128	0.0055	0.03057	0.00029	0.30184	0.30184	194,13426	195.4	0.65199	194.13	5.45	1.10
AMC 137 13	0.2075	0.0062	0.03056	0.00032	0.18571	0.18571	194,14358	191.7	-1.25865	194.14	5.58	1.69
AMC 137 14	0.2106	0.0092	0.03057	0.00039	0.15467	0.15467	194,20648	193.9	-0.15781	194.21	5.72	1.44
AMC 137 9	0.2041	0.007	0.03062	0.00037	0.18666	0.18666	194,78625	187.7	-3.63796	194.79	5.71	2.11
AMC 137 26	0.2138	0.0074	0.0307	0.00029	0.18038	0.18038	194.85499	195.8	0.48498	194.85	5.52	1.64
AMC 137 30	0.2129	0.0077	0.03073	0.00034	0.16182	0.16182	195.09192	195	-0.04712	195.09	5.65	1.56
AMC 137 4	0.2099	0.0085	0.03078	0.00032	0.10508	0.10508	195.47892	193.9	-0.80772	195.48	5.59	1.28
AMC 137 15	0.2103	0.0039	0.0309	0.00027	0.3034	0.3034	196.2432	193.8	-1.24499	196.24	5.51	0.41
AMC 137 7	0,2152	0,0076	0,03095	0,00036	0,24085	0,24085	196,32857	197.4	0,54574	196.33	5.77	1,60
AMC_137 21	0,2151	0,0098	0,03097	0,00039	0,13281	0,13281	196,52732	196.2	-0,16655	196,53	5.84	1,59
AMC 137 12	0,2181	0,0069	0,03166	0,00035	0,33306	0,33306	200,81172	200.5	-0,15523	200.81	5.77	1,14
AMC 137 6	0,2316	0,0086	0,03181	0,0004	0,17465	0,17465	201,05295	211.6	5,24591	201.05	5.95	1,14
AMC_137 37	0,219	0,014	0,03175	0,00057	0,21536	0,21536	201,4517	199	-1,21701	201,45	6.42	1,25
AMC_137_41	2,211	0,043	0,1917	0,0022	0,39166	0,39166	1122,9018	1182	5,26299	1122,90	32.44	3,82
AMC_137_31	2,221	0,049	0,1976	0,0032	0,68572	0,68572	1158,7167	1186	2,35461	1158,72	35.72	16,85

ldentificación muestra	Relación final ²⁰⁷ Pb/ ²³⁵ U	Error interno relación final ²⁰⁷ Pb/ ²³⁵ U a 2 D F	Relación final ²⁰⁶ Pb/ ²³⁸ U	Error interno relación final ²⁰⁶ Pb/ ²³⁵ U a 2 D F	Ajuste error de correlación (datos negativos)	Error de correlación ²⁰⁶ Pb/U 238 vs, ²⁰⁷ Pb/ ²³⁵ U	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	% discordia	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	± 2σ	Relación final U/ Th
JGB_456_B_15	no value	NAN	no value	NAN	NaN	NaN	#¡VALOR!	no value	#¡VALOR!	#¡VALOR!	#¡VALOR!	0,14
JGB_456_B_36	no value	NAN	no value	NAN	NaN	NaN	#¡VALOR!	no value	#¡VALOR!	#¡VALOR!	#¡VALOR!	0,28
JGB_456_B_4	0,406	0,026	0,03474	0,00059	0,12947	0,12947	210,89606	341	61,691	210,90	9.18	1,28
JGB_456_B_5	0,323	0,019	0,03354	0,00048	0,0059418	0,0059418	207,55277	279	34,4236	207,55	8.67	1,45
JGB_456_B_11	0,269	0,03	0,02935	0,00065	0,044483	0,044483	183,17221	244	33,208	183,17	8.23	0,66
JGB_456_B_33	0,339	0,024	0,03575	0,00061	0,06071	0,06071	220,57912	290	31,4721	220,58	9.30	1,30
JGB_456_B_52	0,293	0,014	0,03216	0,00057	0,47583	0,47583	199,85392	259	29,5947	199,85	8.67	1,39
JGB_456_B_29	0,302	0,029	0,03263	0,00083	0,34461	0,34461	201,7455	260	28,8752	201,75	9.38	1,16
JGB_456_B_35	0,313	0,017	0,03575	0,00058	0,17436	0,17436	222,00732	277	24,7707	222,01	9.91	1,14
 JGB 456 B 39	0.353	0.047	0.03467	0.00057	0.213	0.213	213.82056	266	24,4034	213.82	9.36	0.52
JGB 456 B 14	0.251	0.011	0.03011	0.00053	0.29841	0.29841	189.91251	226.1	19.0548	189.91	8.16	0.51
JGB 456 B 23	0.246	0.013	0.03032	0.00051	0.33998	0.33998	190.72273	226	18,4966	190.72	8.15	0.88
JGB 456 B 13	0.2251	0.0097	0.02844	0.00043	0.31244	0.31244	179 90066	207	15 0635	179.90	7.55	0.56
JGB 456 B 9	0.2097	0.0069	0.02729	0.00044	0.4144	0.4144	172.86208	193.4	11.8811	172.86	7.56	0.62
JGB 456 B 12	0.227	0.012	0.02878	0.0004	0.16222	0.16222	182,14524	209.2	14.8534	182.15	7.57	0.58
JGB 456 B 8	0.23	0.011	0.02955	0.00044	0.2679	0 2679	187 22894	208.1	11 1473	187 23	8 19	0.85
JGB 456 B 24	0.234	0.015	0.03034	0.00052	0 1642	0 1642	191 56444	211	10 1457	191 56	8 19	0.37
JGB 456 B 28	0.249	0.019	0.03171	0.00062	0.037537	0.037537	199 13011	225	12 9914	199.13	8.80	0.96
IGB 456 B 16	0.201	0.011	0.02748	0.00051	0 15662	0 15662	174 75006	185	5 865/8	174 75	7.60	0.56
JGB 456 B 10	0.215	0.011	0.02740	0,00031	0,13002	0,13002	180 04429	107.8	9,86185	180.04	7.58	0,30
JGB 456 B 10	0,213	0.015	0,02007	0,00041	0,12020	0,12142	194 10122	202	0.70004	194 10	7.50	0,70
IGB 456 B 19	0.214	0.012	0,02007	0,00045	0,12523	0,12523	197 50022	105 /	4 15916	197.60	9.00	0.79
JGB 456 B 17	0,214	0,012	0,02932	0,00043	0,13332	0,13332	199 40600	207	9,15010	199.41	7.56	0,70
JGB_456_B_20	0,227	0,016	0,02970	0,00044	0,21070	0,21070	101 32657	207	7 66031	101.33	7.50	1.09
JGB_450_B_20	0,220	0,010	0,03015	0,00055	0,1000	0,10144	100 41105	200	7,00931	191,55	0.23	0.05
JGB_456_B_50	0,2194	0,0097	0,03057	0,00032	0,12144	0,12144	193,41195	200	3,40623	193,41	8.18	0,95
JGB_456_B_7	0,233	0,013	0,0306	0,00048	0,17095	0,17095	193,81081	213	9,89759	193,82	8.20	1,14
JGB_450_B_0	0,224	0,013	0,03089	0,00053	0,22828	0,22828	196,19491	205	4,48793	196,19	8.84	1,31
JGB_456_B_22	0,228	0,013	0,03111	0,0005	0,1711	0,1711	197,21098	207	4,96373	197,21	8.21	1,07
JGB_456_B_42	0,221	0,012	0,03128	0,00038	0,16049	0,16049	197,93325	202,8	2,45879	197,93	8.19	0,86
JGB_456_B_46	0,223	0,016	0,03135	0,00072	0,19495	0,19495	198,29777	202	1,86701	198,30	9.45	1,25
JGB_456_B_21	0,235	0,011	0,03164	0,00041	0,24441	0,24441	200,46215	213,5	6,5039	200,46	8.19	0,85
JGB_456_B_25	0,216	0,01	0,03161	0,00046	0,17103	0,17103	200,77131	198,1	-1,33052	200,77	8.21	1,00
JGB_456_B_49	0,237	0,013	0,03183	0,00042	0,11691	0,11691	201,00285	214	6,46615	201,00	8.80	0,94
JGB_456_B_32	0,221	0,011	0,03176	0,00049	0,2411	0,2411	201,03988	200,4	-0,31829	201,04	8.81	0,98
JGB_456_B_37	0,244	0,024	0,03197	0,0006	0,06952	0,06952	201,22433	221	9,82767	201,22	9.47	1,13
JGB_456_B_3	0,243	0,022	0,03202	0,0005	0,049544	0,049544	201,53591	217	7,67312	201,54	8.84	2,06
JGB_456_B_1	0,24	0,027	0,03194	0,0007	0,11772	0,11772	201,5398	217	7,67104	201,54	8.89	1,80
JGB_456_B_47	0,214	0,012	0,03188	0,00062	0,27711	0,27711	202,46869	196	-3,19491	202,47	8.84	1,15
JGB_456_B_2	0,238	0,017	0,03222	0,00056	0,19973	0,19973	203,38996	218	7,18326	203,39	8.81	0,81
JGB_456_B_31	0,235	0,01	0,03257	0,0004	0,19511	0,19511	205,65344	213,3	3,71818	205,65	8.79	0,82
JGB_456_B_43	0,2343	0,0097	0,03262	0,00037	0,22313	0,22313	206,32475	213,4	3,42918	206,32	8.17	0,86
JGB_456_B_34	0,2283	0,0098	0,03296	0,00035	0,20118	0,20118	208,5305	208,4	-0,06258	208,53	8.80	1,00
JGB_456_B_30	0,223	0,012	0,03298	0,00041	0,17726	0,17726	209,14788	204	-2,46136	209,15	8.83	0,57
JGB_456_B_51	0,229	0,01	0,03324	0,00036	0,10694	0,10694	210,72704	210,3	-0,20265	210,73	8.82	1,14
JGB_456_B_40	0,249	0,013	0,03388	0,00044	0,17192	0,17192	213,33164	226	5,93834	213,33	8.78	0,99
JGB_456_B_41	0,2279	0,0097	0,03395	0,00077	0,4518	0,4518	215,33931	208	-3,40825	215,34	10.07	0,42
JGB_456_B_38	0,2334	0,0087	0,0341	0,00068	0,3061	0,3061	215,82568	211,9	-1,81891	215,83	9.42	1,11
JGB_456_B_27	0,237	0,011	0,03411	0,0005	0,19103	0,19103	215,9418	215,7	-0,11197	215,94	9.43	0,75
JGB_456_B_44	0,228	0,013	0,03502	0,00051	0,1	-0,035553	222,5993	206	-7,45703	222,60	9.47	1,06
JGB_456_B_48	0,2635	0,0098	0,03533	0,00046	0,055356	0,055356	222,66563	237,5	6,66218	222,67	9.39	1,15
JGB_456_B_45	0,243	0,012	0,03533	0,00046	0,22609	0,22609	223,93869	220,5	-1,53555	223,94	9.44	1,01
JGB_456_B_26	0,351	0,014	0,0485	0,0013	0,60548	0,60548	304,65273	305	0,11399	304,65	15.51	4,23

Muestra LMC-059 (Laboratorio del Servicio Geológico Colombiano)

		-		-								
Identificación muestra	Relación final ²⁰⁷ Pb/ ²³⁵ U	Error interno relación final ²⁰⁷ Pb/ ²³⁵ U a 2 D F	Relación final ²⁰⁶ Pb/ ²³⁸ U	Error interno relación final ²⁰⁶ Pb/ ²³⁵ U a 2 D F	Ajuste error de correlación (datos negativos)	Error de correlación ²⁰⁶ Pb/ ²³⁸ U vs, ²⁰⁷ Pb/ ²³⁵ U	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	% discordia	Edad corregida ²⁰⁶ Pb ²⁰⁶ Pb /U 238 (Ma)	±2σ	Relación final U/ Th
LMC_059_A_39	0,0026	0,0015	0,000007	0,000011	0,1	-0,03729	0,0391837	2,6	6535,41	0,04	0.06	4,25
LMC 059 A 38	0,0008	0,0012	0,000006	0,000011	0,19074	0,19074	0,0345658	0,8	2214,43	0,03	0.06	7,22
LMC_059_A_8	0,212	0,017	0,01838	0,00073	0,28855	0,28855	112,42681	198	76,1146	112,43	6.18	3,00
LMC 059 A 2	0,391	0,028	0,0352	0,00073	0,10004	0,10004	213,79883	330	54,3507	213,80	9.82	1,72
LMC 059 A 20	0,345	0,019	0,03252	0,00093	0,30623	0,30623	200,07477	304	51,9432	200,07	9.23	3,45
LMC 059 A 12	0,24	0,02	0,02349	0,0006	0,089294	0,089294	145,03692	218	50,3066	145,04	6.87	2,71
LMC 059 A 28	0.319	0.018	0.0308	0.00086	0.4837	0.4837	190.17104	282	48.2876	190.17	9.24	0.88
LMC 059 A 10	0.357	0.055	0.0345	0.0011	0.1	-0.049942	212.02475	302	42,4362	212.02	11.50	1.72
LMC 059 A 15	0,28	0,015	0,0295	0,00049	0,19744	0,19744	183,19234	249	35,9227	183,19	7.46	1,99
LMC 059 A 1	0.163	0.012	0.01951	0.00053	0.29538	0.29538	122.44417	155	26,5883	122.44	6.17	3.01
LMC 059 A 35	0.27	0.021	0.03133	0.00059	0.067434	0.067434	196.32323	243	23,7755	196.32	8.78	1.46
LMC 059 A 11	0,224	0,023	0,02814	0,00066	0,22419	0,22419	177,21979	212	19,6255	177,22	8.24	3,69
LMC 059 A 9	0.256	0.026	0.03175	0.00063	0.1	-0.064944	199.15403	236	18.5012	199.15	8.86	1.47
LMC 059 A 37	0.252	0.025	0.03069	0.00066	0.12771	0.12771	193.46284	227	17.3352	193.46	8.86	1.21
LMC 059 A 17	0.278	0.018	0.03351	0.00052	0.15817	0.15817	210.21076	246	17.0254	210.21	9.39	1.10
LMC 059 A 26	0.257	0.021	0.032	0.00055	0.047423	0.047423	201.33576	233	15.7271	201.34	8.82	1.04
LMC 059 A 29	0.195	0.01	0.02543	0.00042	0.069321	0.069321	161.05553	180	11.7627	161.06	6.95	2.12
LMC 059 A 40	0.21	0.012	0.02893	0.00041	0.25515	0.25515	183,29128	194.5	6.11525	183.29	8.20	1.43
LMC 059 A 34	0.227	0.012	0.03054	0.00043	0 18424	0 18424	193 46453	207.1	7 04805	193 46	8 19	1.57
LMC 059 A 33	0.236	0.022	0.03075	0.00063	0.07132	0.07132	194.32172	215	10.6413	194.32	8.86	1.36
LMC 059 A 43	0.239	0.012	0.03098	0.00046	0.13867	0.13867	195.34628	218	11.5967	195.35	8.78	1.35
LMC 059 A 41	0.232	0.01	0.03128	0.0004	0.012724	0.012724	197.85939	212.7	7.50058	197.86	8.18	0.99
LMC 059 A 36	0.235	0.016	0.03136	0.00042	0.12861	0.12861	198,11364	214	8.01881	198.11	8.82	1.15
LMC 059 A 25	0.235	0.016	0.03148	0.00047	0.11164	0.11164	199.48337	213	6.77582	199.48	8.84	1,16
LMC 059 A 30	0.231	0.013	0.03159	0.00045	0.064738	0.064738	199 92488	212	6.03983	199.92	8.82	1 60
LMC 059 A 31	0.23	0.017	0.03158	0.00053	0.10074	0.10074	200.0113	211	5,49404	200.01	8.84	1.78
LMC 059 A 14	0.21	0.017	0.03148	0.00054	0.06817	0.06817	200.42451	192	-4.20333	200.42	8.89	1.94
IMC 059 A 6	0.236	0.013	0.03186	0.00046	0.088912	0.088912	201 19038	217	7 85804	201 19	8 80	1 10
LMC 059 A 13	0.223	0.02	0.0318	0.00055	0.16795	0.16795	201.61566	202	0.19063	201.62	8.87	1,99
LMC 059 A 45	0.226	0.013	0.03188	0.00048	0.1	-0.052722	201.867	204	1.05664	201.87	8.83	0.73
LMC 059 A 22	0.234	0.016	0.03204	0.00053	0.18811	0.18811	202.64309	212	4.61743	202.64	8.83	1.32
LMC 059 A 32	0.227	0.014	0.03209	0.00057	0.23967	0.23967	203.4607	208	2.23104	203.46	8.83	1.33
LMC 059 A 44	0.209	0.015	0.03221	0.00058	0.069152	0.069152	204.8214	194	-5.28333	204.82	8.87	1.09
LMC 059 A 21	0.261	0.015	0.03272	0.00045	0.095445	0.095445	205.74237	233	13.2484	205.74	8.77	1.06
LMC 059 A 46	0.239	0.015	0.03263	0.00056	0.13045	0.13045	206.28479	218	5.67914	206.28	8.82	1.07
LMC 059 A 23	0.251	0.019	0.03294	0.00094	0.39769	0.39769	207.31853	230	10.9404	207.32	8.79	1.65
LMC 059 A 19	0.267	0.02	0.0335	0.00052	0.0080378	0.0080378	210 46429	237	12 6082	210.46	9.41	1.33
LMC 059 A 27	0.2502	0.0085	0.03334	0.00045	0.16654	0.16654	210.56901	226.4	7.5182	210,57	8.78	1,33
LMC 059 A 16	0.259	0.023	0.03346	0.00055	0.012173	0.012173	210.66218	222	5.38199	210.66	9.46	1.27
IMC 059 A 4	0.269	0.037	0.0335	0.0011	0.090301	0.090301	210 70105	233	10 5832	210 70	10.85	1 12
IMC 059 A 24	0.238	0.012	0.03344	0.00044	0.22838	0 22838	211 9027	219	3 34932	211.90	8.82	1 78
LMC 059 A 42	0.247	0.016	0.03374	0.00056	0 11377	0 11377	213 14788	226	6 02967	213 15	9 44	0.91
LMC 059 A 5	0.255	0.026	0.034	0.00073	0.096919	0.096919	214,29263	229	6.86322	214 29	10 11	1,16
LMC 059 A 18	0.25	0.01	0.03431	0.00039	0.090114	0.090114	217,11345	227 2	4.64575	217 11	9.42	0.84
IMC 059 A 3	0.265	0.022	0.03626	0.00075	0.098556	0.098556	228 31862	237	3 80231	228.32	10.06	1 68
LMC 059 A 7	0.849	0.021	0.1023	0.0014	0.52023	0.52023	628.00725	628	-0.00115	628.01	26.36	12 53
	0,040	3,321	0,.020	3,3014	0,01010	0,01010	320,30720	520	3,30110	020,01	20.00	,00

Muestra AMC- 0127 (Laboratorio de la Universidad Nacional Autónoma de México)

	U	Th	ть/П	207Ph/206Ph	+2e ahe	207Ph/23511	+2e ahe	206Ph/23811	+2e abe	Bho	207Ph/23511	+26	207Ph/206Ph	+2e	Best age	+2e	Disc %	Error	206Pb/23811	+2e
0: / 0/0	(ppm) ¹	(ppm) ¹	0.04		±25 abs	FD/ 0	123 803	- 1057	123 803	0.40	10/50	123		123	(Ma)	123	0130 /8	1.50.04		123
Circon-013	269,8	66	0,24	0,1268	0,0068	2,4100	0,1100	0,1357	0,0035	0,43	1245,0	33,0	2,053,0	94,0	2,053,0	94,0	34,14	4,58%	820,0	20,0
Circon-006	288,1	228	0,79	0,0685	0,0041	0,2960	0,0180	0,0317	0,0006	0,20	266,0	14,0	830,0	140,0	201,3	3,9	24,32	1,94%	201,3	3,9
Circon-017	300,2	273,2	0,91	0,0593	0,0034	0,2620	0,0140	0,0321	0,0006	0,09	236,0	11,0	540,0	120,0	203,9	3,5	13,60	1,72%	203,9	3,5
Circón-033	70,9	35	0,49	0,0520	0,0068	0,1790	0,0190	0,0249	0,0008	0,03	166,0	16,0	240,0	240,0	158,4	5,3	4,58	3,35%	158,4	5,3
AMC-0127	596	960	1,61	0,0495	0,0025	0,2093	0,0093	0,0306	0,0004	0,12	192,7	7,9	160,0	110,0	194,3	2,6	-0,83	1,34%	194,3	2,6
Circón-003	183	207	1,13	0,0511	0,0040	0,2150	0,0170	0,0307	0,0006	0,06	197,0	14,0	240,0	170,0	194,8	3,9	1,12	2,00%	194,8	3,9
Circón-004	271	163,2	0,60	0,0532	0,0039	0,2230	0,0260	0,0310	0,0014	0,43	203,0	20,0	240,0	150,0	196,5	8,6	3,20	4,38%	196,5	8,6
Circón-028	216	282	1,31	0,0511	0,0053	0,2160	0,0240	0,0311	0,0008	0,02	202,0	19,0	240,0	180,0	197,5	5,0	2,23	2,53%	197,5	5,0
Circón-018	891	708	0,79	0,0511	0,0024	0,2170	0,0100	0,0315	0,0004	0,40	199,1	8,7	230,0	110,0	199,9	2,8	-0,40	1,40%	199,9	2,8
Circón-005	199,5	201	1,01	0,0526	0,0057	0,2310	0,0230	0,0317	0,0007	0,48	210,0	19,0	270,0	210,0	200,9	4,4	4,33	2,19%	200,9	4,4
Circón-027	648	462	0,71	0,0495	0,0026	0,2170	0,0120	0,0317	0,0007	0,28	199,0	10,0	160,0	120,0	201,2	4,5	-1,11	2,24%	201,2	4,5
Circón-022	505	325	0,64	0,0505	0,0029	0,2210	0,0110	0,0319	0,0006	0,13	203,4	9,8	210,0	120,0	202,1	3,5	0,64	1,73%	202,1	3,5
Circón-021	2260	247,5	0,11	0,0513	0,0020	0,2235	0,0077	0,0319	0,0004	0,16	204,8	6,4	246,0	92,0	202,2	2,4	1,27	1,19%	202,2	2,4
Circón-023	489,6	287,6	0,59	0,0499	0,0028	0,2180	0,0100	0,0319	0,0005	0,07	202,7	8,8	190,0	120,0	202,5	3,1	0,10	1,53%	202,5	3,1
Circón-007	385	337	0,88	0,0511	0,0035	0,2240	0,0140	0,0319	0,0006	0,04	207,0	11,0	230,0	140,0	202,6	3,5	2,13	1,73%	202,6	3,5
Circón-008	373	229	0,61	0,0518	0,0034	0,2280	0,0140	0,0322	0,0006	0,13	208,0	11,0	300,0	150,0	204,0	3,7	1,92	1,81%	204,0	3,7
Circón-024	378	324	0,86	0,0517	0,0030	0,2300	0,0120	0,0324	0,0006	0,15	210,9	9,7	280,0	110,0	205,4	3,5	2,61	1,70%	205,4	3,5
Circón-016	705	398	0,56	0,0512	0,0031	0,2260	0,0200	0,0325	0,0013	0,25	206,0	15,0	230,0	110,0	206,3	8,3	-0,15	4,02%	206,3	8,3
Circón-031	466	352	0,76	0,0493	0,0028	0,2210	0,0110	0,0327	0,0007	0,05	202,8	9,2	160,0	130,0	207,5	4,3	-2,32	2,07%	207,5	4,3
Circón-010	512	485	0,95	0,0506	0,0027	0,2280	0,0120	0,0328	0,0006	0,33	207,9	9,6	200,0	120,0	207,8	3,5	0,05	1,68%	207,8	3,5
Circón-034	310	463	1,49	0,0542	0,0046	0,2400	0,0180	0,0328	0,0007	0,07	220,0	15,0	370,0	180,0	207,9	4,0	5,50	1,92%	207,9	4,0
Circón-014	229,1	236,7	1,03	0,0523	0,0034	0,2420	0,0160	0,0333	0,0006	0,01	219,0	13,0	340,0	140,0	211,2	3,5	3,56	1,66%	211,2	3,5
Circón-015	880	438	0,50	0,0524	0,0035	0,2440	0,0160	0,0335	0,0005	0,10	221,0	12,0	290,0	120,0	212,7	2,9	3,76	1,36%	212,7	2,9
Circón-019	730	908	1,24	0,0552	0,0026	0,2660	0,0120	0,0348	0,0005	0,12	238,9	9,3	430,0	110,0	220,5	3,0	7,70	1,36%	220,5	3,0
Circón-009	676	19,8	0,03	0,0574	0,0027	0,5810	0,0230	0,0732	0,0012	0,30	466,0	15,0	510,0	100,0	455,6	7,0	2,23	1,54%	455,6	7,0
Circón-026	497	110,7	0,22	0,0568	0,0024	0,5960	0,0230	0,0757	0,0012	0,36	476,0	15,0	482,0	89,0	470,5	7,3	1,16	1,55%	470,5	7,3
Circón-029	210,3	71,1	0,34	0,0729	0,0029	1,7460	0,0620	0,1743	0,0027	0,27	1,028,0	23,0	1,012,0	81,0	1,012,0	81,0	-0,78	8,00%	1,036,0	15,0
Circón-020	289,9	116,9	0,40	0,0783	0,0031	2,2320	0,0780	0,2046	0,0025	0,14	1,189,0	25,0	1,159,0	78,0	1,159,0	78,0	-0,93	6,73%	1,200,0	13,0
Circón-025	1,688	21	0,01	0,0800	0,0028	1,7090	0,0730	0,1548	0,0048	0,90	1,011,0	30,0	1,195,0	71,0	1,195,0	71,0	8,21	5,94%	928,0	26,0
Circón-002	45	19,49	0,43	0,0820	0,0045	2,4000	0,1200	0,2099	0,0044	0,23	1,237,0	36,0	1,230,0	110,0	1,230,0	110,0	0,73	8,94%	1,228,0	24,0
Circón-030	145,7	52,5	0,36	0,0851	0,0037	2,2500	0,1200	0,1905	0,0072	0,22	1,196,0	40,0	1,308,0	82,0	1,308,0	82,0	6,02	6,27%	1,124,0	39,0
Circón-012	905	281	0,31	0,0850	0,0034	2,6900	0,2100	0,2290	0,0160	0,71	1,328,0	77,0	1,312,0	81,0	1,312,0	81,0	0,08	6,17%	1,327,0	87,0
Circón-032	1,307	111,3	0,09	0,0887	0,0031	2,2940	0,0710	0,1884	0,0020	0,74	1,210,0	22,0	1,400,0	66,0	1,400,0	66,0	8,10	4,71%	1,112,0	11,0
Circón-001_	121,1	117,5	0,97	0,0941	0,0039	3,2700	0,2400	0,2520	0,0150	0,16	1,472,0	68,0	1,501,0	83,0	1,501,0	83,0	1,56	5,53%	1,449,0	80,0
Circón-011	357	161.7	0.45	0.1035	0.0038	3.9300	0.1500	0.2785	0.0052	0.47	1.619.0	33.0	1.685.0	70.0	1.685.0	70.0	2.22	4.15%	1.583.0	27.0
		,/	0,.0	5,.000	3,0000	5,0000	2,.000	-,	3,0002	0,	.,0.0,0	50,0	.,000,0	. 0,0	.,,	. 0,0	_,	.,	.,000,0	2.,0

MONZOGRANITO DE LA CORCOVA

»Cordillera Oriental Departamento de Santander

Gabriel Rodríguez, Ana María Correa Martínez, Gilberto Zapata y María Isabel Arango

Catálogo de las unidades litoestratigráficas de Colombia / Triásico-Jurásico

Citación: Rodríguez, G., Correa Martínez, A. M., Zapata, G. y Arango, M. I. (2020). Monzogranito de La Corcova. En *Catálogos de las unidades litoestratigráficas de Colombia: Macizo de Santander.* Vol. 1. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585279445.4 La actividad magmática triásico-jurásica está evidenciada por el emplazamiento de cuerpos intrusivos graníticos, hipoabisales y vulcanismo riolítico-riodacítico en el basamento metamórfico del Macizo de Santander.

Los cuerpos intrusivos alargados se presentan orientados en dirección preferencial norte-noroeste, los cuales concuerdan con el rumbo de las fallas regionales que delimitan las diferentes unidades del macizo, principalmente la falla de Bucaramanga.

Uno de estos cuerpos, producto del magmatismo de arco continental triásico-jurásico, corresponde al Monzogranito de La Corcova. En el presente catálogo, como aporte al desarrollo del conocimiento geológico del país, se incluyen análisis petrográficos, químicos y edades radiométricas U-Pb de este plutón.

1. Origen del nombre, distribución geográfica y reseña histórica

La denominación *Monzogranito de La Corcova* atiende a su composición modal predominante y a su localización geográfica cerca del corregimiento de La Corcova (Santander), sobre la vía Bucaramanga-Pamplona.

1.1. Distribución geográfica

El Monzogranito de La Corcova aflora en las vecindades de la localidad de La Corcova, sobre la carretera Bucaramanga-Pamplona. Es un plutón de forma tabular alargada en sentido N-S, con una extensión en el eje mayor de aproximadamente 15 km y un ancho variable promedio de 3 km, con un área aproximada de 103,4 km². La localización de sus afloramientos se puede observar en las planchas geológicas 109 Río Negro (Ward *et al.*, 1977a), 110 Pamplona (Ward *et al.*, 1970), 120 Bucaramanga (Ward *et al.*, 1977b) y 121 Cerrito (Ward *et al.*, 1977c) (figura 1).

1.2. Reseña histórica

Goldsmith et al., (1971) propusieron el término cuarzomonzonita de La Corcova en el trabajo sobre dataciones radiométricas del Macizo de Santander, sin hacer una descripción litológica de la unidad. Posteriormente Ward et al., (1973) describen las rocas de la Cuarzomonzonita de La Corcova, que afloran en las vecindades de la localidad de La Corcova, sobre la carretera Bucaramanga-Pamplona. Dichos autores correlacionaron algunos cuerpos con el Monzogranito de La Corcova, tales como los que afloran al noreste del plutón principal en los cuadrángulos H-12 y H-13, plutones pequeños en el Neis de Bucaramanga al este de Chitagá y cuerpos intrusivos cerca de Vetas y Morro Nevado (cuadrángulo H-13). En la Plancha 136 Málaga rocas de esta unidad, probablemente, aparecen cartografiadas como cuarzomonzonita de Santa Bárbara. Dada la falta de certeza geológica de que correspondan a un mismo pulso magmático, en el presente estudio no se incluyen estas rocas como parte del Monzogranito de La Corcova.

Figura 1. Localización del Monzogranito de La Corcova y distribución del muestreo

Fuente: Ward et al. (1970, 1977 a, b, c) y este trabajo

2. Descripción geológica

2.1. Marco geológico

El Macizo de Santander es parte de un bloque de forma triangular limitado por las fallas de Santa Marta-Bucaramanga en el lado occidental, la falla de Oca-Ancón en el lado norte y la falla de Boconó en el lado oriental.

Las rocas más antiguas del Macizo de Santander comprenden unidades metamorficas como el Neis de Bucaramanga (Ward *et al.*, 1973), denominado también Complejo Bucaramanga (Clavijo, 1994). El Neis de Bucaramanga está constituido por paragneises migmatíticos de edad Proterozoico (Goldsmith *et al.*, 1971; Restrepo Pace *et al.*, 1997; García y Ríos, 1999; Cordani *et al.*, 2005; Ordóñez *et al.*, 2006) a los cuales se les ha determinado un pico de metamorfismo de edad 1057±28 Ma mediante el método U/Pb-SHRIMP en circón, relacionándolos con la orogenia Grenvilliana (Ordóñez *et al.*, 2006).

Las edades de las unidades cartografiadas como Neis de Bucaramanga y Ortoneis, publicadas por Van der Lelij *et al.*, (2016), y las obtenidas en el presente estudio por el método U/Pb-ICP-MS en circones, indican que el metamorfismo y la cristalización de estas dos unidades ocurrieron en el Ordovícico.

El Neis de Bucaramanga está cubierto por la formación Silgará, constituida por esquistos, filitas, metalodolitas, metaareniscas y escasos mármoles, rocas que hacen parte del basamento del Macizo de Santander (Ward *et al.*, 1973; García y Ríos, 1999; Ríos *et al.*, 2003; Mantilla *et al.*, 2013; Mantilla *et al.*, 2016). La formación Silgará presenta edades de metamorfismo del Ordovícico relacionadas con la orogenia caledoniana (Ríos *et al.*, 2003; Ordóñez Cardona *et al.*, 2006; Clavijo *et al.*, 2008; Mantilla *et al.*, 2013).

Datos geocronológicos obtenidos en este proyecto muestran magmatismo posterior y anterior al metamorfismo, representado por metavulcanitas y plutones que intruyen el basamento metamórfico, con edades U/Pb en circón del Silúrico, Devónico Inferior, Carbonífero y limite Triásico-Jurásico.

Se considera que los plutones triásico-jurásicos del Macizo de Santander fueron emplazados en rocas metamorfas del terreno Chibcha, en el sentido de Restrepo y Toussaint (1988) y Restrepo *et al.*, (2011), o del Terreno Santander de Etayo *et al.* (1983). Estos plutones están emplazados en rocas metamorficas Ordovícicas relacionadas con la orogenia famatiniana, y probablemente no tienen relación con el arco continental más joven, del Jurásico temprano a Medio, del valle superior del Magdalena, la serranía de San Lucas y la Sierra Nevada de Santa Marta, emplazado en el basamento metamórfico grenvilliano, del cual no se han reportado rocas metamorficas relacionadas con la orogenia famatiniana.

Durante el límite Triásico-Jurásico se desarrolló un importante magmatismo de arco continental, con el emplazamiento de grandes batolitos, *stocks* graníticos y cuerpos riolíticos subvolcánicos localizados hacía la margen occidental del Macizo de Santander, dentro del basamento metamórfico paleozoico.

Unidades sedimentarias cretácicas reposan discordantes sobre el basamento metamórfico y sobre los plutones. Con posterioridad a la sedimentación cretácica tuvo lugar un escaso magmatismo, durante el Mioceno, que emplazó pequeños cuerpos de pórfidos con mineralizaciones de oro (Leal, 2011; Mantilla *et al.*, 2013).

2.2. Características macroscópicas de las rocas del Monzogranito de La Corcova

Ward *et al.* (1973) afirman que el Monzogranito de La Corcova presenta una facies típica en la mayor parte del cuerpo intrusivo de composición granítica, una segunda facies porfirítica bien expuesta al oeste de La Corcova y en la carretera que conduce a Tona (cuadrángulo H-12), cerca del río del mismo nombre. Adicionalmente, reconocen facies menores ricas en biotita de grano fino con algo de hornblenda, expuestas localmente en la carretera Bucaramanga-Pamplona, al este de La Corcova, en la carretera de Los Curos a Guaca y al este del río Manco.

Diques y pequeños cuerpos de composición cuarzomonzonita, se encuentran intruyendo el Monzogranito de La Corcova, siendo más abundantes al norte del plutón, al este de Bucaramanga.

Las rocas del Monzogranito de La Corcova son de color blanco moteadas de negro a gris, cuando están frescas. Sus productos de alteración son de color amarillo claro moteados de gris y negro.

Dichas rocas son faneríticas de grano fino a medio, principalmente equigranulares, con textura sacaroide, y presentan biotita uniformemente diseminada (figura 2). Localmente presentan una débil estructura fluidal por orientación de todos los minerales, y tiende a meteorizar esferoidalmente.

La facies porfirítica contiene fenocristales rosados de feldespato alcalino en una matriz de grano fino a medio

granular sacaroidea, aunque de grano ligeramente más fino que el monzogranito normal de La Corcova (figura 2). La facies rica en biotita también exhibe textura sacaroide de grano fino. Localmente, las rocas se tornan ligeramente porfiríticas, con fenocristales de plagioclasa blanca. Hacia los bordes del plutón se presentan facies más básicas, de cuarzodioritas a cuarzomonzonitas, equigranulares, de grano fino, de color blanco moteadas de negro, compuestas por cristales de plagioclasa subhedrales, y en menor proporción, cristales de cuarzo con contenidos mayores de biotita y hornblenda (figura 2). El Monzogranito de La Corcova intruye al Neis de Bucaramanga, presenta xenolitos y techos colgantes de neises (figura 3), e igualmente intruye rocas de la formación Silgará en el sector norte del cuerpo. La "cuarzomonzonita" rosada de la facies porfirítica del Monzogranito de La Corcova corta la "cuarzomonzonita" gris típica (Ward *et al.*, 1973). Localmente se presentan diques aplíticos de monzogranitos, riolitas porfídicas y venas de cuarzo.

Figura 2. Aspecto macroscópico del Monzogranito de La Corcova. A) Muestra AMC-0129, monzogranito. B) Muestra LMC-078, ligeramente alterada. Facies porfídica. C) Muestra AMC-0131. D) Muestra MIA-630B, cuarzodiorita de borde

Figura 3. Xenolitos de la Formación Silgará dentro del Monzogranito de La Corcova, Estación GR-6721. Coordenadas: N: 1119073, W: 1276559

2.3. Características microscópicas de las rocas del Monzogranito de La Corcova

Se analizaron 39 secciones delgadas del Monzogranito de La Corcova, dos muestras de diques que se clasificaron como riolita porfídica y microsienogranito, y trece secciones de rocas metamorficas presentes como xenolitos, techos colgantes y rocas de caja, once de las cuales se clasificaron como granofelsas y neises cuarzo-feldespáticos, una como esquisto de cuarzo, biotita y sillimanita, y otra como anfibolita.

En el presente trabajo se conserva la nomenclatura de facies propuesta por Ward *et al.* (1973), quienes separan tres tipos de "cuarzomonzonitas" del Monzogranito de La Corcova: la típica, la porfirítica y la rica en biotita (tabla 1). El plutón está constituido principalmente por monzogranitos que pueden variar localmente a sienogranitos y granodioritas, y hacia los bordes del cuerpo intrusivo, a cuarzodioritas, cuarzomonzonitas y tonalitas (figura 4, tabla 1). En general, las rocas son faneríticas de grano fino a medio, de color blanco a gris moteado de negro, equi e inequigranulares, localmente bimodales y ligeramente porfídicas. Están constituidas por cristales de feldespato alcalino de color blanco, cuarzo blanco translúcido y plagioclasa blanca lechosa. Como minerales máficos se presentan biotita y, en menor proporción, hornblenda; como accesorios menores se reconocieron apatito, circón, opacos y, en algunas rocas, allanita y titanita.

Figura 4. Clasificación modal de rocas del Monzogranito de La Corcova

Fuente: Streckeisen (1974) y este trabajo

IGM	N. campo	x	Y	Qtz	PI	Fsp	Hbl	Bt	Ms	Ор	Ар	Zrn	Ttn	Ep	Otros	Clasificación petrográfica
						-		Facie	s típica					-		
74895	HM 1568	1123200	1298360	36	6	58		х				х				Granito de feldespato alk.
74627	HM-1443	1137080	1305320	28	43	13		7,5	7,5	x	х	х		Tr	1	Granodiorita
37971-1	GIR-1345	1117220	1267140	25	45	21		4		Tr			Tr	5		Milonita (granodiorita)
37175	GIR-213	1118900	1256980	28	28	37		5,7		Tr	Tr		Tr		1,5	Protomilonita (monzogranito)
37982	GIR-1382	1118780	1256980	36	31	31			1		Tr	Tr		1,5		Protomilonita (monzogranito)
37425	GIR-696B	1115880	1286160	26	33	25		16		х		х		Tr		Monzogranito
37429	GIR-712	1116580	1286860	33	26	35		5		1	х	х		Tr		Monzogranito
11036	FM 91	1113760	1283380	37	28	31		2	1					1		Monzogranito
11284	FM 178	1116430	1285080	24	34	39		2,1	Tr	1,1		Tr				Monzogranito
11287	FM 161	1115720	1285830	28	30	38		3		1		Tr		Tr		Monzogranito
11490	FM 407	1119220	1281350	34	32	30		3,5	х	0,5		Tr		Tr		Monzogranito
11492	FM 409	1118420	1281760	30	28	39		3	?	0,5	Tr	Tr		Tr		Monzogranito
11493	FM 410	1118080	1281750	37	24	32		5	Tr	Tr	Tr	Tr		2		Monzogranito
11533	FM 383	1114910	1284310	36	31	26		5	1,5	Tr		Tr		0,5		Monzogranito
37427	GIR-705	1113530	1282560	20	41	30		8		1	TR	TR		Tr	Ru, All	Monzogranito
37999	GIR-1406B	1119550	1265200	33	28	32		6		0,3	Tr	0,4		0,3		Monzogranito
900862	AMC-0129	1113420	1280055	38	28	29		4,5	1,5	0,5	Tr	Tr		Tr		Monzogranito
900929	LMC-077	1112260	1283759	32	29	28		8	2	1	Tr	Tr		Tr		Monzogranito
900930	LMC-078	1115257	1286012	29	34	30		6	Tr	1	Tr	Tr		Tr		Monzogranito
900921	LMC-065	1119186	1276101	30	36	33		1		Tr		Tr		Tr		Monzogranito
900931	MIA-627A	1119356	1257497	34	26	30		1,1	6,7	0,7	1	TR	0,5	TR		Protomilonita
37997	GIR-1401	1119530	1257680	31	25	18		3	10	Tr				3	13	Protomilonita (monzogranito)
37989	GIR-1393	1120380	1259880	27	9,3	57		2,3	2,3					0,2	1,6	Sienogranito
900861	AMC-0128A	1114798	1281084	33	21	43		3,3		0,5	Tr	Tr		Tr		Sienogranito
900909	JGB-460A	1117564	1268142	33	13	51	TR	2	TR	TR	TR			1		Sienogranito
10935	HCH-47	1119790	1258400	33	28	29		Tr	7	Tr				3		Protomilonita
								Facies	porfídio	ca						
37421	GIR-691B	1116730	1285370	31	46	21		2		х	х	х		Tr		Granodiorita
37746	GIR-702	1113700	1283200	27	29	39		Tr		2,6	2			0,4		Monzogranito
37424	GIR-694B	1116650	1285170	24	29	44		3		х	х	х		Tr		Monzogranito
37426	GIR-698	1114850	1284280	30	34	28		7	х	х	х	х		Tr	1	Monzogranito
11008	HCH 120	1114860	1284300	33	34	23		8		1,5	Tr	Tr	0,5	Tr		Monzogranito
11038	FM 93B	1114911	1284311	28	30	31		9		1,3	Tr	Tr	0,7	Tr		Monzogranito
11039	FM 94	1115100	1284560	35	32	20		9	1	3	Tr	Tr		Tr		Monzogranito
11283	FM 177A	1116635	1285880	24	30	39		7	х	0,5	Tr			Tr		Monzogranito
11245	FM 140A	1117060	1283670	33	35	30		2,5		Tr	Tr	Tr?				Monzogranito
900863	AMC-0131	1114638	1284010	34	13	45		7	0,5	0,8	Tr	0,2		Tr		Sienogranito
							Facies	s intern	nedia d	e borde)					
900936	MIA-630B	1114060	1270011	9,5	44		26	17		1,2	0,8	1,1	1	Tr	Tr	Cuarzodiorita
11229	FM 125	1117151	1287191	18	38	41		0,5	x	Tr	Tr	Tr			2	Cuarzomonzonita
37992	GIR-1395	1120020	1259100	14	26		29	15		2,5	Tr		1	9	4,5	Tonalita

Tabla 1. Composición modal de rocas del Monzogranito de La Corcova

Las rocas de la facies típica del Monzogranito de La Corcova están compuestas por cuarzo (24 a 37%), plagioclasa (entre 6 y 45%) con contenidos predominantes entre 24 y 34%; feldespato alcalino, principalmente microclina, que varía entre 13 y 58%, y con porcentajes por lo regular de 30 a 45%; la biotita varía de trazas a un 16%, pero generalmente es menor del 3%, y moscovita aparece en trazas hasta 7%. Los accesorios son apatito, opacos y circón; rara vez allanita y titanita. Los minerales de alteración son clorita, epidota y sericita.

La plagioclasa es de tipo oligoclasa a andesina $(An_{27} a An_{30})$, y se presenta en cristales anhedrales a subhedrales, de formas irregulares a tabulares cortos, incoloros, con tamaños que varían entre 0,5 y 1,5 mm, y tienen maclas de tipo albita, albita-Carlsbad y Carlsbad. En algunas rocas los cristales presentan desmezclas con microclina

en forma de parches, para conformar una textura antipertítica. Pueden aparecer texturas mirmequíticas en el contacto con el feldespato alcalino. La plagioclasa generalmente está alterada a saussurita y sericita en agregados microcristalinos, y presenta inclusiones de cuarzo y circón (figura 5).

El feldespato alcalino es ortosa pasando a microclina. Se encuentra en cristales anhedrales de forma irregular, incoloros, cuyo tamaño oscila entre 0,5 y 1,5 mm; en algunas rocas inequigranulares bimodales, hasta de 2 mm, generalmente con macla de periclina y albita en enrejado. Esta última se presenta en algunos sectores del cristal o en su totalidad; la birrefringencia es gris clara de primer orden. Se observa textura pertítica por desmezcla de plagioclasa en forma de "flamas"; puede ser poiquilítica con inclusiones de cuarzo redondeado, plagioclasa, biotita y moscovita en menor proporción. Algunas rocas presentan textura micrográfica con desarrollo de cuarzo en forma cuneiforme dentro de los feldespatos.

Los cristales de cuarzo son anhedrales con bordes irregulares, incoloros, con caminillos de polvo. Su tamaño oscila entre 0,7 y 1,5 mm. En ellos se advierte birrefringencia débil de primer orden y extinción ondulatoria. Presentan inclusiones de plagioclasa, circón y opacos.

Figura 5. Aspecto microscópico de rocas monzograníticas del Monzogranito de La Corcova. XPL. A) IMN-11490, cristales de feldespato potásico (Fsp) con micropertitas, con inclusiones de cuarzo (Qtz). B) IGM-900862, feldespato potásico (microclina) (Fsp) y cuarzo (Qtz). C) IGM- 900929, cuarzo (Qtz), plagioclasa (PI) y feldespato (Fsp) con textura pertítica y moscovita (Ms) como mineral accesorio. D) IMN-11492, feldespato potásico poiquilítico (Fsp) con inclusiones de plagioclasa (PI), biotita (Bt) y moscovita (Ms)

La biotita es escasa en la mayoría de las rocas. Se presenta en láminas subhedrales a euhedrales, de habito tabular, con pleocroísmo de marrón oscuro a claro, y su tamaño promedio es de 0,5 mm. Algunos cristales presentan alteración a clorita (parcial o total) con birrefringencia anómala azul Berlín. Puede aparecer epidota secundaria en agregados.

Algunas rocas presentan moscovita en láminas tabulares subhedrales, de tamaño < 0,3 mm, con birrefringencia fuerte de segundo orden (fucsia-verde encendido), y extinción en ojo de pájaro. Generalmente aparecen como inclusiones en feldespato alcalino o intersticial, entre los minerales principales.

Los minerales opacos pueden presentarse como cristales subhedrales a anhedrales, diseminados en la roca. Localmente, los opacos muestran epidota-clinozoisita en sus bordes, y son menores de 0,2 mm.

Se presentan cristales prismáticos finos (entre 0,05 y 0,15 mm) de circón, generalmente junto a —o como inclusiones dentro de— la biotita, algunos formando halos pleocroicos.

Rocas de la facies porfirítica. Exhiben una textura semejante a la de la facies normal, si bien varía de inequigranular bimodal seriada a equigranular. Corresponden principalmente a monzogranitos y, en menor proporción, a sienogranitos y granodioritas. El feldespato alcalino generalmente es de mayor tamaño que los otros minerales. Poiquilítico, puede tener desmezclas pertíticas v, en algunos cristales, zonación concéntrica; corresponde a ortosa, y en algunas muestras pasa a microclina. La plagioclasa es ligeramente más abundante que la microclina, de composición An₂₉ a An₃₁, y puede desarrollar intercrecimientos mirmequíticos. El cuarzo se presenta como cristales anhedrales y como inclusiones irregulares en feldespatos. Los contenidos de feldespato alcalino varían entre 20 y 41 %; el cuarzo, entre 24 y 35 %; la plagioclasa, entre 13 y 46%; la biotita, en proporciones menores del 9%; la moscovita está presente en trazas.

Los minerales accesorios son circón, apatito y opacos; esporádicamente se reconocieron allanita y titanita (figura 6).

Facies de borde. Está representada por rocas de composición cuarzodiorita-cuarzomonzonita (con feldespato alcalino entre 35 y 65%), tonalita (con más del 20% de cuarzo), con textura granular a inequigranular, con mayores contenidos de minerales máficos, como biotita, que puede llegar hasta un 17%, y por hornblenda, que puede alcanzar el 27%. La moscovita está ausente. Como minerales accesorios se encuentran opacos, apatito, circón, allanita y titanita (figura 6).

El cuarzo se encuentra en cristales xenomorfos incoloros de tamaños que varían entre 0,8 y 1,4 mm. La plagioclasa corresponde a andesina y se presenta en cristales subidiomorfos tabulares incoloros con alteración principalmente en los núcleos a sericita, presentan inclusiones de apatito, opacos y biotita.

La hornblenda es de color verde, con pleocroísmo X: verde claro, Y: verde, y Z: verde oscuro, con inclusiones de biotita, apatito y opacos. Se encuentra junto a titanita y se altera moderadamente a epidota.

La biotita aparece en láminas de tamaños entre 0,6 y 0,8 mm; es subidiomorfa, de color verde, que indica bajo contenido de Ti y Fe⁺³ y alto Fe⁺². Es pleocroica de verde oscuro a verde pálido, con extinción moteada. Presenta inclusiones de apatito, opacos, titanita y circón (figura 7).

Los minerales accesorios son apatito en cristales euhedrales con cortes basales hexagonales y longitudinales prismáticos, de tamaños menores de 0,5 mm; titanita en cristales xenomorfos de color pardo formando agregados con hornblenda y opacos; circones en cristales subidiomorfos prismáticos tetragonales, incoloros, de alto relieve, se encuentran como inclusiones en cuarzo y en los agregados de biotita y hornblenda, con tamaños entre 0,05 y 0,1 mm; opacos xenomorfos, algunos de formas equidimensionales, también presentes como inclusiones en minerales máficos como hornblenda y biotita. La allanita aparece en cristales anhedrales de color rojizo fuerte, pleocroico, con extinción recta. Se encuentra junto a hornblenda, biotita y epidota.

Figura 6. Aspecto microscópico de rocas de las facies porfirítica. A) IGM-900863, sienogranito. Textura inequigranular, feldespato potásico (Fsp) con zonación concéntrica, y pertitización. B) Monzogranito. IMN-11008, cristal de allanita (All) junto a plagioclasa (PI) y cuarzo (Qtz). C) Monzogranito IMN-11038. Textura micrográfica en un cristal de ortoclasa (Or) con textura pertítica; plagioclasa alterada a sericita (PI). D) Monzogranito IMN-11283. Feldespato potásico pertitizado (Fsp). Bordes de reacción entre cristales

Figura 7. Aspecto microscópico de rocas de la facies de borde. IGM-900936, cuarzodiorita XPL y PPL. Aumento: 4X. La roca muestra una textura holocristalina subidiomorfa, y está compuesta por cuarzo (Qtz), hornblenda (Hbl), plagioclasa (PI) y láminas de biotita (Bt)

Xenolitos. Corresponden a bloques del Neis de Bucaramanga, y ocasionalmente a esquistos de la Formación Silgará embebidos en la roca granitoide del Monzogranito de La Corcova, o techos colgantes sobre este. Aparecen dispersos dentro del plutón o hacia los bordes de contacto, tanto en la margen occidental como en la oriental del cuerpo intrusivo.

Se analizaron trece secciones delgadas de dichas rocas metamorficas (tabla 2). Las rocas se clasificaron como granofelsas cuarzo-feldespáticas (ocho); neises de cuarzo, feldespato con moscovita y/o biotita-epidota (tres); esquistos de biotita, silimanita con cuarzo y cordierita (una), anfibolita (una) y un monzogranito. Las rocas metamorficas tienen textura granoblástica, son inequigranoblásticas, granolepidoblásticas y lepidoblásticas. Los neises y granofelsas presentan texturas de intercrecimientos simplectíticos de biotita y epidota, mirmequitas y desmezclas pertíticas.

Tabla 2. Muestras de xenolitos y cuerpos metamorfos incluidos en el Monzogranito de La Corcova

IGM	N. campo	х	Y	Qtz	PI	Fsp	Hbl	Bt	Ms	Ор	Ар	Zrn	Ttn	Ep/All	Sil	Crd	Clasificación petrográfica
37981	GIR-1376A	1119330	1257520	20	46	22		9		0,5	0,5	Tr		2			Neis de Qtz-Fsp con Bt y Ep
37981	GIR-1376B	1119330	1257520	43,8	21,6	26,6		0,5	5,2	Tr				2,3			Neis de Qtz, Fsp con Ms y Bt
900932	MIA-627B	1119356	1257497	21,4	37,6		35,4	4,2		1,4	Tr	Tr	Tr	Tr			Anfibolita
37428	GIR-711	1117410	1282740	14	6			39	4	Tr	Tr	Tr			28	9	Esquisto de Bt-Sill con Qtz y Crd
11503	FM 443	1116370	1281090	28	38	17		14	1,5	Tr		Tr					Granofels de Qtz, fsp y Bt
10934	HCH-46	1119940	1258450	42	22	23		5	2	Tr		Tr		6			Granofels de Qtz, fsp y Bt
37996	GIR-1398	1119600	1258280	31	27	26		8	1	Tr	Tr	Tr	3	4			Granofels de Qtz, fsp y Bt
37993	GIR-1396	1119930	1258960	36	20	26		15			Tr	Tr	Tr	3			Granofels de Qtz, fsp y Bt
37994	GIR-1397A	1119830	1258680	35	25	21		6	4	1	Tr	Tr	1	7			Granofels de Qtz-Fsp-Ep-Bt
37990	GIR-1393B	1120380	1259880	32	20	16		7	11	Tr		Tr	Tr	14			Granofels de Qtz-Fsp-mica-Ep
900937	MIA-631	1118186	1269536	26	34,3	17,2		14,6	TR	0,5	TR	1,1	6,3	TR			Granofels de PI+Qtz+Kfs+Bt
11255	FM 147	1116130	1286140	41	12	34		13		Tr	Tr	Tr					Granofelsa de Qtz-Fsp-Pl-Bt
11228	FM 124	1117150	1287190	30,3	30,3	36,1		0,9	0,9							1,5	Granofelsa de Fsp-Qtz-Pl

Qtz: cuarzo, PI: plagioclasa; Fsp: feldespato de potasio; HbI: hornblenda; Bt: biotita; Ms: moscovita; Op: opacos; Zrn: circón; Ttn: titanita; Ep: epidota; Sil: silimanita; Cdr: cordierita; All: allanita

Las granofelsas y neises están constituidos por cuarzo en proporciones que oscilan entre el 20 y el 44% (figura 8), en cristales xenomorfos con extinción ondulatoria, algunas veces con bordes irregulares, suturados, formando mosaicos orientados o como inclusiones en plagioclasa y feldespato alcalino, a manera de gotas subredondeadas. La plagioclasa es de tipo andesina (An₃₃ a An₃₆), y su proporción varía entre 1 2 y 46%; se presenta como cristales subidioblásticos con maclas de albita y albita-Carlsbad, algunas con macla de la periclina.

El feldespato alcalino corresponde a ortosa u ortosa invirtiéndose a microclina. Presenta maclas de Carlsbad y localmente el maclado típico de la microclina, normalmente con desmezclas pertíticas en forma de flamas y parches. La biotita se presenta en láminas orientadas, entre los cristales de cuarzo, plagioclasa y ortoclasa; es subidioblástica de color castaño, pleocroica de verde claro a castaño o verde oscuro, con extinción paralela, en ojo de pájaro, y aparece generalmente junto a epidota, titanita y sericita. La epidota se encuentra en agregados xenoblásticos de relieve alto, incoloros a verde amarillentos, con pleocroísmo y colores de interferencia del primer y segundo orden, junto a biotita y sericita. Como minerales accesorios se presentan apatito, opacos, moscovita, titanita, circón de formas prismáticas cortas subredondeadas y algunos cristales de allanita.

Figura 8. Aspecto microscópico de xenolitos metamorficos. A) Granofelsa de Qtz, Fsp y Bt-INM-37993. Cristales de cuarzo (Qtz), plagioclasa (PI), ortoclasa (Or) y biotita (Bt). B) Granofelsa de Qtz-Fsp-mica-Ep-INM-37990, cristales de epidota (Ep)-clinozoicita y cuarzo (Qtz) en mosaicos. C) Granofelsa de Qtz-Fsp-PI-Bt-INM-11255. La roca presenta textura granoblástica con biotitas definiendo foliación discontinua. D) Granofelsa de Fsp-Qtz-PI-INM-11228. Cristal de cordierita completamente alterada, junto a plagioclasa (PI) y cuarzo (Qtz)

Rocas de dique. Se analizaron dos muestras de diques que atraviesan el Monzogranito de La Corcova (tabla 3).

Una muestra de riolita (INM-11241) presenta textura porfídica y microtexturas gráfica y mirmequítica. Los fenocristales son de cuarzo, plagioclasa, feldespato alcalino y algunos de biotita, diseminados en una matriz felsítica microgranular. Como minerales accesorios se presentan opacos, circón, titanita y moscovita.

Tabla 3. Composición petrográfica de rocas de dique que cortan el Monzogranito de La Corcova

IGM	N. campo	х	Y	Qtz	PI	Fsp	Bt	Ms	Ор	Zrn	Ttn	Ep	Matriz	Clasificación petrográfica
11241	FM 137	1117115	1284330	33	30	21	3	1	2	Tr	2	Tr	8	Riolita porfirítica
11281	FM 175	1116060	1285720	35	11	40	14	1,2				Tr		Microsienogranito

Figura 9. Aspecto microscópico de los diques de riolita (INM-11241) y sienogranito de grano fino (INM -12281) con textura gráfica

Los fenocristales de cuarzo son subredondeados, con tamaños que fluctúan entre 0,1 y 0,5 mm, si bien pueden llegar a los 2 mm; presentan bahías de corrosión y bordes redondeados. La plagioclasa se encuentra como fenocristales y microcristales subhedrales, con hábito tabular, con tamaños que varían entre 0,5 y 2 mm; presenta alteración a sericita y saussurita, y desarrolla en los bordes textura mirmequítica con cuarzo. El feldespato alcalino aparece como fenocristales y microcristales subhedrales, algunos de formas rectangulares y otros irregulares, con tamaños que oscilan entre 0,3 y 2 mm; ocasionalmente presenta macla de Carlsbad, textura pertítica en forma de cordones y textura micrográfica con cuarzo. La biotita se presenta en baja proporción, en cristales de hábito tabular alterados a clorita y, en menor proporción, a epidota-clinozoisita. La moscovita se encuentra en láminas tabulares, incoloras, y su tamaño promedio es de 0,4 mm.

Como accesorios se reconocieron titanita en microcristales subhedrales y anhedrales, con bordes rectos a irregulares, de color pardo y con tamaño promedio de 0,3 mm. Circón en microcristales euhedrales, de formas prismáticas alargadas y cortas, de tamaño < 0,1 mm. Apatito como cristales euhedrales de hábito prismático hexagonal, incoloros, de tamaño < 0,2 mm. Dispersos en la muestra, minerales opacos de forma irregular y tamaño < 0,2 mm.

El dique de sienogranito de grano fino (IGM-12281) presenta una textura inequigranular y una textura particular granofídica. Se encuentra constituido por cuarzo, plagioclasa, feldespato alcalino, biotita y moscovita, y como minerales de alteración se presentan sericita, clorita y epidota. Los cristales de feldespato alcalino son anhedrales. Su tamaño varía entre 0,5 y 0,75 mm, y presentan relieve bajo (n < bálsamo), algo sucio. Son de textura gráfica y mirmequítica en contactos con plagioclasa (figura 9). La plagioclasa es subhedral con tamaños de hasta 1,25 mm. Tiene maclas polisintéticas enmascaradas por la alteración a saussurita. El cuarzo se presenta en cristales anhedrales finos, limpios e intercrecidos con cristales de feldespato potásico formando texturas gráficas; los cristales más grandes pueden alcanzar 1,25 mm. La biotita se presenta en láminas subhedrales, con coloración verde pálido a amarillento (fuertemente pleocroica), con extinción ojo de pájaro, con tamaños de hasta 1 mm, alterada a clorita. La moscovita es un accesorio y se halla en láminas euhedrales de tamaños de hasta 0,1 mm.

3. Química mineral

Los análisis de química mineral se llevaron a cabo en la microsonda electrónica de la Universidad Nacional de Colombia, sede Bogotá. El equipo usado es una microsonda JEOL JXA 8230, cuyas condiciones de operación fueron: 1 a 10 µm de diámetro del haz, tiempo en el pico de 20 ms, intensidad 20 nA y voltaje de aceleración de 15 kV. Los conteos del instrumento son convertidos a porcentajes de óxidos mediante comparaciones con conteos de estándares naturales y sintéticos. Los datos se han tratado mediante la corrección ZAF (Z: número atómico; A: absorción de masas; F: fluorescencia) utilizando el programa de JEOL. La adquisición de los datos consistió en obtener imágenes de electrones retrodispersados de los cristales seleccionados para el análisis y en realizar los análisis puntuales.

Para este análisis se seleccionaron las muestras AMC-0131, MIA-627A y LMC-078, clasificadas petrográficamente como sienogranito de la facies porfídica y protomilonitas a partir de monzogranito y monzogranito de la facies normal, respectivamente. Además, se analizó la muestra MIA-631, que corresponde a un xenolito del Neis de Bucaramanga clasificado como granofelsa de Pl+Qtz+Kfs+Bt. Para el análisis de microsonda, en la muestra AMC-0131 se escogieron plagioclasa, feldespato alcalino, biotita y opacos; para la muestra MIA-627A, plagioclasa, feldespato alcalino, moscovita e ilmenita; para la muestra LMC-078, plagioclasa, feldespato alcalino, biotita, moscovita, magnetita e ilmenita, y para la muestra MIA-631, feldespato alcalino.

3.1. Feldespato alcalino

Los resultados de la química mineral en feldespato alcalino correspondientes a las muestras AMC-0131, MIA-627A, LMC-078 y MIA-631 se muestran en las tablas 4, 5, 6 y 7.

Se analizaron dos cristales de feldespato alcalino de la muestra AMC-0131 (figura 10), cuyos resultados se resu-

men en la figura 11. El feldespato potásico en la muestra AMC-0131 exhibe micropertitas en filoncillo y parches que se pueden apreciar en las imágenes de los dos cristales analizados (figura 10), correspondientes a ortosa o microclina pertítica para el campo C9 ($Or_{94,8}$ - $Or_{96,1}$, $Ab_{3,9}$ - $Ab_{5,2}$) y C3 ($Or_{89,9}$ - $Or_{95,5}$, $Ab_{9,9}$ - $Ab_{4,2}$) y a pertita en el campo C3 ($Or_{75}Ab_{24,6}$) (un punto) (tabla 4, figura 11). Los resultados de la mayoría de análisis se alinean en el campo de la ortosa pertítica.

En los casos de las muestras MIA-627A y MIA-631 se analizaron cuatro y dos cristales de feldespato, respectivamente (figura 12). En la muestra MIA-627A el feldespato potásico exhibe micropertitas en parches que se aprecian en las imágenes retrodispersadas (figura 12), correspondientes a ortosa o microclina pertítica ($Or_{92,5-96,7}Ab_{2,9-7,4}$), y en la muestra MIA-631 el feldespato alcalino presenta algunos parches de plagioclasa; los dos cristales corresponden a ortosa o microclina pertítica ($Or_{89,4-95,6}Ab_{4,4-10,3}$). Los resultados se resumen en la figura 11.

Tabla 4. Análisis de cristales de feldespato alcalino de la muestra AMC-0131

	AMC-0131-C9- Kfs-2	AMC-0131-C9- Kfs-3	AMC-0131-C9- Kfs-4	AMC-0131-C3- Kfs-1	AMC-0131-C3- Kfs-2	AMC-0131-C3- Kfs-3	AMC-0131-C3- Kfs-4	AMC-0131-C3- Kfs-5	AMC-0131-C3- Kfs-6
SiO2	65,541	65,389	65,286	64,776	64,69	64,167	64,124	64,121	64,889
TiO2	0,005	0,016	0,011	0,025	0,005	0,001	0,005	0,038	0,019
AI2O3	18,542	18,518	18,624	18,347	18,611	18,174	18,375	18,019	18,33
FeO	0,03	0	0,026	0,041	0,026	0,042	0,049	0,045	0,044
MgO	0	0	0	0	0,014	0	0	0	0
CaO	0,017	0	0	0,05	0,089	0,024	0,056	0,026	0,002
Na2O	0,478	0,435	0,582	1,102	2,745	0,485	0,685	0,464	0,975
K2O	16,091	16,274	16,084	15,222	12,75	15,97	15,71	15,919	15,368
Total	100,704	100,632	100,613	99,563	98,93	98,863	99,004	98,632	99,627
Si	12,009	12,002	11,982	11,989	11,950	11,995	11,963	12,012	12,003
AI	4,004	4,006	4,028	4,002	4,052	4,004	4,040	3,978	3,996
Ti	0,001	0,002	0,002	0,003	0,001	0,000	0,001	0,005	0,003
Fe2+	0,003	0,000	0,003	0,004	0,003	0,004	0,005	0,005	0,005
Mg	0	0	0	0	0,003856	0	0	0	0
Na	0,170	0,155	0,207	0,395	0,983	0,176	0,248	0,169	0,350
Ca	0,003	0,000	0,000	0,010	0,018	0,005	0,011	0,005	0,000
К	3,761	3,811	3,766	3,594	3,005	3,809	3,739	3,804	3,627
Total	19,9519	19,976	19,987	19,999	20,015	19,993	20,007	19,978	19,982
Z	16,01	16,01	16,01	15,99	16,00	16,00	16,00	16,00	16,00
Х	3,94	3,97	3,98	4,00	4,01	3,99	4,00	3,98	3,98
Or	95,60	96,10	94,79	89,86	75,01	95,47	93,52	95,63	91,20
Ab	4,32	3,90	5,21	9,89	24,55	4,41	6,20	4,24	8,79
An	0,08	0,00	0,00	0,25	0,44	0,12	0,28	0,13	0,01
Total	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Figura 10. Imágenes de electrones retrodispersados de cristales de feldespato potásico en las que se observan las micropertitas en filoncillos y parches (muestra AMC-131)

Figura 11. Composición de los feldespatos potásicos y las plagioclasas en rocas del Monzogranito de La Corcova Fuente: diagrama de Smith-Brown (1988) y este trabajo

Figura 12. Imágenes de electrones retrodispersados de cristales de feldespato potásico (Fsp) en las muestras MIA-627A y MIA 631. Se observan micropertitas en filoncillos y parches

	MIA-627A-C2- Kfs-1	MIA-627A-C2- Kfs-2	MIA-627A-C2- Kfs-3	MIA-627A-C2- Kfs-4	MIA-627A-C5- Kfs-1	MIA-627A-C5- Kfs-2	MIA-627A-C5- Kfs-3	MIA-627A-C5- Kfs-4	MIA-627A-C6- Kfs-1	MIA-627A-C6- Kfs-2
SiO ₂	64,82	64,93	64,78	65,36	65,04	65,01	64,83	65,19	64,29	64,94
TiO ₂	0,01	0,01	0,00	0,01	0,00	0,01	0,00	0,00	0,00	0,02
Al_2O_3	18,57	18,55	18,35	18,47	18,48	18,44	18,25	18,43	18,22	18,23
FeO	0,00	0,00	0,00	0,04	0,01	0,00	0,00	0,03	0,00	0,00
MgO	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00
CaO	0,02	0,05	0,00	0,01	0,03	0,00	0,00	0,00	0,00	0,02
Na ₂ O	0,72	0,56	0,60	0,83	0,52	0,43	0,33	0,51	0,40	0,56
K ₂ O	15,78	15,89	16,25	15,70	16,16	16,32	16,44	16,12	16,09	16,20
Total	99,90	99,99	99,98	100,41	100,24	100,22	99,84	100,26	98,99	99,97
Si	11,97	11,98	11,99	12,00	11,99	11,99	12,01	12,01	12,00	12,01
Al	4,04	4,03	4,00	4,00	4,01	4,01	3,98	4,00	4,01	3,97
Ti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Fe ²⁺	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,26	0,20	0,22	0,29	0,19	0,16	0,12	0,18	0,14	0,20
Ca	0,00	0,01	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00
К	3,72	3,74	3,84	3,68	3,80	3,84	3,89	3,79	3,83	3,82
Total	19,99	19,97	20,04	19,98	20,00	20,00	20,00	19,98	19,98	20,01
Z	16,02	16,02	15,99	16,00	16,00	16,00	15,99	16,01	16,01	15,99
Х	3,98	3,95	4,05	3,98	3,99	4,00	4,00	3,97	3,98	4,03
Or	93,48	94,68	94,67	92,51	95,19	96,10	97,07	95,44	96,36	94,91
Ab	6,44	5,08	5,33	7,42	4,67	3,88	2,93	4,56	3,62	4,98
An	0,08	0,25	0,00	0,07	0,14	0,01	0,00	0,00	0,02	0,11
Total	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Tabla 5. Análisis de cristales de feldespato alcalino de la muestra MIA-627A

Tabla 6. Análisis de cristales de feldespato alcalino de la muestra MIA-631

	MIA-627A- C7-Kfs-1	MIA-627A- C7-Kfs-2	MIA-627A- C7-KfS-3	MIA-627A- C7-Kfs-4	MIA-627A- C7-Kfs-5		MIA-631- C4-KfS-1	MIA-631- C4-KfS-2	MIA-631- C4-KfS-3	MIA-631- C5-Kfs-1	MIA-631- C5-Kfs-2	MIA-631- C5-Kfs-3
SiO ₂	64,77	64,88	65,08	64,62	64,74	SiO ₂	64,79	65,11	64,80	64,41	64,74	65,02
TiO ₂	0,00	0,01	0,00	0,00	0,01	TiO ₂	0,03	0,01	0,03	0,00	0,01	0,00
Al ₂ O ₃	18,63	18,35	18,25	18,52	18,10	Al_2O_3	18,33	18,65	18,42	18,45	18,66	18,31
FeO	0,04	0,04	0,00	0,00	0,00	FeO	0,04	0,05	0,10	0,03	0,02	0,04
MgO	0,00	0,00	0,01	0,00	0,00	MgO	0,00	0,00	0,00	0,00	0,00	0,00
CaO	0,01	0,03	0,05	0,01	0,00	CaO	0,03	0,00	0,02	0,00	0,05	0,00
Na ₂ O	0,65	0,40	0,45	0,80	0,46	Na ₂ O	0,57	0,62	0,67	0,69	1,13	0,48
K ₂ O	15,97	16,33	16,10	15,70	16,15	K ₂ O	15,92	15,97	15,75	15,75	14,94	16,02
Total	100,07	100,03	99,94	99,64	99,46	Total	99,70	100,40	99,79	99,33	99,56	99,87
Si	11,96	12,00	12,02	11,97	12,03	Si	12,00	11,97	11,99	11,97	11,96	12,02
Al	4,05	4,00	3,97	4,04	3,96	AI	4,00	4,04	4,02	4,04	4,06	3,99
Ti	0,00	0,00	0,00	0,00	0,00	Ti	0,00	0,00	0,00	0,00	0,00	0,00
Fe ²⁺	0,00	0,00	0,00	0,00	0,00	Fe ²⁺	0,00	0,01	0,01	0,00	0,00	0,00
Mg	0,00	0,00	0,00	0,00	0,00	Mg	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,23	0,14	0,16	0,29	0,16	Na	0,20	0,22	0,24	0,25	0,41	0,17
Ca	0,00	0,00	0,01	0,00	0,00	Ca	0,01	0,00	0,00	0,00	0,01	0,00
К	3,76	3,85	3,79	3,71	3,83	К	3,76	3,75	3,72	3,73	3,52	3,78
Total	20,01	20,00	19,97	20,01	19,98	Total	19,98	19,99	19,98	20,00	19,97	19,96
Z	16,01	16,00	16,00	16,01	15,99	Z	16,00	16,01	16,01	16,01	16,03	16,01
Х	4,00	4,00	3,97	4,00	3,99	х	3,98	3,97	3,97	3,99	3,94	3,95
Or	94,15	96,26	95,66	92,80	95,88	Or	94,69	94,42	93,85	93,72	89,43	95,64
Ab	5,79	3,62	4,10	7,16	4,12	Ab	5,14	5,58	6,07	6,28	10,32	4,36
An	0,06	0,12	0,24	0,04	0,00	An	0,16	0,00	0,09	0,00	0,25	0,00
Total	100.00	100.00	100.00	100.00	100.00	Total	100.00	100.00	100.00	100.00	100.00	100.00

En la muestra LMC-078 se analizaron dos cristales de feldespato. Los cristales de este mineral exhiben micropertitas en parches que se aprecian en las imágenes, e inclusiones de criales de plagioclasa (figura 13); corresponden a ortosa o microclina pertítica ($Or_{86,5-98,02} Ab_{1,5-13,05}$).

Figura 13. Imágenes de electrones retrodispersados de cristales de feldespato potásico (Fsp) en la muestra LMC-078. Los mencionados cristales presentan textura pertítica con parches y filoncillos de plagioclasa (PI)

	LMC-078-C8-Kfs-1	LMC-078-C8-Kfs-3	LMC-078-C9-Kfs-1	LMC-078-C9-Kfs-2
SiO2	65,2	64,92	64,48	65,04
TiO ₂	0	0	0,02	0,03
Al ₂ O ₃	18,36	18,64	18,74	18,74
FeO	0,09	0,02	0,06	0,04
MgO	0	0	0	0
CaO	0,02	0,08	0,09	0,04
Na ₂ O	0,47	1,43	0,58	1,31
K ₂ O	15,98	14,36	15,81	14,9
Total	100,12	99,45	99,77	100,09
Si	12,02	11,98	11,93	11,96
AI	3,99	4,05	4,09	4,06
Ti	0	0	0	0
Fe ²⁺	0,01	0	0,01	0
Mg	0	0	0	0
Na	0,17	0,51	0,21	0,47
Ca	0	0,02	0,02	0,01
к	3,76	3,38	3,73	3,49
Total	19,95	19,94	19,99	19,99
Z	16,0	16,0	16,0	16,0
х	3,9	3,9	4,0	4,0
Or	95,6	86,5	94,3	88,1
Ab	4,31	13,05	5,26	11,73
An	0,12	0,42	0,44	0,17

Tabla 7. Análisis de cristales de feldespato alcalino de la muestra LMC-078

3.2. Plagioclasa

La plagioclasa se analizó en dos cristales de la muestra AMC-0131 y en un cristal de la muestra LMC-078 (figuras 14 y 15). Se analizaron los núcleos y bordes, que en el caso del cristal C10 (AMC-0131) muestran una variación composicional oscilatoria (figura 11) correspondiente a oligoclasa (Ab_{72,7-82,5} An_{13,8-25,5} Or_{1,3-2,5}). La plagioclasa C12 (muestra AMC-131) presenta variaciones composicionales menores y corresponde también a oligoclasa (Ab_{75,4-79,7} An_{18,8-25,8} Or_{1,5-2,8}), como se puede observar en la tabla 8 y en la figura 11. A partir del análisis de tres puntos de un cristal de la muestra LMC-078 se obtuvo, en el núcleo, una composición de andesina sódica, y en los bordes, oligoclasa ($Ab_{66,47}$ - $Ab_{72,92}$ Or_{1,61}-Or_{1,87}) (figura 15). En la imagen retrodispersada, el cristal muestra fracturas internas y cambios de color entre el núcleo y los bordes.

De la muestra MIA-627A se analizó un solo cristal de plagioclasa (figura 15) con cuatro puntos distribuidos al azar, a partir de lo cual se determinó una composición de la plagioclasa de tipo albita ($Ab_{75,4}$ - $Ab_{79,7}An_{18,8}$ - $An_{25,8}Or_{1,5}$ - $Or_{2,8}$) correspondiente al campo C7 (tabla 8 y figura 11).

Figura 14. Cristales de plagioclasa (PI) en los campos C10 y C12 de la muestra AMC-0131. Imagen de electrones retrodispersados

Figura 15. Cristales de plagioclasa de las muestras LMC-078 y MIA-627A en campos C7. Imagen de electrones retrodispersados. El núcleo de los cristales es más claro que los bordes

	AMC- 0131- C10-PI-1	AMC- 0131- C10-PI-2	AMC- 0131- C10-PI-3	AMC- 0131-C10- PI-4A	AMC- 0131-C10 -PI-5	AMC- 0131- C10- PI-6	AMC- 0131- C10-PI-9	AMC- 0131- C12-PI-1	AMC- 0131- C12-PI-2	AMC- 0131- C12-PI-3	AMC- 0131- C12-PI-4	AMC- 0131- C12-PI	LMC-078- C3-PI-1	LMC-078- C3-PI-2	LMC-078- C3-PI-3
SiO ₂	63,96	61,77	60,68	59,86	60,38	63	63,63	61,81	61,41	61,77	62,17	60,4	61,15	59,79	61,36
TiO ₂	0	0	0,02	0	0,01	0,01	0	0	0	0	0	0	0,00	0,00	0,03
Al_2O_3	22,9	24,54	25,15	25,56	25,29	23,29	23,31	24,09	24,72	23,87	23,56	24,96	25,02	26,12	24,89
FeO	0,03	0,1	0,13	0,1	0,03	0,01	0,01	0,08	0,07	0,09	0,05	0,11	0,11	0,13	0,06
MgO	0	0	0	0	0,01	0	0,01	0	0	0	0	0	0,00	0,00	0,00
CaO	2,93	4,19	4,94	5,13	4,96	3,31	3,16	4,28	4,51	4,19	3,98	5,54	5,75	6,78	5,36
Na ₂ O	9,81	8,54	7,94	8,05	8,22	9,74	9,68	8,6	8,44	8,91	9,32	8,49	8,40	7,81	8,48
K ₂ O	0,45	0,41	0,39	0,34	0,26	0,24	0,34	0,47	0,4	0,49	0,27	0,44	0,34	0,30	0,29
Total	100,1	99,54	99,24	99,03	99,14	99,6	100,1	99,33	99,54	99,32	99,34	99,95	100,76	100,92	100,46
Si	11,28	10,98	10,84	10,73	10,8	11,18	11,22	11,02	10,93	11,03	11,08	10,77	10,80	10,58	10,85
AI	4,76	5,14	5,29	5,4	5,33	4,87	4,84	5,06	5,18	5,02	4,95	5,25	5,21	5,45	5,19
Ti	0	0,01	0,01	0,01	0	0	0	0,01	0,01	0,01	0	0,01	0,01	0,01	0,01
Fe	0	0	0	0	0	0	0	0	0	0	0	0	0,00	0,00	0,00
Mg	0	0	0	0	0	0	0	0	0	0	0	0	0,00	0,00	0,00
Na	3,36	2,94	2,75	2,8	2,85	3,35	3,31	2,97	2,91	3,08	3,22	2,94	2,88	2,68	2,91
Ca	0,55	0,8	0,94	0,98	0,95	0,63	0,6	0,82	0,86	0,8	0,76	1,06	1,09	1,29	1,02
К	0,1	0,09	0,09	0,08	0,06	0,05	0,08	0,11	0,09	0,11	0,06	0,1	0,08	0,07	0,06
Total	20,06	19,96	19,93	20	19,99	20,09	20,05	19,98	19,98	20,06	20,08	20,12	20,12	20,12	20,12
Z	16,05	16,13	16,15	16,14	16,13	16,05	16,07	16,09	16,12	16,06	16,04	16,03	16,02	16,04	16,05
Х	4,01	3,83	3,78	3,86	3,86	4,04	3,98	3,9	3,86	4	4,04	4,1	4,04	4,03	3,99
Ab	83,7	76,76	72,68	72,48	73,86	83,07	83,08	76,28	75,41	77,17	79,69	71,69	71,20	66,47	72,92
An	13,81	20,84	24,98	25,53	24,62	15,59	14,99	20,97	22,25	20,03	18,81	25,84	26,93	31,88	25,47
Or	2,5	2,4	2,33	2	1,51	1,34	1,93	2,75	2,33	2,8	1,51	2,47	1,87	1,66	1,61
Total	100	100	100	100	100	100	100	100	100	100	100	100	100,00	100,00	100,00

Tabla 8. Análisis de cristales de plagioclasa de las muestras AMC-0131 y LMC-078

Tabla 9. Análisis de cristales de plagioclasa de la muestra MIA-627A

	MIA-627A-C7-PI-1	MIA-627A-C7-PI-2	MIA-627A-C7-PI-3	MIA-627A-C7-PI-4
SiO ₂	67,73	67,35	66,14	68,23
TiO ₂	0	0	0	0
Al ₂ O ₃	20,34	20,38	21,26	19,63
FeO	0,01	0	0,04	0,06
MgO	0	0,01	0,01	0,01
CaO	0,72	0,85	1,61	0,47
Na ₂ O	11,84	11,93	11,24	12,18
K ₂ O	0,11	0,09	0,09	0,1
Total	100,75	100,61	100,37	100,68
Si	11,8	11,76	11,59	11,89
AI	4,18	4,19	4,39	4,03
Ti	0	0	0	0,01
Fe	0	0	0	0
Mg	0	0	0	0
Na	4	4,04	3,82	4,12
Ca	0,13	0,16	0,3	0,09
К	0,03	0,02	0,02	0,02
Total	20,12	20,12	20,12	20,12
Z	15,97	15,95	15,99	15,93
Х	4,16	4,22	4,14	4,23
Ab	96,15	95,76	92,22	97,38
An	3,24	3,75	7,28	2,08
Or	0,6	0,49	0,5	0,54
Total	100	100	100	100

3.3. Micas

La biotita se analizó en cuatro cristales de la muestra AMC-0131 (figura 16) y en dos cristales de la muestra LMC-078 (figura 17). La localización de los puntos analizados se expone junto con las imágenes BSE. Las biotitas exhiben microfracturas que cortan el clivaje e inclusiones de opacos, algunos hexagonales (figuras 16 y 17, tabla 10).

En la roca AMC-0131, la biotita tiene concentraciones de SiO₂ entre 34,66 y 35,66%; FeO entre 19,96 y 24,87%; Al₂O₃ entre 15,94 y 17,26%, y MgO entre 6,54 y 8,48%, como se muestra en la tabla 10. Los cristales de biotita presentan valores altos de aluminio tetraédrico (Al^{IV}) (2,3 a 2,8 atom/unidad fórmula), característicos de granitos peraluminosos, como se observa en el gráfico de Abdel Rahman (1994), lo que sugiere que la muestra AMC-131 podría corresponder a un granito tipo S (Whalen y Chappell, 1988).

El cristal AMC-0131-C11 presenta un contenido de SiO₂, entre 32,84 y 35,75%, que corresponde a un tipo especial de biotita, según el diagrama de Rieder *et al.* (1998), en el que se observan sus valores separados de los de las demás muestras, dado su contenido de SiO₂; los demás cristales se agrupan juntos (figura 18A). Las biotitas de la muestra AMC-0131 presentan una composición intermedia entre biotita y annita; el cristal C11 presenta una composición entre biotita y siderofilita, y los resultados de todos los análisis se inscriben en la serie peraluminosa (figura 18B).

Figura 16. Imágenes de electrones secundarios retrodispersados (BSE) y puntos analizados de diferentes cristales de biotita de la muestra AMC-0131

Figura 17. Imágenes de electrones secundarios retrodispersados (BSE) y puntos analizados de diferentes cristales de biotita de la muestra LMC-078

Punto analizado	AMC-0131- C2-Bt-2	AMC-0131- C2-Bt-3	AMC-0131- C2-Bt-4	AMC-0131- C2-Bt-5	AMC-0131- C2-Bt-6	AMC-0131- C6-Bt-1	AMC-0131- C6-Bt-2	AMC-0131- C6-Bt-3	AMC-0131- C6-Bt-4	AMC-0131- C6-Bt-5	AMC-0131- C6-Bt-6
SiO ₂	34,95	34,86	35,34	35,38	36	35,01	35,43	35,11	35,06	35,09	34,8
TiO ₂	2,43	2,62	2,34	2,53	2,61	2,49	2,51	1,93	2,80	2,70	1,95
Al ₂ O ₃	16,47	16,48	16,91	16,78	16,08	16,57	16,79	16,98	17,07	16,98	16,60
FeO	21,62	20,44	21,40	21,07	20,25	21,93	21,52	22,11	21,29	21,28	21,20
MgO	7,49	6,74	7,07	7,02	7,44	6,94	7,04	7,25	6,74	6,94	7,76
MnO	0,61	0,61	0,66	0,64	0,68	0,58	0,52	0,48	0,56	0,54	0,48
CaO	0,00	0,01	0,00	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,01
Na ₂ O	0,12	0,12	0,12	0,08	0,06	0,07	0,07	0,07	0,06	0,10	0,05
K ₂ O	9,64	9,23	9,72	9,74	9,66	9,64	9,50	9,48	9,55	9,55	9,60
Total	93,31	91,11	93,56	93,24	92,76	93,23	93,40	93,41	93,14	93,18	92,50
					Fórmula bas	ada en 22 O					
Si	5,54	5,62	5,58	5,59	5,69	5,56	5,59	5,56	5,55	5,55	5,56
AI	2,46	2,38	2,42	2,41	2,31	2,44	2,41	2,44	2,45	2,45	2,44
Alvi	0,62	0,75	0,72	0,72	0,69	0,67	0,71	0,73	0,73	0,72	0,69
Ti	0,29	0,32	0,28	0,30	0,31	0,30	0,30	0,23	0,33	0,32	0,23
Mg	1,77	1,62	1,66	1,66	1,75	1,64	1,66	1,71	1,59	1,64	1,85
Fe ²⁺	2,87	2,76	2,82	2,79	2,68	2,91	2,84	2,93	2,82	2,82	2,83
Mn	0,08	0,08	0,09	0,09	0,09	0,08	0,07	0,07	0,08	0,07	0,06
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,04	0,04	0,04	0,03	0,02	0,02	0,02	0,02	0,02	0,03	0,02
К	1,95	1,90	1,96	1,96	1,95	1,96	1,91	1,92	1,93	1,93	1,96
Total	15,62	15,46	15,57	15,54	15,48	15,57	15,52	15,60	15,50	15,52	15,60
Fe/(Fe+Mg)	0,62	0,63	0,63	0,63	0,60	0,64	0,63	0,63	0,64	0,63	0,60
Punto analizado	AMC-0131- C8-Bt-1	AMC-0131- C8-Bt-2	AMC-0131- C8-Bt-3	AMC-0131- C11-Bt-3	AMC-0131- C11-Bt-3	AMC-0131- C11-Bt-4	AMC-0131- C11-Bt-5	AMC-0131- C11-Bt-6	AMC-0131- C11-Bt-7	AMC-0131- C11-Bt-7	AMC-0131- C2-Bt-1
SiO	35,76	35,02	35,97	32,84	32,17	34,26	35,75	35,74	35,11	35,11	34,57
TiO ₂	2,639	2,43	2,622	1,799	1,749	1,979	2,638	2,669	2,731	2,731	1,924
Al ₂ O ₃	16,51	17,26	16,75	17,09	17,26	16,42	16,77	16,93	17,26	17,26	15,94
FeO	20,08	20,54	19,96	24,87	24 78	00.07		21 / 7	01.01		21,5
MgO	7,011	0.000			24,70	23,37	21,58	21,47	21,91	21,91	
MnO		6,622	6,542	8,346	8,489	7,69	21,58 6,802	7,074	6,596	21,91 6,596	7,983
C20	0,622	0,745	6,542 0,728	8,346 0,68	8,489 0,722	7,69 0,658	21,58 6,802 0,682	7,074 0,74	6,596 0,651	21,91 6,596 0,651	7,983 0,571
CaO	0,622 0,011	0,745	6,542 0,728 0	8,346 0,68 0	8,489 0,722 0,025	23,37 7,69 0,658 0,034	21,58 6,802 0,682 0	7,074 0,74 0	6,596 0,651 0	21,91 6,596 0,651 0	7,983 0,571 0,038
Na ₂ O	0,622 0,011 0,056	6,622 0,745 0 0,118	6,542 0,728 0 0,128	8,346 0,68 0 0,05	8,489 0,722 0,025 0,051	23,37 7,69 0,658 0,034 0,071	21,58 6,802 0,682 0 0,11	7,074 0,74 0 0,091	6,596 0,651 0,066	21,91 6,596 0,651 0 0,066	7,983 0,571 0,038 0,104
Na ₂ O K ₂ O	0,622 0,011 0,056 9,613	6,622 0,745 0 0,118 9,421	6,542 0,728 0 0,128 9,356	8,346 0,68 0 0,05 7,124	8,489 0,722 0,025 0,051 6,795	23,37 7,69 0,658 0,034 0,071 8,732	21,58 6,802 0,682 0 0,11 9,637	7,074 0,74 0 0,091 9,615	21,91 6,596 0,651 0 0,066 9,623	21,91 6,596 0,651 0 0,066 9,623	7,983 0,571 0,038 0,104 9,638
Na2O K2O Total	0,622 0,011 0,056 9,613 92,31	6,622 0,745 0 0,118 9,421 92,15	6,542 0,728 0 0,128 9,356 92,06	8,346 0,68 0 0,05 7,124 92,81	8,489 0,722 0,025 0,051 6,795 92,04	23,37 7,69 0,658 0,034 0,071 8,732 93,22	21,58 6,802 0,682 0 0,11 9,637 93,97	7,074 0,74 0 0,091 9,615 94,33	21,91 6,596 0,651 0 0,066 9,623 93,95	21,91 6,596 0,651 0 0,066 9,623 93,95	7,983 0,571 0,038 0,104 9,638 92,27
Na2O K2O Total	0,622 0,011 0,056 9,613 92,31	6,622 0,745 0 0,118 9,421 92,15	6,542 0,728 0 0,128 9,356 92,06	8,346 0,68 0 0,05 7,124 92,81	8,489 0,722 0,025 0,051 6,795 92,04 Fórmula bas	23,37 7,69 0,658 0,034 0,071 8,732 93,22 sada en 22 O	21,58 6,802 0,682 0 0,11 9,637 93,97	7,074 0,74 0,091 9,615 94,33	6,596 0,651 0 0,066 9,623 93,95	21,91 6,596 0,651 0 0,066 9,623 93,95	7,983 0,571 0,038 0,104 9,638 92,27
Na2O K2O Total Si	0,622 0,011 0,056 9,613 92,31 5,675	6,622 0,745 0 0,118 9,421 92,15 5,583	6,542 0,728 0 0,128 9,356 92,06 5,708	8,346 0,68 0 0,05 7,124 92,81 5,273	8,489 0,722 0,025 0,051 6,795 92,04 Fórmula bass 5,208	23,37 7,69 0,658 0,034 0,071 8,732 93,22 ada en 22 O 5,472	21,58 6,802 0,682 0 0,11 9,637 93,97 5,613	21,47 7,074 0,74 0 0,091 9,615 94,33 5,613	21,91 6,596 0,651 0 0,066 9,623 93,95 5,586	21,91 6,596 0,651 0 0,066 9,623 93,95 5,528	7,983 0,571 0,038 0,104 9,638 92,27 5,557
Na₂O K₂O Total Si AI [™]	0,622 0,011 0,056 9,613 92,31 5,675 2,325	6,622 0,745 0 0,118 9,421 92,15 5,583 2,417	6,542 0,728 0 0,128 9,356 92,06 5,708 2,292	8,346 0,68 0 0,05 7,124 92,81 5,273 2,727	8,489 0,722 0,025 0,051 6,795 92,04 Fórmula bas 5,208 2,792	23,37 7,69 0,658 0,034 0,071 8,732 93,22 ada en 22 O 5,472 2,528	21,58 6,802 0,682 0 0,11 9,637 93,97 5,613 2,387	2,,47 7,074 0,74 0 0,091 9,615 94,33 5,613 2,387	21,91 6,596 0,651 0 0,066 9,623 93,95 5,586 2,414	21,91 6,596 0,651 0 0,066 9,623 93,95 5,528 2,472	7,983 0,571 0,038 0,104 9,638 92,27 5,557 2,443
Na2O K2O Total Si Al ^{IV}	0,622 0,011 0,056 9,613 92,31 5,675 2,325 0,762	6,622 0,745 0 0,118 9,421 92,15 5,583 2,417 0,825	6,542 0,728 0 0,128 9,356 92,06 5,708 2,292 0,84	8,346 0,68 0 0,05 7,124 92,81 5,273 2,727 0,508	8,489 0,722 0,025 0,051 6,795 92,04 Fórmula bas 5,208 2,792 0,501	23,37 7,69 0,658 0,034 0,071 8,732 93,22 93,22 stada en 22 O 5,472 2,528 0,562	21,58 6,802 0,682 0 0,11 9,637 93,97 5,613 2,387 0,716	2,1,47 7,074 0,74 0 0,091 9,615 94,33 5,613 2,387 0,716	21,91 6,596 0,651 0 0,066 9,623 93,95 5,586 2,414 0,704	21,91 6,596 0,651 0 0,066 9,623 93,95 5,528 2,472 0,729	7,983 0,571 0,038 0,104 9,638 92,27 5,557 2,443 0,577
Na2O K2O Total Si AI ^N Ti	0,622 0,011 0,056 9,613 92,31 5,675 2,325 0,762 0,315	6,622 0,745 0 0,118 9,421 92,15 5,583 2,417 0,825 0,291	6,542 0,728 0 0,128 9,356 92,06 5,708 2,292 0,84 0,313	8,346 0,68 0 0,05 7,124 92,81 5,273 2,727 0,508 0,217	8,489 0,722 0,025 0,051 6,795 92,04 Fórmula bass 5,208 2,792 0,501 0,213	23,37 7,69 0,658 0,034 0,071 8,732 93,22 93,22 93,22 5,472 2,528 0,562 0,238	21,58 6,802 0,682 0 0,11 9,637 93,97 5,613 2,387 0,716 0,311	2,1,47 7,074 0,74 0,091 9,615 94,33 5,613 2,387 0,716 0,311	21,91 6,596 0,651 0 0,066 9,623 93,95 5,586 2,414 0,704 0,314	21,91 6,596 0,651 0 0,066 9,623 93,95 5,528 2,472 0,729 0,323	7,983 0,571 0,038 0,104 9,638 92,27 5,557 2,443 0,577 0,233
Na2O K2O Total Si AI ^{IV} AI ^{IV} Ti Mg	0,622 0,011 0,056 9,613 92,31 5,675 2,325 0,762 0,315 1,658	6,622 0,745 0 0,118 9,421 92,15 5,583 2,417 0,825 0,291 1,574	6,542 0,728 0 0,128 9,356 92,06 5,708 2,292 0,84 0,313 1,548	8,346 0,68 0 0,05 7,124 92,81 5,273 2,727 0,508 0,217 1,998	8,489 0,722 0,025 0,051 6,795 92,04 Fórmula bas 5,208 2,792 0,501 0,213 2,049	23,37 7,69 0,658 0,034 0,071 8,732 93,22 93,22 93,22 2,528 0,562 0,562 0,238 1,831	21,58 6,802 0,682 0 0,11 9,637 93,97 5,613 2,387 0,716 0,311 1,592	2,1,47 7,074 0,74 0 0,091 9,615 94,33 5,613 2,387 0,716 0,311 1,592	21,91 6,596 0,651 0 0,066 9,623 93,95 5,586 2,414 0,704 0,314 1,648	21,91 6,596 0,651 0 0,066 9,623 93,95 5,528 2,472 0,729 0,323 1,548	7,983 0,571 0,038 0,104 9,638 92,27 5,557 2,443 0,577 0,233 1,913
Na2O K2O Total Si AI ^{IV} Ti Mg Fe²+	0,622 0,011 0,056 9,613 92,31 5,675 2,325 0,762 0,315 1,658 2,664	6,622 0,745 0 0,118 9,421 92,15 5,583 2,417 0,825 0,291 1,574 2,738	6,542 0,728 0 0,128 9,356 92,06 5,708 2,292 0,84 0,313 1,548 2,648	8,346 0,68 0 0,05 7,124 92,81 5,273 2,727 0,508 0,217 1,998 3,339	8,489 0,722 0,025 0,051 6,795 92,04 Fórmula bas 5,208 2,792 0,501 0,213 2,049 3,356	23,37 7,69 0,658 0,034 0,071 8,732 93,22 ada en 22 O 5,472 2,528 0,562 0,238 1,831 3,12	21,58 6,802 0,682 0 0,11 9,637 93,97 5,613 2,387 0,716 0,311 1,592 2,833	2,1,47 7,074 0,74 0 0,091 9,615 94,33 5,613 2,387 0,716 0,311 1,592 2,833	21,91 6,596 0,651 0 0,066 9,623 93,95 5,586 2,414 0,704 0,314 1,648 2,805	21,91 6,596 0,651 0 0,066 9,623 93,95 5,528 2,472 0,729 0,323 1,548 2,885	7,983 0,571 0,038 0,104 9,638 92,27 5,557 2,443 0,577 0,233 1,913 2,89
Na2O K2O Total Si AI ^{VI} Ti Mg Fe ²⁺ Mn	0,622 0,011 0,056 9,613 92,31 5,675 2,325 0,762 0,315 1,658 2,664 0,084	6,622 0,745 0 0,118 9,421 92,15 5,583 2,417 0,825 0,291 1,574 2,738 0,101	6,542 0,728 0 9,356 92,06 5,708 2,292 0,84 0,313 1,548 2,648 0,098	8,346 0,68 0 0,05 7,124 92,81 5,273 2,727 0,508 0,217 1,998 3,339 0,092	8,489 0,722 0,025 0,051 6,795 92,04 Fórmula bas 5,208 2,792 0,501 0,213 2,049 3,356 0,099	23,37 7,69 0,658 0,034 0,071 8,732 93,22 93,22 93,22 2,528 0,562 0,238 1,831 3,12 0,089	21,58 6,802 0,682 0 0,11 9,637 93,97 5,613 2,387 0,716 0,311 1,592 2,833 0,091	2,1,47 7,074 0,74 0 0,091 9,615 94,33 5,613 2,387 0,716 0,311 1,592 2,833 0,091	21,91 6,596 0,651 0 0,066 9,623 93,95 5,586 2,414 0,704 0,314 1,648 2,805 0,098	21,91 6,596 0,651 0 0,066 9,623 93,95 5,528 2,472 0,729 0,323 1,548 2,885 0,087	7,983 0,571 0,038 0,104 9,638 92,27 5,557 2,443 0,577 0,233 1,913 2,89 0,078
Na₂O Na₂O K₂O Total Si AI [™] AI [™] Fe²+ Mn Ca	0,622 0,011 0,056 9,613 92,31 5,675 2,325 0,762 0,315 1,658 2,664 0,084 0,002	6,622 0,745 0 0,118 9,421 92,15 5,583 2,417 0,825 0,291 1,574 2,738 0,101 0	6,542 0,728 0 0,128 9,356 92,06 5,708 2,292 0,84 0,313 1,548 2,648 0,098 0	8,346 0,68 0 7,124 92,81 5,273 2,727 0,508 0,217 1,998 3,339 0,092 0	8,489 0,722 0,025 0,051 6,795 92,04 Fórmula bas 5,208 2,792 0,501 0,213 2,049 3,356 0,099 0,004	23,37 7,69 0,658 0,034 0,071 8,732 93,22 93,22 3,472 2,528 0,562 0,238 1,831 3,12 0,089 0,006	21,58 6,802 0,682 0 0,11 9,637 93,97 5,613 2,387 0,716 0,311 1,592 2,833 0,091 0	2,1,47 7,074 0,74 0,091 9,615 94,33 5,613 2,387 0,716 0,311 1,592 2,833 0,091 0	21,91 6,596 0,651 0 0,066 9,623 93,95 5,586 2,414 0,704 0,314 1,648 2,805 0,098 0	21,91 6,596 0,651 0 0,066 9,623 93,95 5,528 2,472 0,729 0,323 1,548 2,885 0,087 0	7,983 0,571 0,038 0,104 9,638 92,27 5,557 2,443 0,577 0,233 1,913 2,89 0,078 0,007
Na₂O Na₂O K₂O Total Si Al [™] Al [™] Fe²+ Mn Ca Na	0,622 0,011 0,056 9,613 92,31 5,675 2,325 0,762 0,315 1,658 2,664 0,084 0,002 0,017	6,622 0,745 0 0,118 9,421 92,15 5,583 2,417 0,825 0,291 1,574 2,738 0,101 0 0,036	6,542 0,728 0 0,128 9,356 92,06 5,708 2,292 0,84 0,313 1,548 2,648 0,098 0 0	8,346 0,68 0 0,05 7,124 92,81 5,273 2,727 0,508 0,217 1,998 3,339 0,092 0 0 0,016	8,489 0,722 0,025 0,051 6,795 92,04 Fórmula bass 5,208 2,792 0,501 0,213 2,049 3,356 0,099 0,004 0,016	23,37 7,69 0,658 0,034 0,071 8,732 93,22 ada en 22 O 5,472 2,528 0,562 0,238 1,831 3,12 0,089 0,006 0,022	21,58 6,802 0,682 0 9,637 93,97 5,613 2,387 0,716 0,311 1,592 2,833 0,091 0 0 0,033	2,1,47 7,074 0,74 0 0,091 9,615 94,33 5,613 2,387 0,716 0,311 1,592 2,833 0,091 0 0 0,033	21,91 6,596 0,651 0 0,066 9,623 93,95 5,586 2,414 0,704 0,314 1,648 2,805 0,098 0 0,028	21,91 6,596 0,651 0 0,066 9,623 93,95 5,528 2,472 0,729 0,323 1,548 2,885 0,087 0 0 0,02	7,983 0,571 0,038 0,104 9,638 92,27 5,557 2,443 0,577 0,233 1,913 2,89 0,078 0,007 0,032
Na₂O Na₂O K₂O Total Si Al [™] Al [™] Fe²+ Mn Ca Na K	0,622 0,011 0,056 9,613 92,31 5,675 2,325 0,762 0,315 1,658 2,664 0,084 0,002 0,017 1,946	6,622 0,745 0 0,118 9,421 92,15 5,583 2,417 0,825 0,291 1,574 2,738 0,101 0 0,036 1,916	6,542 0,728 0 9,356 92,06 5,708 2,292 0,84 0,313 1,548 2,648 0,098 0 0 0,039 1,894	8,346 0,68 0 0,05 7,124 92,81 5,273 2,727 0,508 0,217 1,998 3,339 0,092 0 0 0,016 1,459	8,489 0,722 0,025 0,051 6,795 92,04 Fórmula bass 5,208 2,792 0,501 0,213 2,049 3,356 0,099 0,004 0,016 1,403	23,37 7,69 0,658 0,034 0,071 8,732 93,22 93,22 0,3,22 2,528 0,562 0,238 1,831 3,12 0,089 0,006 0,022 1,779	21,58 6,802 0,682 0 93,97 5,613 2,387 0,716 0,311 1,592 2,833 0,091 0 0 0,033 1,93	2,1,47 7,074 0,74 0 0,091 9,615 94,33 5,613 2,387 0,716 0,311 1,592 2,833 0,091 0 0 0,033 1,93	21,91 6,596 0,651 0 0,066 9,623 93,95 5,586 2,414 0,704 0,314 1,648 2,805 0,098 0 0,028 1,917	21,91 6,596 0,651 0 0,066 9,623 93,95 5,528 2,472 0,729 0,323 1,548 2,885 0,087 0 0 0,02 1,932	7,983 0,571 0,038 0,104 9,638 92,27 5,557 2,443 0,577 0,233 1,913 2,89 0,078 0,007 0,032 1,976
Na2O Na2O K2O Total Si AI ^V AI ^V Ti Mg Fe ²⁺ Mn Ca Na K Total	0,622 0,011 0,056 9,613 92,31 5,675 2,325 0,762 0,315 1,658 2,664 0,084 0,002 0,017 1,946 15,45	6,622 0,745 0 0,118 9,421 92,15 5,583 2,417 0,825 0,291 1,574 2,738 0,101 0 0,036 1,916 15,48	6,542 0,728 0 0,128 9,356 92,06 5,708 2,292 0,84 0,313 1,548 2,648 0,098 0 0 0,039 1,894 15,38	8,346 0,68 0 0,05 7,124 92,81 5,273 2,727 0,508 0,217 1,998 3,339 0,092 0 0,016 1,459 15,63	8,489 0,722 0,025 0,051 6,795 92,04 Fórmula bass 5,208 2,792 0,501 0,213 2,049 3,356 0,099 0,004 0,016 1,403 15,64	23,37 7,69 0,658 0,034 0,071 8,732 93,22 93,22 0,3,22 2,528 0,562 0,238 1,831 3,12 0,089 0,006 0,022 1,779 15,65	21,58 6,802 0,682 0 93,97 5,613 2,387 0,716 0,311 1,592 2,833 0,091 0 0,033 1,93 15,51	21,47 7,074 0,74 0 9,615 94,33 5,613 2,387 0,716 0,311 1,592 2,833 0,091 0 0,033 1,93 15,51	21,91 6,596 0,651 0 0,066 9,623 93,95 5,586 2,414 0,704 0,314 1,648 2,805 0,098 0 0,028 1,917 15,51	21,91 6,596 0,651 0 0,066 9,623 93,95 5,528 2,472 0,729 0,323 1,548 2,885 0,087 0 0,02 1,932 15,52	7,983 0,571 0,038 0,104 9,638 92,27 5,557 2,443 0,577 0,233 1,913 2,89 0,078 0,007 0,032 1,976 15,7

Figura 18. Biotitas de la muestra AMC-0131 de la facies porfídica del Monzogranito de La Corcova Fuente: diagramas A de Rieder *et al.* (1998), B de Abdel Rahman (1994) y este trabajo

La biotita de la roca LMC-078 tiene concentraciones de SiO₂ entre 35,49 y 36,25%; FeO entre 17,79 y 20,38%; Al₂O₃ entre 16,49 y 17,58%, y MgO entre 9,41 y 10,01%, como se muestra en la tabla 11. Los cristales de biotita presentan valores altos de aluminio tetraédrico (Al^{IV}) (2,43 a 2,5 atom/unidad fórmula), que se ubican en el límite entre granitos peraluminosos y granitos calcoalcalinos orogénicos, como se observa en el gráfico de Abdel Rahman (1994) (figura 19B).

Las biotitas de la muestra LMC-078 tiene contenidos de SiO, poco variables. Presentan una composición con valores intermedios de Fe(Mg+Fe) entre 0,50 y 0,53, y no muestran mucha dispersión en el diagrama de Rieder *et al.* (1998) (figura 19A).

Se analizaron cristales de mica blanca en las muestras AMC-0131, LMC-078 y MIA-627A (los resultados de los análisis se presentan en tabla 12), que tienen contenidos de Si entre 6,21 y 6,40, de Mg entre 0,12 y 0,47, de Fe entre 0,39 y 0,56, y un contenido medio de Al. Los cristales tienen bajo contenido de Na (0,09 a 0,20).

Figura 19. Biotitas de la muestra LMC-078 de la facies típica del Monzogranito de La Corcova

Fuente: Rieder et al. (1998), Abdel Rahman (1994) y este trabajo

Punto analizado	LMC-078-C5-Bt-1	LMC-078-C5-Bt-2	LMC-078-C5-Bt-4	LMC-078-C6-Bt-1	LMC-078-C6-Bt-2	LMC-078-C6-Bt-3	LMC-078-C6-Bt-4
SiO ₂	35,67	35,63	35,49	36,25	36,02	36,04	35,51
TiO ₂	2,86	3	2,88	2,46	2,49	2,55	2,58
Al ₂ O ₃	17,12	16,82	17,14	17,22	17,58	17,1	16,49
FeO	18,68	18,07	17,83	18,06	17,79	19,09	20,38
MgO	9,41	10,01	9,69	9,98	9,91	9,72	9,55
MnO	0,58	0,63	0,53	0,52	0,49	0,47	0,52
CaO	0	0	0	0,01	0,03	0	0,05
Na₂O	0,19	0,24	0,24	0,38	0,27	0,14	0,12
K ₂ O	9,68	9,62	9,61	9,41	9,58	9,34	8,77
Total	94,2	94,02	93,41	94,29	94,16	94,44	93,98
			Fórmula bas	ada en 22 O			
Si	5,511	5,5	5,51	5,56	5,53	5,52	5,57
AI ^{IV}	2,489	2,5	2,49	2,44	2,47	2,48	2,43
Al ^{vi}	0,627	0,57	0,64	0,67	0,71	0,54	0,66
Ti	0,332	0,35	0,34	0,28	0,29	0,3	0,34
Mg	2,167	2,3	2,24	2,28	2,27	2,21	2,24
Fe ²⁺	2,413	2,33	2,31	2,32	2,28	2,65	2,3
Mn	0,076	0,08	0,07	0,07	0,06	0,07	0,07
Ca	0	0	0	0	0	0,01	0
Na	0,058	0,07	0,07	0,11	0,08	0,04	0,07
К	1,908	1,9	1,9	1,84	1,87	1,74	1,81
Total	15,58	15,6	15,58	15,58	15,57	15,56	15,49
Fe/(Fe+Mg)	0,53	0,5	0,51	0,5	0,5	0,54	0,51

Tabla 11. Composición química de biotitas de la roca LMC-078

Tabla 12. Composición química de las moscovitas de las muestras AMC-0131, LMC-078 y MIA-627A

Punto analizado	AMC-0131- C11-Msc-1	AMC-0131- C11-Msc-2	LMC-078-C2- Ms-1	LMC-078-C2- Ms-2	LMC-078-C2- Ms-3	LMC-078-C2- Ms-4	LMC-078-C7- Ms-2	LMC-078-C7- Ms-3	LMC-078-C7- Ms-4	LMC-078-C7- Ms-5
SiO ₂	46,14	46,19	45,66	45,63	46,16	45,57	45,75	45,65	45,26	46,13
TiO ₂	0,59	0,42	0,21	0,41	0,31	0,36	0,69	0,35	0,43	0,3
Al ₂ O ₃	30,83	30,75	32,32	32,25	32,1	31,9	31,39	31,27	30,35	30,75
FeO	3,39	3,46	3,65	3,61	3,76	3,76	3,75	3,84	4,85	4,09
MgO	0,76	0,77	0,91	0,87	0,95	0,94	0,99	1,24	2,28	1,48
MnO	0,02	0,03	0,03	0,02	0,06	0,06	0,05	0,04	0,07	0,01
CaO			0,04	0	0,01	0,01	0,02			0,01
Na ₂ O	0,7	0,69	0,56	0,53	0,54	0,51	0,5	0,46	0,38	0,38
K ₂ O	10,61	10,62	10,63	10,54	10,59	10,59	10,67	10,81	10,8	10,68
Total	93,02	92,92	94,01	93,86	94,47	93,71	93,81	93,65	94,41	93,82
				Fór	mula basada e	n 22 O				
Si	6,38	6,4	6,26	6,26	6,29	6,24	6,35	6,3	6,24	6,35
Aliv	1,62	1,6	1,74	1,74	1,71	1,76	1,65	1,7	1,76	1,65
Al ^{vi}	3,4	3,41	3,47	3,47	3,45	3,17	3,33	3,38	3,17	3,33
Ti	0,06	0,04	0,02	0,04	0,03	0,04	0,03	0,04	0,04	0,03
Mg	0,16	0,16	0,19	0,18	0,19	0,47	0,3	0,25	0,47	0,3
Fe ²⁺	0,39	0,4	0,42	0,41	0,43	0,56	0,47	0,44	0,56	0,47
Mn	0	0	0	0	0,01	0,01	0	0	0,01	0
Ca	0	0	0,01	0	0	0	0	0	0	0
Na	0,19	0,19	0,15	0,14	0,14	0,1	0,1	0,12	0,1	0,1
К	1,87	1,88	1,86	1,84	1,84	1,9	1,87	1,9	1,9	1,87
Total	14,08	14,08	14,12	14,09	14,09	14,25	14,12	14,14	14,25	14,12
Fe/(Fe+Mg)	0,71	0,71	0,69	0,7	0,69	0,54	0,61	0,64	0,54	0,61

analizado	MIA-627A-CI- Ms-1	MIA-627A-CT- Ms-2	MIA-627A-C1- Ms-4	MIA-627A-C4- Ms-1	MIA-627A-C4- Ms-3	MIA-627A-C4- Ms-4	MIA-627A-C4- Ms-5	MIA-627A-C4- Ms-6	
SiO ₂	45,43	45,29	45,13	46,57	45,57	45,11	45,53	45,58	
TiO ₂	0,43	0,75	0,59	0,47	0,67	0,7	0,46	0,61	
Al_2O_3	32,88	32,37	32,4	30,74	32,48	31,94	32,44	32,54	
FeO	3,59	3,39	3,55	4,11	3,49	3,55	3,62	3,44	
MgO	0,63	0,57	0,67	1,07	0,63	0,59	0,61	0,59	
MnO	0,06	0,07	0,05	0,07	0,03	0,06	0,03	0,03	
CaO					0		0,04	0,01	
Na ₂ O	0,65	0,61	0,75	0,36	0,55	0,57	0,46	0,33	
K ₂ O	10,52	10,6	10,32	10,82	10,66	10,67	10,82	11,02	
Total	94,17	93,64	93,45	94,2	94,08	93,2	93,98	94,14	
			Fór	mula basada er	n 22 O				
Si	6,21	6,23	6,22	6,38	6,24	6,24	6,24	6,24	
Aliv	1,79	1,77	1,78	1,62	1,76	1,76	1,76	1,76	
Alvi	3,51	3,47	3,47	3,35	3,47	3,45	3,49	3,49	
Ti	0,04	0,08	0,06	0,05	0,07	0,07	0,05	0,06	
Mg	0,13	0,12	0,14	0,22	0,13	0,12	0,12	0,12	
Fe ²⁺	0,41	0,39	0,41	0,47	0,4	0,41	0,41	0,39	
Mn	0,01	0,01	0,01	0,01	0	0,01	0	0	
Ca	0	0	0	0	0	0	0,01	0	
Na	0,17	0,16	0,2	0,09	0,15	0,15	0,12	0,09	
К	1,83	1,86	1,81	1,89	1,86	1,88	1,89	1,92	
Total	14,1	14,08	14,1	14,08	14,08	14,1	14,09	14,08	

MIA 6074 04 MIA 6074 04 ----

3.4. Magnetita

Se analizó un cristal de magnetita de la muestra AMC-0131 (figura 20). Los resultados obtenidos se presentan en la tabla 13. El cálculo del Fe3+ se hizo usando la fórmula de Droop (1987).

La magnetita presenta coloración gris, con baja reflectancia, es homogénea y de aspecto liso, con inclusiones de pirita de color amarillo pálido, con buena reflectancia. La magnetita tiene valores altos de Fe₂O₃ (entre 53,58 y 53,64%) y de FeO (entre 48,16 y 48,19%); concentraciones menores de MnO (entre 0,04 y 0,08%). El contenido de TiO₂ es menor o igual a 0,02%, y el de Al₂O₃ puede llegar hasta un 0,04%. La pirita tiene una concentración de azufre (S) de 52,78% y de hierro (Fe) de 45,57%, así como bajas concentraciones de Co, Cu y Ni (tabla 13).

Figura 20. Imágenes de electrones secundarios retrodispersados (BSE) correspondientes a magnetita y pirita de la muestra AMC-0131
Punto analizado	AMC-0131-C1-Mt-1	AMC-0131-C1-Mt-2	AMC-0131-C1-Mt-3	Elementos	AMC-0131-C1-Py-1
SiO ₂	0	0	0	Zn	-0,04
TiO ₂	0	0	0,02	As	0,06
Al ₂ O ₃	0	0,04	0	Са	ND
Cr ₂ O ₃	0,04	0,03	0,02	S	52,79
Fe ₂ O ₃	53,58	53,59	53,64	Fe	45,57
FeO	48,19	48,16	48,17	Co	0,41
MnO	0,04	0,06	0,08	Ni	0,11
MgO	0	0,01	0,03	Sb	-0,02
ZnO	0	0	0	Cu	0,66
CaO	0	0	0	Total	99,5
V ₂ O ₃	0	0	0	Zn	ND
NiO	0	0	0	As	0,03
Total	101,84	101,9	101,96	Са	ND
Fórmula ba	sada en 32 O	ę	6	6	6,33
Si	0	0	0	Fe	32,87
Ti	0	0	0,004	Co	0,28
AI	0	0,013	0	Ni	0,07
Cr	0,01	0,008	0,006	Sb	ND
V	0	0	0	Cu	0,42
Fe3+	11,995	11,99	11,993	Total	99,94
Fe ²⁺	11,985	11,971	11,966		
Mg	0	0,004	0,011		
Mn	0,01	0,015	0,02		
Zn	0	0	0		
Са	0	0	0		
Ni	0	0	0		
Total	24	24	24		
Mg/(Mg+Fe ²⁺)	0	0	0,001		
Cr/(Cr+Al)	1	0,388	1		
Fe2+/(Fe ²⁺ +Mg)	1	1	0,999		

Tabla 13. Composición química de magnetita y pirita de la muestra AMC-0131

Se analizaron dos cristales de magnetita de la muestra LMC-078 (tabla 14). El mineral tiene un contenido de FeO_{total} entre 96,36 y 97,78% (11,96 y 11,99 a.p.f.u de Fe³⁺, y aproximadamente 12 a.p.f.u. de Fe²⁺), es pobre en TiO₂, con valores < 0,07%. Presenta bajos contenidos de Al, Cr y Mn.

3.5. Ilmenita

Las ilmenitas de las muestras LMC-078 y MIA-627A tienen superficies porosas e irregulares, muestran contenidos de TiO, entre 46,6 y 53,6%, de FeO entre 32,9 y 38,4%, de Fe_2O_3 muy variable y de MnO entre 7,8 y 11%, y bajos contenidos de MgO y V₂O₃ (figuras 21 y 22).

Se realizó un análisis de EDS a la ilmenita de la muestra LMC-078-C11, con espectros fuertes de Ti, menor contenido de Fe, junto a un cristal de magnetita con superficie más lisa y homogénea, y sin inclusiones. En el espectro del cristal de ilmenita de la muestra MIA-627A-C3 se observaron altos contenidos de Fe y Ti, y abundantes inclusiones en la imagen retrodispersada (figura 22), así como un borde más oscuro causado posiblemente por alteración. Los resultados se presentan en la tabla 15.

Punto analizado	LMC-078-C10-Mt-1	LMC-078-C10-Mt-2	LMC-078-C10-Mt-3	LMC-078-C11-Mt-1	LMC-078-C11-Mt-2
SiO ₂	0,01	ND	0,02	ND	-0,03
TiO ₂	0,07	ND	ND	ND	0,07
Al_2O_3	0,05	0,02	0,01	0,02	0,01
Cr ₂ O ₃	0,07	0,05	0,03	0,03	0,03
FeO	97,13	97,78	97,44	96,83	96,36
MnO	0,04	0,06	0,07	0,03	0,02
MgO	0,01	-ND	0,01	0,03	-0,01
Total	97,2	97,68	97,37	96,72	96,28
Si	0	0	0,01	0	0
Ti	0,02	0	0	0	0,02
AI	0,02	0,01	0	0,01	0
Cr	0,02	0,01	0,01	0,01	0,01
Fe ³⁺	11,96	11,99	11,99	11,99	11,98
Fe ²⁺	11,97	11,98	11,97	11,97	11,98
Mg	0	0	0	0,01	0,01
Mn	0,01	0,01	0,02	0,01	0,01
Total	24	24	24	24	24

Tabla 14. Composición química de magnetita en la muestra LMC-078

Tabla 15. Composición química de ilmenita en las rocas LMC-078 y MIA-627A

Punto analizado	LMC-078-C11-IIm-1	LMC-078-C11-IIm-2	LMC-078-C11-IIm-3	MIA-627A-C3-IIm-2	MIA-627A-C3-IIm-3
SiO ₂		0,01			
TiO ₂	53,58	46,60	51,87	52,05	51,57
Cr ₂ O ₃	0,05		0,00	0,00	0,01
Al ₂ O ₃	0,01		0,02		
Fe ₂ O ₃		12,01	0,30	2,06	3,11
FeO	34,25	32,97	35,45	38,33	38,42
MnO	10,15	8,84	11,05	8,37	7,81
MgO	0,02		0,01	0,01	0,04
CaO					
V ₂ O ₃	0,39	0,34	0,33	0,34	0,34
Total		100,43	98,70	100,81	100,95
		Cationes calculade	os a partir de 6 (O)		
Si	0,0001	0,0003	0,0000	0,0000	0,0000
Ti	2,0771	1,7712	1,9936	1,9612	1,9411
Fe ³⁺	0,0000	0,4568	0,0116	0,0776	0,1172
Cr	0,0020	0,0000	0,0000	0,0000	0,0004
AI	0,0004	0,0001	0,0011	0,0000	0,0001
V	0,0161	0,0138	0,0136	0,0136	0,0136
Fe ²⁺	1,4761	1,3932	1,5145	1,6058	1,6076
Mg	0,0015	0,0000	0,0008	0,3550	0,0027
Mn	0,4429	0,3784	0,4783	0,3552	0,3308
Ca	0,0000	0,0000	0,0000	0,0000	0,0000
Total	4,0000	4,0000	4,0000	4,0000	4,0000

Volt	20,00 kV
Mag	x 150
Date	2015/07/31
Pixel	1280 × 960

8230

20,00 kV

Т3

30,00 sec

36,98 sec

19,00%

24000,00 C

Fórmu	la química	mass %	mol %	Cation	Sigma	Net	K ratio	Line
0								
TiO2	48,06	45,36	7,49	0,07	5644104	5,1037606		К
MnO	10,01	10,64	1,76	0,05	937234	1,2679609		К
FeO	41,93	44,01	7,27	0,07	3575132	5,5051199		К
Total	100,00	100,00	16,51					

Figura 21. Imágenes de electrones secundarios retrodispersados (BSE) correspondientes a Ilmenitas de la muestra LMC-078-C11, resultados de EDS y localización de los puntos de análisis de microsonda

/olt	20,00 kV
Mag	x 500
Date	2015/07/31
Pixel	1280 × 960

Fórmul	a química	mass %	mol %	Cation	Sigma	Net	K ratio	Line
0								
S	nd	nd					К	
TiO2	49,01	47,36	7,71	0,08	5973058	5,4012218		К
MnO	8,41	9,16	1,49	0,04	815792	1,1036647		К
FeO	38,59	41,47	6,75	0,07	3409003	5,2493085		К
BaO	3,98	2,01	0,33	0,08	487928	0,6846878		L
Total	100,00	100,00	16,29					

Acquisition Condition Instrument 8230 Volt 20,00 kV Current Т3 Process Time Live time 30,00 sec Real Time 36,98 sec Dead time 19,00% Count Rate 24101,00 C

Figura 22. Imágenes de electrones secundarios retrodispersados (BSE) correspondientes a Ilmenita de la muestra MIA-627A-C3, resultados de EDS y localización de los puntos analizados con la microsonda

4. Litogeoquímica

La caracterización litogeoquímica del Monzogranito de La Corcova se realizó a partir de doce análisis realizados en diferentes muestras, a saber: de la facies normal y la facies porfídica (AMC-0129, AMC-0131, AMC-0128 A, LMC-077, LMC-078), seis muestras: una de dique (JGB-460A), una de monzogranito deformado (MIA-627A), una de cuarzodiorita de borde (MIA-630 B), una de anfibolita (MIA-627B-IGM-900932) y una de granofelsa de Qtz-Fsp (MIA-631-IGM-900937), una muestra tomada del trabajo de Van der Lelij (2013) (10VDL05), que corresponde a un dique granítico no deformado que corta el Neis de Bucaramanga y que podría estar relacionada con el Monzogranito de La Corcova, y una muestra que atraviesa el Neis de Bucaramanga cerca al contacto con el plutón LMC-065 (IGM-900921). A cada una de las muestras se le realizó análisis petrográfico, y a algunas de ellas, la datación U/Pb en circón. Los análisis químicos se hicieron en el laboratorio del Servicio Geológico Colombiano, sede Bogotá. Para los óxidos mayores se utilizó el método de fluorescencia de rayos X incluyendo los elementos trazas V, Mo, Nb, Ta, W, Zr y Hf, y para el resto de elementos traza y tierras raras se utilizó el equipo de espectrometría de masas con plasma acoplado inductivamente (ICP-MS).

Los análisis de fluorescencia se realizaron con un espectrómetro de rayos X, FRX, Panalytical Axios Mineral para análisis elemental, configurado con un software especializado para materiales geológicos. La cuantificación de los óxidos mayores se realizó en muestra fundida con metaborato y tetraborato de litio, y la cuantificación de elementos menores se realizó en muestra prensada. El análisis de elementos traza de interés geoquímico en las rocas se realizó con un espectrómetro de masas con plasma inductivamente acoplado ICP-MS, Perkin Elmer Nexion. Para la disolución de la muestra se efectuó un ataque por pasos utilizando ácidos inorgánicos fuertes (HF, HNO₃, HClO₄ y HCl). El proceso se realizó en sistema abierto, empleando distintas rampas de temperatura y tiempos de calentamiento. Gran parte de los diagramas geoquímicos se generaron con el uso del software GCD Kit version 4.0 (Janoušek et al., 2006).

Los contenidos de óxidos mayores se recalcularon teniendo en cuenta los valores de LOI (perdidas por ignición). Los resultados se muestran en la tabla 16, en la que las muestras se agruparon teniendo en cuenta los patrones que presentaron en el diagrama de REE vs. condrito de Nakamura (1974). Se considera que diferentes patrones representan probablemente pulsos magmáticos de edad diferente, que pudieron originarse en fuentes distintas. Las variaciones en las relaciones entre las REE suelen ser características heredadas de la fuente, o debidas al fraccionamiento durante la evolución de los magmas.

4.1. Óxidos de elementos mayores

Los valores obtenidos de SiO₂ en rocas granitoides del Monzogranito de La Corcova variaron entre 69,56 y 75,45%, y solo las muestras 1 0VDL05 y MIA-630B presentaron valores de SiO₂ menores (68,3% y 57,13, respectivamente). Los valores obtenidos de Al₂O₃, Fe₂O₃, MgO, Na₂O y CaO disminuyen con el aumento del SiO₂; el K₂O varía entre 4,6 y 5,3%; el CaO varía entre 0,7 y 2,5%; el MgO presenta valores < 1% y TiO₂ < 0,6%, y por otra parte las razones K₃O/Na₂O son > 1.

La roca MIA-630B, clasificada como cuarzodiorita, presenta valores bajos en SiO₂ (57,1%), un contenido de Al₂O₃ de 16%, de MgO de 4,11%, y un contenido de álcalis (Na₂O + K₂O) de 5,3%, y de TiO₂ alto (> 1,3%). La roca clasificada como anfibolita (MIA-627B) presenta los menores valores de SiO₂ (49,6%), un alto contenido de CaO (7,67%) y de MgO (4,8%). La roca clasificada como granofelsa (MIA-631) presenta contenidos de óxidos mayores similares a los de los monzogranitos y no muestra diferencias químicas notorias con respecto a estos.

Según los diagramas K_2O versus SiO₂ (Peccerillo y Taylor, 1976) y Hastie *et al.*, (2007) (figura 23), las rocas granitoides analizadas de la facies normal y porfídica del Monzogranito de La Corcova pertenecen a las series calcoalcalina alta en K y shoshonítica. Las muestras MIA-627B (IGM-900932), correspondiente a la anfibolita, y la muestra MIA-630B (IGM-900936), a cuarzodiorita, pertenecen al campo de la serie calcoalcalina alta en K. A diferencia de las demás muestras, corresponden a rocas con menores contenidos de SiO₂ y mayores contenidos de Co (38 y 55 ppm). En el diagrama de discriminación de Th-Co de Hastie *et al.* (2007), la roca 1 0VDL05 analizada por Lelij (2013), a diferencia de las demás muestras, pertenece al campo de las rocas ácidas (D/R) y de la serie calcoalcalina alta en K y shoshonítica.

En el diagrama AFM de Irvine y Baragar (1971) (figura 24) se puede observar que las rocas analizadas hacen parte de las serie calcoalcalina: la muestra MIA-6287B (IGM-900932), correspondiente a la anfibolita, que presenta un valor alto de Fe_2O_3 (13,97%) y valores altos de MgO (4,80%), pertenece a la serie toleítica, y probablemente corresponde a una roca menos diferenciada que las del Monzogranito de La Corcova, lo cual es coherente con su menor contenido de SiO_2 (tabla 1 6) y con los resultados de los análisis petrográficos. La muestra MIA-630B, clasificada como cuarzodiorita, a diferencia de las demás muestras, pertenece a la serie calcoalcalina.

Tabla 16. Composición de óxidos mayores en rocas granitoides, diques y rocas de caja del Monzogranito de La Corcova

IGM	N. Campo	W	Ν	SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	MnO	LOI
900862	AMC-0129	1113420	1280055	69,56	0,62	16,59	1,66	0,24	1,74	3,17	5,29		0,05	0,40
900863	AMC-0131	1114638	1284010	70,89	0,49	15,97	1,51	0,14	1,45	3,10	4,76		0,07	0,32
900861	AMC-0128A	1114798	1281084	73,2	0,3	13,9	2,05	0,39	1,54	2,52	5,27	0,1	0,05	0,58
900929	LMC-077	1112260	1283759	75,06	0,17	13,41	1,35	0,20	1,24	2,66	5,36	0,0	0,05	0,38
900921	LMC-065	1119186	1276101	75,45	0,13	13,65	1,26	0,09	0,72	2,20	5,23		0,05	0,45
900931	MIA-627A	1119356	1257497	74,23	0,07	15,23	0,86	0,09	0,71	3,03	4,62		0,06	0,38
900909	JGB-460A	1117564	1268142	77,36	0,03	11,90	0,79	0,05	0,57	2,86	4,95		0,02	0,46
10	10VDL05	1117933	1277114	68,37	0,60	15,35	3,66	1,03	2,50	3,01	4,22	0,2	0,15	0,91
900937	MIA-631	1118186	1269536	71,18	0,42	14,18	2,49	0,67	2,27	2,54	5,01	0,1	0,06	0,93
900930	LMC-078	1115257	1286012	72,56	0,24	14,98	1,60	0,52	0,77	2,89	4,54		0,07	0,88
900932	MIA-627B	1119356	1257497	49,62	3,00	15,26	13,97	4,80	7,67	1,95	1,47	0,4	0,21	1,54
900936	MIA-630B	1114060	1270011	57,13	1,31	16,06	8,58	4,11	5,89	2,81	2,56	0,3	0,17	0,94

Rojo: facies normal y porfirítica; verde: rocas de dique, negro: facies monzogranítica; azul: cuarzodioritas de borde y anfibolita. Los colores en la tabla indican la manera en que se agrupan las muestras y se relacionan con el color de las muestras en las figuras

Figura 23. Clasificación de rocas del Monzogranito de La Corcova, diques y rocas metamorficas asociadas Fuente: A) Diagrama K₂O vs SiO₂ (Peccerillo y Taylor, 1976) y B) Diagrama de clasificación Th-Co (Hastie *et al.*, 2007), este trabajo

En los diagramas TAS de Middlemost (1985, 1994) (figura 25 A y B), las rocas analizadas del Monzogranito de La Corcova, de acuerdo con su clasificación petrográfica, corresponden a rocas subalcalinas que pertenecen al campo de los granitos. La muestra (JGB-460B-IGM-900909) forma parte del campo de los granitos de feldespato alcalino, y otras rocas, como la 10VDL05 y las cuarzomonzodioritas (MIA-630B- IGM-900936), pertenecen al campo de las granodioritas. Los diques y cuerpos intrusivos químicamente menores hacen parte del campo de los granitos, y la anfibolita (MIA-627B, IGM-900932), del campo de los gabros-cuarzodioritas.

Figura 24. Diagrama AFM (Irvine y Baragar, 1971) correspondiente a las rocas del Monzogranito de La Corcova

Figura 25. Diagramas de clasificación química de rocas del Monzogranito de La Corcova. A) Diagrama de Middlemost (1985). B) Diagrama de Middlemost (1994)

En el gráfico de Shand (1943), los granitos que componen el Monzogranito de La Corcova hacen parte del campo peraluminoso, y presenta valores de $(Na_2O+K_2O/Al_2O_3)_{mol}(A/NK) > 1$, y valores de $(Al_2O_3/Na_2O+K_2O+CaO)_{mol}(A/CNK) > 1$, lo que podría sugerir aporte al magma de material de corteza continental, con valores altos de SiO₂ (> 68%). Por otra parte, la cuarzodiorita (MIA-630B-IGM-900936) y la anfibolita (MIA-627B, IGM-900932) pertenecen al campo metaluminoso (figura 26A).

En el diagrama de Debon y Le Fort (1983), modificado por Villaseca *et al.* (1998) (figura 26B), las rocas analizadas se agrupan en el campo peraluminoso, la mayoría de muestras en el campo de los granitos peraluminosos félsicos (f-P), algunas en el campo de los granitoides moderadamente peraluminosos (m-P), y solo la muestra 10VDL05 se diferencia de las demás analizadas.

En la mayoría de rocas, el índice de saturación de alúmina oscila entre 1 y 2, y la relación A/CNK es > 1. Las muestras presentan valores de A/NK entre 1 y 2, sus relaciones K_2O/Na_2O oscilan entre 1,5 y 2,3, y el Al_2O_3 es mayor que Cao+Na_O+K_2O. Únicamente las muestras MIA-630B-IGM-900936 y MIA-627B, IGM-900932 presentan relación A/NK > 2, relación A/CNK < 1, relación $K_2O/Na_2O < 1$ y $Al_2O_3 > Cao+Na_2O+K_2O$.

4.2. Elementos traza y tierras raras

En la tabla 1 7 se presentan los resultados de los análisis químicos de elementos traza y tierras raras correspondientes a rocas del Monzogranito de La Corcova, diques y rocas metamórficas.

Para la elaboración de los diagramas de elementos de las tierras raras (REE) normalizados con respecto al condrito según los valores de Nakamura (1974), las muestras analizadas del Monzogranito de La Corcova se agruparon teniendo en cuenta la facies que representan y el patrón geoquímico de REE. Se reconocieron cuatro patrones de REE, que podrían sugerir diferentes eventos o pulsos magmáticos dentro del plutón. El comportamiento general de los cuatro patrones es comparable con el de rocas generadas en ambientes de subducción por encima de la placa subducida, con enriquecimiento en tierras raras livianas (LREE) entre 10 y 300 veces el condrito y empobrecimiento hacia las tierras raras pesadas (HREE), además de anomalía negativa de Eu, que se incrementa con el aumento del contenido de SiO, en las rocas, probablemente debida a fraccionamiento de la plagioclasa en el magma, que permitiría que Eu⁺³ cambie su estado de oxidación a Eu^{+2} (figura 27). Las relaciones $Eu/Eu^* < 1 y (La/Sm)_N > 2$ evidencian un enriquecimiento de tierras raras ligeras con relación a las HREE en todas las muestras (tabla 18).

Figura 26. Diagramas de alcalinidad-aluminosidad correspondientes a rocas del Monzogranito de La Corcova. A) Diagrama de Shand (1943). B) Diagrama de Debon y Le Fort (1983) modificado por Villaseca *et al.* (1998).

Convenciones: f-P: granitoides peraluminosos félsicos; h-P: granitoides altamente peraluminosos; m-P: granitoides medianamente peraluminosos

IGM	900861	900862	900929	900863	900921	900931	900909	900937	900930		900936	900932	Límites	s de
N. campo	AMC- 0128A	AMC-0129	LMC-077	AMC-0131	LMC-065	MIA-627A	JGB-460A	MIA-631	LMC-078	10VDL05	MIA-630B	MIA-627B	detecc	ión
Li	31	32	40	51	5,9	9	3,8	24	16		50	32	ppm	0,5
Be	2,5	2,3	3,2	3	2,3	6,9	3,3	3,9	3,3	4,21	3,3	2,1	ppm	0,1
Sc	4,6	4,7	5,3	5,5	19	5,3	4,8	10	11	11	34	59	ppm	0,1
v	20	14	10	13	14	8,7	13	33	14	46	201	417	(mg/Kg)	0,2
Cr	4,8	2	1,7	1,8	13	2,7	1,5	7,7	3,1	8	34	4,9	ppm	0,5
Co	13	17	14	13	16	18	16	14	16	6,4	38	55	ppm	0,8
Ni	4,3	3,3	2,7	2,7	17	7,4	2,2	7,9	32	6,4	42	13	ppm	0,5
Cu	5,2	5,4	4,1	4,1	12	4,9	4,2	12	8,3	10,8	28	55	ppm	1
Zn	35	26	17	26	49	16	6,5	44	40	65	93	147	ppm	4
Ga	18	18	20	19	21	21	15	20	20	19,9	23	25	ppm	0,2
As	2,6	1,9	1,9	1,7	3,7	1,3	1,1	3,4	2,6	3	2,5	2,5	ppm	0,4
Rb	210	231	273	268	126	291	173	229	221	144,6	177	126	ppm	0,2
Sr	169,6	130,3	132,7	106,5	62,7	62,5	110,5	237,6	180,3	255,8	445,8	321,1	ppm	1
Cd	< 0,08	< 0,08	< 0,08	< 0,08	< 0,08	< 0,08	< 0,08	0,08	0,1		0,13	0,19	ppm	0,08
In	0,03	0,02	0,02	0,03	0,14	0,05	0,02	0,04	0,04		0,08	0,1		
Cs	2,7	2,5	3,2	4,3	1,1	2,6	1,3	2,2	2,6	2,1	3,5	2	ppm	0,1
Ва	1627	1141,1	1008,8	776,4	1061,9	315,9	584	1184,5	1103,1	1058,5	627,6	375,7	ppm	1
La	83,4	62	58,7	47,8	95	19,4	21	61,7	55,9	78,6	45	24,6	ppm	0,1
Ce	158,8	120,3	111,1	93,1	190	38,9	38	120,7	113,7	138,3	94,2	56,8	ppm	0,1
Pr	17,5	14,4	12,3	10,5	25	4,7	5,5	15,2	13,4	14,7	12,1	7,8	ppm	0,1
Nd	64,7	44,9	37,1	30,6	91	17,6	18,1	50,7	37,4	54	47,3	32,7	ppm	0,1
Sm	8,8	8,5	7,1	6,4	16	3,8	5,3	9,8	8,7	9,2	9,3	7,4	ppm	0,01
Eu	1,22	0,91	1,04	0,75	1,9	0,48	0,66	1,41	1,44	1,8	1,43	1,54	ppm	0,01
Gd	6,37	5,72	5,4	4,57	11	2,89	4,18	6,86	6,47	7	6,76	5,12	ppm	0,01
Tb	0,94	0,85	0,98	0,74	1,9	0,89	1,12	1,48	1,18	1,1	1,73	1,23	ppm	0,01
Dy	4,26	3,58	3,76	3,27	6,6	5,16	6,96	6,78	5,53	6,2	8,96	6,79	ppm	0,01
Но	0,72	0,54	0,66	0,51	1,1	1,07	1,5	1,38	1,04	1,3	1,93	1,38	ppm	0,01
Er	2,15	1,48	1,78	1,42	2,8	3,26	4,58	4,11	2,95	3,5	5,72	3,99	ppm	0,01
Tm	0,23	0,15	0,2	0,16	0,24	0,5	0,7	0,54	0,37	0,5	0,79	0,53	ppm	0,01
Yb	1,36	0,91	1,27	1,04	1,5	3,44	4,86	3,49	2,36	3,3	5,1	3,31	ppm	0,01
Lu	0,18	0,12	0,19	0,15	0,22	0,5	0,73	0,51	0,34	0,5	0,71	0,48	ppm	0,01
ТІ	1,37	1,5	1,77	1,72	0,65	1,56	0,97	1,36	1,32		1,05	0,91	ppm	0,01
Pb	17,66	21,11	22,31	21,19	14	22,18	18,51	23,78	20,92	15,9	9,34	8,37	ppm	2
Bi	0,07	0,07	< 0,05	0,08	< 0,05	0,11	0,09	0,06	0,06	0,1	0,09	0,14	ppm	0,1
Th	32,9	31,4	31,2	28,2	20,9	16,2	24	29,8	30,8	22,7	12,7	4,5	ppm	0,1
U	2,5	2	2	2,7	2,3	8,5	10,7	6,2	2,2	3,1	6,7	1	ppm	0
Zr	205,5	185,2	132,5	126,7	193	60,6	51,8	214,3	205,7	340,5	175,2	153,4	(mg/Kg)	2
Nb	10,5	12,6	13,6	14,9	11,1	15,1	15,8	14,4	14,2	16,4	16,4	13,1	(mg/Kg)	2
w	37,3	58,5	44	51,6	50,8	66,1	58,9	36,5	42,8	0,2	31,4	23,3	(mg/Kg)	8

Tabla 17. Resultados de elementos traza y tierras raras en rocas del Monzogranito de La Corcova

Los colores en la tabla indican la manera en que se agrupan las muestras y se relacionan con el color de las muestras en las figuras

Al cruzar los datos de los diferentes patrones de REE con la edad obtenida por el método U/Pb en circones y la distribución espacial de las diferentes muestras (figura 27) se pudo observar que las rocas de composición monzogranítica a sienogranítica de las facies normal y porfídica presentan un patrón de REE paralelo (figura 27A, en rojo), con un empobrecimiento progresivo de las LREE hacia las HREE, pendiente negativa y anomalía negativa de Eu, patrón que se puede asociar con rocas generadas en un ambiente de arco. La distribución espacial de las muestra asociadas a este patrón de REE se restringe a la zona norte del plutón, y corresponde a la facies porfídica (AMC-0131) de Ward *et al.* (1973), a la facies normal del plutón (AMC-0128 A, AMC-0129 y LMC-077) y a diques y apófisis que intruyen el Neis de Bucaramanga (LMC-065). Se ha obtenido una edad promedio ponderada en la roca AMC-0131 de 192,5 \pm 2,6 Ma, que corresponde a la edad más joven, y una edad de 204,8 \pm 6,1 Ma para la roca LMC-077, que corresponde a la edad más antigua en el Monzogranito de La Corcova. Ambas rocas muestran patrones similares, aunque el patrón de la muestra LMC-077 cruza localmente las otras rocas.

Figura 27. Diagramas de REE normalizados con respecto al condrito (Nakamura, 1974). Comparación de los patrones de las rocas del Monzogranito de La Corcova. A) Muestras de la facies normal y portídica clasificadas como granitos. B) Muestras de la facies normal clasificadas como granitos y granodioritas (negro). C) Muestras de diques clasificadas como monzogranitos y sienogranitos (verde). D) Muestras de anfibolita y cuarzodiorita (azul)

El segundo patrón en los diagramas de elementos de las tierras raras (REE) normalizado con respecto al condrito según los valores de Nakamura (1974) (figura 27B) comprende una muestra de granodiorita (Van der Lelij, 2013, 10VDL05), una de granofelsa de Qtz-Fsp (MIA-631), clasificada químicamente como un granito y un monzogranito (LMC-078). El patrón de REE (figura 27B) muestra empobrecimiento progresivo desde las LREE hacia las HREE (con valores mayores que los de las muestras del patrón anterior), pendiente negativa y anomalía negativa de Eu, lo que se puede asociar a rocas generadas en un ambiente de arco. Estas rocas se encuentran distribuidas en la parte central y norte del plutón y en un dique que atraviesa el Neis de Bucaramanga. La edad U/Pb obtenida en la muestra 10VDL05 es de 198,3 ± 1,8 Ma, que en estas rocas sugiere un pulso magmático diferente, con una edad más antigua que la de las muestras agrupadas en la figura 27A y en la tabla 17.

El tercer patrón en los diagramas de elementos de las tierras raras (REE) normalizado a condrito según los valores de Nakamura (1974) (figura 27C) comprende dos muestras de diques (MIA-627A y JGB-460-A) clasificadas químicamente como granitos y petrográficamente como un monzogranito y un sienogranito, respectivamente. El patrón de las REE normalizado con respecto al condrito de Nakamura (1974) muestra una notable diferencia respecto de los dos patrones anteriores: presenta empobrecimiento progresivo desde las LREE hacia las HREE, con una pronunciada anomalía negativa de Eu y un patrón plano de las HREE entre Tb y Lu, con valores de veinte a treinta veces el condrito, patrón que se podría asociar a rocas generadas en un ambiente de arco. De la muestra MIA-627-A se obtuvo una edad promedio ponderada U/Pb de 199,5 ± 4,6 Ma, que permite sugerir que estos diques intruyen rocas que superan los 199 Ma dentro del plutón. Estas rocas se encuentran localizadas hacia

el centro y sur del cuerpo y representan un tercer pulso magmático de composición monzo-sienogranítico.

Por último, el cuarto patrón en los diagramas de elementos de las tierras raras (REE) normalizado con respecto al condrito según los valores de Nakamura (1974) (figura 27D) comprende una cuarzodiorita (MIA-630B) y una anfibolita con cuarzo (MIA-627B). El patrón de REE (figura 27D) de ambas rocas muestra un empobrecimiento progresivo desde las LREE hacia las HREE, una pendiente negativa y una anomalía negativa de Eu en la cuarzodiorita, mientras que la anfibolita no presenta la anomalía negativa de Eu. El patrón de ambas muestras se asocia a rocas generadas en un ambiente de arco, pero con diferente origen. La edad obtenida por el método U/Pb en la muestra de cuarzodiorita (MIA-630B) es de 202,7 \pm 1,2 Ma, edad que corresponde a una de las más antiguas del Monzogranito de La Corcova.

En la tabla 18 se presentan las relaciones normalizadas con respecto al condrito de Nakamura (1974) correspondientes a algunas REE. Las rocas de dique presentan las menores sumatorias de REE (102,71 a 113,15), con unas relaciones (Eu/Yb)_N de 0,4, (Cs/Yb)_N de 2,88 a 1,99 y (La/Yb)_N de 3,77 a 2,88 más bajas que las de las demás rocas del monzogranito analizadas. Las rocas que representan la facies normal y porfídica muestran notable diferencia respecto de las demás rocas en la relación (La/ $ext{Yb}_{N}$, con valores muy altos (de 30,7 a 45,4) y la relación (Ce/Yb) entre 22,2 y 33,6. Las rocas del segundo patrón presentan valores de (La/Yb)_N entre 11,8 y 15,8, y (Ce/Yb) entre 2,9 y 3,5. Las rocas de dique del tercer patrón tienen valores de (La/Yb)_N entre 2,88 y 3,77, y (Ce/Yb) entre 1,99 y 2,88. La cuarzodiorita y la anfibolita presentan relaciones (La/Yb)_N de 5,89 y 4,96, y (Ce/Yb)_N entre 4,7 y 4,37, respectivamente.

El Monzogranito de La Corcova presenta generalmente relaciones (La/Yb)_N > 2, valores que se podrían asociar con rocas formadas en la corteza continental. Se presentan notables diferencias entre los cuatro patrones de REE con mayor o menor pendiente, lo que permite sugerir variaciones composicionales en los magmas, es decir, cambios en la fuente magmática en las rocas de cada patrón, con mayor o menor aporte del manto y de la corteza. Los valores altos de (La/Yb),, con patrones caracterizados por una pronunciada pendiente entre las LREE y las HREE, podrían representar mayores aportes de la corteza, periodos de mayor flujo magmático y/o corteza más gruesa. Los menores valores de (La/Yb), podrían indicar mayores aportes al magma de material del manto y periodos de más bajo flujo magmático; menores pendientes en los patrones de REE podrían relacionarse con profundidades menores de génesis del magma (Girardi, 2008).

IGM	Eu/Eu*	La _N /Yb _N	La _N /Sm _N	Ce _N /Yb _N	Ce _N /Sm _N	Eu _N /Yb _N	Sum-REE
900862	0,4	45,44	4,5	33,62	3,33	2,86	264,4
900861	0,5	40,78	5,8	29,62	4,21	2,55	350,7
900863	0,42	30,69	4,59	22,79	3,41	2,05	201,05
900929	0,52	30,73	5,09	22,21	3,68	2,35	241,55
900921	0,43	40,84	3,56	31,2	2,72	3,48	445,1
10	0,67	15,88	5,28	10,66	3,54	1,52	319,9
900930	0,59	15,78	3,96	12,24	3,07	1,74	250,83
900937	0,53	11,79	3,87	8,8	2,89	1,15	284,63
900931	0,45	3,77	3,13	2,88	2,39	0,4	102,71
900909	0,43	2,88	2,45	1,99	1,69	0,39	113,15
900936	0,55	5,89	2,97	4,7	2,37	0,8	241
900932	0,77	4,96	2,03	4,37	1,79	1,33	153,71

Tabla 18. Valores normalizados de REE según el condrito de Nakamura (1974) correspondientes a rocas del Monzogranito de La Corcova

Los colores en la tabla indican la manera en que se agrupan las muestras y se relacionan con el color de las muestras en las figuras

En el diagrama multielemental de elementos trazas normalizado con respecto al NMORB (Sun y McDonough, 1989), las rocas del Monzogranito de La Corcova muestran un empobrecimiento en los elementos inmóviles Nb, Sr, Zr, Ti y P, lo que podría corresponder a una separación de fases minerales accesorias tales como titanita, rutilo, circón y apatito, reflejo de la evolución magmática (Winter, 2001), donde el Nb presenta un comportamiento geoquímico similar al Ti (figura 28). Valores altos de los elementos litófilos de alto radio iónico (LILE) Cs, Ba y Th indican una afinidad con corteza continental (márgenes convergentes), donde abundan estos elementos altamente incompatibles. Valores altos de Sr, K, Ba y Rb pueden deberse a su movilización a partir de fluidos que interactúan en la zona de subducción con el magma (figura 28A). Las anomalías negativas de Nb, Ti y P son

características de arcos magmáticos relacionados con ambientes de subducción, con empobrecimiento progresivo. Estas rocas también presentan una anomalía negativa de Nb con respecto al Th y Ce, signatura geoquímica típica de magmas originados en ambientes tectónicos relacionados con arcos, con un patrón subparalelo en la mayoría de las muestras en cada grupo de rocas.

Los elementos traza más móviles (LILE) presentan concentraciones mayores que el N-MORB, mientras que los elementos traza menos móviles, en los patrones de diques (figura 28C), cuarzodiorita y anfibolita (figura 28D), presentan concentraciones por encima del N-MORB, y en las rocas monzograníticas de la facies normal y porfiríticas (figura 28A y B), por debajo del N-MORB.

Figura 28. Diagrama multielemental normalizado con respecto a NMORB. Rojo: granitos de la facies normal y portídica. Negro: granitos y granodioritas de facies normales del plutón. Verde: rocas de diques clasificadas como monzogranitos y sienogranitos. Azul: antibolita y cuarzodiorita

Fuente: Sun y McDonough (1989) y este trabajo

Al observar los grupos de rocas que sugieren diferentes pulsos magmáticos en el Monzogranito de La Corcova, en el diagrama multielemental de elementos incompatibles (Sun y McDonough, 1989) se presentan pequeñas diferencias en los trenes de los elementos traza. Se resalta que las rocas de la facies normal y porfídica presentan mayores anomalías de titanio y valores más bajos que el N-MORB de Dy, Y, Yb y Lu.

4.3. Discriminación del ambiente tectónico

En los diagramas de Whalen *et al.* (1987) y de Frost *et al.* (2001), las rocas del Monzogranito de La Corcova se clasifican en el campo de los granitos tipo I y tipo S (figura 29 A y B); según los diagramas Rb/Zr vs. Nb de Martin (1994) (figura 29C) corresponden a granitos de arco magmático. El diagrama Rb/Zr vs. Nb de Martin (1994) indica que las rocas del Monzogranito de La Corcova pertenecen a un arco magmático normal. Se puede interpretar que el magma parental de los granitoides es de zona de subducción y que habría tenido dos fuentes: por un lado, un componente relacionado con la placa oceánica más los sedimentos oceánicos subducidos, y por otra parte, un componente importante perteneciente a la corteza continental, y la mayoría de las rocas se clasi-

ficarían entre granitos tipo S e I. Mineralógicamente, algunas rocas analizadas del Monzogranito de La Corcova tienen hornblenda y carecen de moscovita, presentan facies intermedias tonalíticas con hornblenda y biotita. El feldespato potásico es blanco y la biotita, parda; estas características se asocian a granitos tipo I altamente diferenciados. En el diagrama de Frost *et al.* (2001), las rocas asociadas a la facies porfídica pertenecen al campo de los granitos ferrosos, junto con las rocas de dique, mientras que las rocas monzograníticas y cuarzodioríticas más antiguas hacen parte del campo de los granitos magnesianos frecuentes en ambientes poscolisionales y de arcos, y pueden haber heredado esta condición de la fusión parcial de la corteza continental (Frost y Frost, 2008) (figura 29D).

Van der Lelij (2013) considera que los granitoides de Santander del Triásico-Jurásico presentan valores en roca total de ɛNdt, que se correlacionan bien con ɛHft del circón y hacen parte de los trenes de plutones formados por areniscas orogénicas recicladas y material de manto.

Los diques que intruyen el Monzogranito de La Corcova corresponden a granitos de arco magmático, según los diagramas Rb/Zr vs. Nb de Martin (1994) (figura 29C) y los aracnogramas de tierras raras.

Figura 29. Diagramas discriminantes del ambiente tectónico de emplazamiento del Monzogranito de La Corcova. A) Diagrama de Whalen *et al.* (1987) de discriminación de granitos I, S, A. B) Diagrama de Frost *et al.* (2001) de discriminación de granitoides tipo I y S. C) Diagrama Rb/Zr vs. Nb de Martin (1994). D) Diagrama de Frost *et al.* (2001)

5. Posición estratigráfica y edad

El Monzogranito de La Corcova intruye la formación Silgará, el Neis de Bucaramanga y, localmente, el Ortoneis de Berlín (Ward *et al.*, 1973). Además, está atravesado por diques graníticos de edad Jurásica.

Los primeros resultados radiométricos de este cuerpo fueron presentados por Goldsmith *et al.* (1971), quienes obtuvieron edades utilizando el método K-Ar en moscovita y biotita; las edades obtenidas fueron de 195 ± 7 Ma en la moscovita y 111 ± 4 Ma en la biotita. El resultado en moscovita es interpretado como la edad del emplazamiento de los batolitos (Goldsmith *et al.*, 1971) y da una edad semejante a las edades K/Ar en biotita de rocas de los batolitos principales del Macizo de Santander (Ward *et al.*, 1973). La edad obtenida en la biotita fue interpretada por Goldsmith *et al.* (1971) como indicativa de un evento térmico local no identificado que afectó a la biotita; sin embargo, hay que considerar el estado de alteración de la biotita analizada, ya que el resultado pierde validez si la biotita se encontraba cloritizada.

Ward *et al.* (1973) sugirieren que el Monzogranito de La Corcova parecería ocupar una posición intermedia en el tiempo entre las rocas ígneas granodioríticas grises y las ígneas rosadas más graníticas.

Recientemente, Van der Lelij (2013) presentó una datación obtenida con el método U-Pb en circón, y reportó una edad de 198,3 \pm 1,8 Ma para una muestra de dique del Monzogranito de La Corcova (10VDL05) en el Neis de Bucaramanga. La muestra presenta paralelismo con las rocas de composición granítica que se localizan en el interior del plutón en los aracnogramas de REE normalizados con respecto a condrito de Nakamura (1974), lo que permite sugerir que hace parte de uno de los pulsos que dieron origen a este plutón (figura 27B).

Para este proyecto se dataron cinco muestras, cuatro de ellas tomadas en el interior del Monzogranito de La Corcova y una quinta correspondiente a un xenolito del Neis de Bucaramanga en el interior del plutón. Las dataciones se relacionaron con los patrones geoquímicos de los aracnogramas de tierras raras normalizados con respecto a condrito de Nakamura (1974), con el objeto de entender los pulsos magmáticos que dieron origen a todo el cuerpo y su distribución espacial y temporal, y regionalmente poder correlacionar estos eventos con otros presentes en cuerpos triásico-jurásicos del Macizo de Santander. Los resultados y la localización de las dataciones se presentan en la figura 1 y en la tabla 19.

La separación de los minerales densos se realizó en el Laboratorio químico del Servicio Geológico Colombiano, sede Medellín, mediante separación hidrodinámica y magnética, y también se realizó, allí mismo, el montaje de los circones. Las muestras AMC-031 y LMC-077 se dataron por el método U-Pb en circones en el laboratorio de Ablación Laser del Servicio Geológico Colombiano utilizando un equipo de ablación laser Photon Machines, con un láser exímer de 193 nm y un espectrómetro ICP-Masas Element 2. Se utilizaron como patrones de referencia Plesovice, 91500 y M. Dromedry. Los puntos analizados fueron de 20 micrones, y la reducción de datos se realizó mediante el programa Iolite IGROpro. Se utilizaron tiempos de integración para la línea base de 0 s-38 s y para las muestras y patrones de referencia 32,5 s-8 s, tiempos que concuerdan con el tiempo de corrida de los análisis. Los isótopos utilizados para la integración manual fueron ²³⁸U, Pb²⁰⁶ y Pb²⁰⁴. Los resultados finales corresponden a la media de los datos obtenidos luego de aplicar una discriminación de datos con dos desviaciones estándar. El procesamiento se llevó a cabo utilizando las rutinas de Isoplot V3.5, y la corrección por plomo común se realizó de acuerdo con el modelo de evolución de Stacev v Krammers (1975).

Las muestras MIA-630B, MIA-627A y AMC-0128A fueron enviadas al Laboratorio de Estudios Isotópicos (LEI) del Centro de Geociencias de la Universidad Nacional Autónoma de México (UNAM), campus Juriquilla. La metodología utilizada fue la siguiente: las concentraciones de U y Th fueron calculadas empleando un circón estándar externo, de acuerdo con Paton et al. (2010). Las incertidumbres de sigma 2 propagadas se lograron según Paton et al. (2010). Las proporciones 207Pb/206Pb, edades y errores se calcularon según Petrus y Kamber (2012). Los puntos analizados fueron de 23 micrómetros. Se utilizó el protocolo de análisis modificado de Solari et al. (2010). Los datos se midieron empleando un Thermo X series QICPMS acoplado a un resonetics, y una estación de trabajo láser excimer Resolución M050. Se realizó un análisis estadístico con el fin de mejorar el rango de confiabilidad de la edad proporcionada por el laboratorio, teniendo en cuenta la relación [(²⁰⁷Pb/²³⁵U)-(²⁰⁶Pb/²³⁸U)] /(²⁰⁷Pb/²³⁵U)] x 100, y se eliminaron los datos de circones con valores discordantes que estuvieran, en general, por encima del 15% y errores de más del 5%. Los gráficos de concordia e histogramas se elaboraron en el software de Isoplot/Ex vers, 4,15 (Ludwig, 2012).

IGM-SD	N. campo	w	Ν	Plancha	Clasificación	Edad	N.° Zr
900929	LMC-077	1112260	1283759		Monzogranito	204,8 ± 6,1	48
900936	MIA-630B	1114060	1270011	120	Cuarzodiorita	202,7 ± 1,2	35
900931	MIA-627A	1119356	1257497	120	Monzogranito-dique	199,5 ± 4,6	35
900863	AMC-0131	1114638	1284010	109	Sienogranito	192,5 ± 2,6	52
900861	AMC-0128A	1114798	1281084	109	Xenolito-granofelsa de Qtz-PI-Kfs	462,7 ± 3,1	35

Tabla 19. Resultados de geocronología en muestras del Monzogranito de La Corcova obtenidos por el método LA-MC-ICP-MS U-Pb en circones

De la facies monzogranítica se dató la muestra LMC-077 (IGM-900929), localizada en la parte norte del cuerpo intrusivo, correspondiente a un monzogranito equigranular. Se obtuvieron circones prismáticos cortos achatados, algunos fracturados, de tamaños entre 50 y 100 μ m. Las imágenes de catodoluminiscencia (CL) de estos circones evidenciaron zonación oscilatoria, con núcleo gris claro y algunos núcleos heredados.

Se filtraron los datos para descartar los circones con valores discordantes (discordancia > 10%) y errores de edad corregida mayores de 5, con el fin de mejorar el rango de confiabilidad de la edad, que presentaba un amplio rango entre 196 y 1426 Ma. Se tomó como grupo más coherente n = 8 circones, que arrojaron una edad promedio ponderada de 204,8 ± 6,1 Ma, con MSWD = 5,3, edad que se interpretó como la de cristalización de la roca. Se presentó un segundo grupo de circones (n = 11), concordantes, con edades entre 211 y 232 Ma, que arrojaron una edad promedio ponderada de 224,1 ± 4,9 y MSWD = 5,2, que se interpretó como una edad de cristalización heredada (figura 30). El diagrama de discordia presenta una amplia dispersión de edades concordantes entre 196 y 242 Ma, sin que se observe una agrupación de los datos definida.

En circones de la muestra LMC-077, las razones Th/U varían entre 0,4 y 1 para el grupo de los ocho circones (n = 8) que se tomaron para definir la edad promedio ponderada, relación que sugiere una cristalización ígnea (Rubatto, 2002). La muestra LMC-077 presenta una edad de 230 Ma (n = 1), con una relación Th/U < 0,1, que sugiere un circón metamorfo heredado; además, presenta núcleos con edades heredadas de 224,1 ± 4,9 (n = 11), del Paleozoico, entre 259 y 498 Ma (n = 15), del Neoproterozoico (n = 3) y del Mesoproterozoico (n = 1), que se resumen en el gráfico de densidad de probabilidad de la figura 30.

De las rocas intermedias de borde se dató la muestra MIA-630B, clasificada como cuarzodiorita, que aparece también como xenolitos dentro de la facies monzogranítica. De la muestra MIA-630B se obtuvieron circones prismáticos, cortos y achatados, de color púrpura tenue, algunos fracturados, de tamaños entre 50 y 100 μ m. Las imágenes de catodoluminiscencia (CL) evidenciaron una zonación concéntrica.

Los análisis efectuados en la muestra MIA-630B fueron todos concordantes. Inicialmente se filtraron los datos para descartar los circones con valores discordantes (discordancia > 10%) y errores de edad corregida mayores de 5, con el fin de mejorar el rango de confiabilidad de la edad. El grupo más consistente lo conformaron 28 circones (n = 28), con una edad promedio ponderada de 202,7 ± 1,2 Ma y MSWD = 1,5, que se interpretó como la edad de cristalización de la roca. Se presentó un segundo grupo de circones con edades entre 207,3 Ma y 213 Ma, y edad promedio ponderada de 210,48 ± 0,92 Ma (n = 7) y MSWD = 0,79, que se interpretó como una edad de cristalización heredada (figura 31).

Las razones Th/U correspondientes a la muestra MIA-630B varían entre 1 y 4 en los circones, de los que se obtuvo la edad promedio ponderada y la edad heredada, relación que sugiere cristalización ígnea (Rubatto, 2002). Un circón arrojó una edad de 80 Ma, con una relación Th/U = 0,48, menor que la del resto de circones, lo que podría indicar contaminación de la muestra por procesos naturales.

Se dató una tercera muestra correspondiente a diques que atraviesan el cuerpo intrusivo (muestra MIA-627A). Los circones, que se separaron de un saprolito de la roca, se presentan fracturados, de tamaños gruesos y tonalidades púrpuras, en general corto-prismáticos, con tamaños de hasta 240 μ m. En CL presentan zonamiento prevalentemente oscilatorio. Para interpretar los datos obtenidos de la muestra MIA-627A, fueron procesados en el software de Isoplot/Ex vers. 4,15 (Ludwig, 2012) (figura 31).

Figura 30. Muestra LMC-077. A) Diagrama de concordia. B) Detalle de edades concordantes entre 180 y 300 Ma. C) Diagrama de Tera-Wasserburg. D) Edad promedio ponderada. E) Diagrama de densidad de probabilidad. F) imágenes de catodoluminiscencia y edades U-Pb en circones

Figura 31. Muestra MIA-630B. A) Diagrama Tera-Wasserburg. B) Edad promedio ponderada. C) Edad promedio ponderada de circones heredados, muestra MIA-627A. D) Diagrama de concordia. E) Gráfico Tera-Wasserburg. F) Diagrama de densidad de probabilidad. G) Edad promedio ponderada de circones heredados. H) Histograma de densidad de probabilidad

Inicialmente se filtraron los datos para descartar los circones con valores discordantes (discordancia > 10%), de acuerdo con la relación $[(^{207}Pb/^{235}U)-(^{206}Pb/^{238}U)] / (^{207}Pb/^{235}U)] x 100, y errores de edad corregida mayores de 5, con el fin de mejorar el rango de confiabilidad de la edad. Los resultados obtenidos presentaron una distribución concordante, pero bastante variada, desde ca. 175 Ma (un cristal) hasta ca. 1500 Ma (dos análisis concordantes) (figura 31).$

El grupo más consistente lo conformaron ocho circones (n = 8), con una edad promedio ponderada de 199,5 ± 4,6 Ma (límite Triásico tardío-Jurásico temprano) y MSWD = 4,8, que se interpretó como la edad de cristalización de la roca. Además, se obtuvieron edades heredadas del Pérmico (281 Ma, n = 1), Devónico (382 Ma, n = 1), Silúrico (419 y 430 Ma, n = 2), Ordovícico, con una edad promedio ponderada de 457,1 ± 5, n = 11 y MWSD = 6,8; edades entre 481 Ma y 484 Ma (n = 3), Cámbrico (495 Ma, n = 1) y edades mezoproterozoicas (1418 Ma a 1498 Ma, n = 3) obtenidas en núcleos de circones y en xenocristales. La edad promedio ordovícica de 457,1 ± 5 Ma es similar a las edades obtenidas en rocas del Neis de Bucaramanga y en un xenolito de esta unidad perteneciente al Monzogranito de La Corcova.

En el gráfico de Th/U vs. Edad (figura 32) correspondiente a circones de la muestra MIA-627A se observa un conjunto de datos con edades de alrededor de 200 Ma, con relaciones Th/U que varían entre 0,01 y 1,2, valores variables que no muestran un conjunto de datos definidos que sugieran un solo origen. Los circones heredados muestran relaciones Th/U diversas: circones paleozoicos entre 0,1 y 0,6, y escasos alrededor de 1, sugieren un origen ígneo, y los mesoproterozoicos con relaciones Th/U entre 0,4 y 0,5 también sugieren un origen ígneo.

Se dató la muestra AMC-0131 mediante el estudio de circones que se obtuvieron a partir de una roca clasificada petrográficamente como sienogranito, que se asocia con la facies porfirítica del Monzogranito de La Corcova. Se obtuvieron circones euhedrales, entre los que predominaban los prismáticos cortos y transparentes de tonalidad rosa, con pocas inclusiones fluidas, con un tamaño promedio de 200 µm en la dimensión mayor y 100 a 150 µm en la menor, algunos de 50 x 100 µm. Se obtuvo una segunda población de circones subesféricos euhedrales de color lila con tamaños entre 90 x 100 µm y 180 x 180 µm. Las imágenes de catodoluminiscencia (CL) evidenciaron una zonación concéntrica típica de circones ígneos, con núcleos más luminiscentes y algunos núcleos heredados.

Se filtraron los datos para descartar los circones con valores discordantes (discordancia > 10%), de acuerdo con la relación $[(^{207}Pb/^{235}U)-(^{206}Pb/^{238}U)]/(^{207}Pb/^{235}U)] \times 100$, y errores de edad corregida mayores de 5, con el fin de mejorar el rango de confiabilidad de la edad. Las edades obtenidas se distribuyeron a lo largo de la curva de concordia desde 1 83 Ma hasta 1.333 Ma, lo que puso en evidencia un grupo coherente de edades entre 1 83 y 204 Ma (n = 24), que arroja una edad prome-

Figura 32. Gráfico de relación Th/U vs. edad en circones de la muestra MIA-627A

dio ponderada de 192,5 ± 2,6 Ma (sinemuriana), con un MSWD = 3,8, que se interpreta como la edad de cristalización de la roca (figura 33). Igualmente, se presentaron circones heredados con edades del Carbonífero (338 Ma, n = 1); Devónico (405 a 413 Ma, n = 3); Ordovícico (445 a 476, n = 5); Neoproterozoico (865 a 991, n = 4), Mesoproterozoico (1006 a 1333, n = 8) concordantes y discordantes (figura 33 C y D).

La muestra AMC-01 31 presenta relaciones Th/U por encima de 0,1 y alrededor de 1 en los circones, que arrojaron la edad promedio ponderada Jurásica Inferior de 192,5 ± 2,6 Ma, que sugiere un origen ígneo (figura 34). Las relaciones Th/U en circones con edades del Paleozoico y del Precámbrico están entre 0,2 y 1, y son similares a las de circones de origen ígneo. Tres circones revelan valores inferiores a 0,1, que podrían sugerir origen metamórfico.

Figura 33. Muestra AMC-0131. A) Edad promedio ponderada en circones jurásicos. B) Diagrama Tera-Wasserburg correspondiente a circones jurásicos. C) Diagrama de concordia de circones paleozoicos. D) Histograma de densidad de probabilidad

Figura 34. Diagrama de relación Th/U vs. edad en circones de la muestra AMC-0131

La muestra AMC-0128A corresponde a un xenolito de granofelsa de Qtz+fsp con Bt, que se correlaciona con el Neis de Bucaramanga y se encuentra en el interior del Monzogranito de La Corcova. Los circones obtenidos de esta muestra fueron prismas cortos euhedrales; las imágenes de CL muestran que estos circones presentan estructuras internas complicadas, con núcleos oscuros, zonamiento oscilatorio y sobrecrecimientos altamente luminiscentes. Los datos obtenidos de estos circones al graficarlos muestran en la concordia una posición que va desde 400 hasta unos 550 Ma, con una densidad máxima en el rango de ca. 460 hasta ca. 500 Ma. Un único circón sugiere una herencia neoproterozoica. Se interpretó, en este caso, que el rango entre 460 y 500 Ma indica una cristalización continua del magma. Se filtraron los datos para descartar los circones con valores discordantes (discordancia > 5%), de acuerdo con la relación [(²⁰⁷Pb/²³⁵U)-(²⁰⁶Pb/²³⁸U)] /(²⁰⁷Pb/²³⁵U)] x 100, y errores de edad corregida mayores de 5, con el fin de mejorar el rango de confiabilidad de la edad. La mejor aproximación a la edad de cristalización lo arrojó un grupo coherente de nueve circones (n = 9), con una edad promedio ponderada de 462,7 ± 3,1 con MSWD = 1,7 (figura 35). Un segundo grupo de edades coherentes, representado por diecinueve circones (n = 19) arrojó una edad promedio ponderada de 482,4 ± 3,3 y MSWD = 4,6, que se interpretó como una edad heredada dentro del mismo tren de cristalización (figura 35).

En la muestra AMC-0128A un único circón arrojó una edad de 382,3 Ma, que se encuentra sobre la curva de concordia, pero no es posible saber su significado geológico; además, el sitio de ablación se encuentra en el interior del cristal. Esta muestra presenta igualmente edades heredadas cámbricas (525 y 534 Ma, n = 2) y mesoproterozoicas (1029 Ma, n = 1), obtenidas en núcleos de circones más luminiscentes.

La muestra AMC-0128A presenta relaciones Th/U en los circones que arrojaron edades paleozoicas de alrededor de 1, valor que sugiere origen ígneo, y en el caso de la edad Precámbrica arrojó una relación Th/U < 0,1 lo que sugiere un origen metamórfico.

Figura 35. Muestra AMC-0128A. A) Gráfico de concordia. B) Gráfico de concordia correspondiente a circones con edades paleozoicas. C) Edad de cristalización promedio ponderada en circones ordovícicos. D) Edad promedio ponderada en circones ordovícicos heredados

Las edades obtenidas en el Monzogranito de La Corcova muestran una edad inicial de cristalización de 204,8 ± 6,1 Ma en circones separados de un monzogranito (LMC-077), y 202,7 ± 1,2 en diorita del borde del cuerpo intrusivo (MIA-630B), siendo estas las edades más antiguas obtenidas en el plutón, seguidas por edades de cristalización en rocas sienograníticas y monzograníticas de alrededor de 198,3 ± 1,8 Ma (muestra 10VDL05). Probablemente un pulso posterior originó diques de sienogranito (que se emplazaron en las rocas monzograníticas y en unidades metamorficas encajantes, con edad promedio de 199,5 ± 4,6 Ma (muestra MIA- 627 A). Por último, en el plutón se reconoce una facies porfídica monzogranítica tardía que intruye facies monzograníticas anteriores, con una edad de cristalización de 192,5 \pm 2,6 Ma (muestra AMC-0131), que representa el pulso más joven encontrado en rocas de este cuerpo intrusivo.

Al comparar la edad obtenida en circones de un xenolito de neis cuarzo-feldespático, probablemente del Neis de Bucaramanga, con las edades de núcleos heredados de los circones de muestras del Monzogranito de La Corcova, se encontró que coinciden las de los circones del xenolito y las de los circones heredados (figura 36).

Figura 36. Diagramas de densidad de probabilidad en los que se comparan las edades de circones heredados de rocas y diques del Monzogranito de La Corcova con las edades obtenidas en un xenolito del neis de Bucaramanga

5.1. Geoquímica de elementos traza en circones

El análisis mediante ICP-MS permitió determinar la abundancia de los elementos traza de cada circón en las muestras MIA-630B, MIA-627 A y AMC-0128A (anexo 2). Los valores de REE se normalizaron con respecto a condrito según McDonough y Sun (1995) y se calcularon las relaciones Pm* y Tm* de cada uno de ellos. En el análisis de los elementos traza se tuvieron en cuenta las edades obtenidas en cada circón, y se agruparon por edades. En las muestras MIA-627A, MIA-630B y AMC-0128A se observó un patrón de REE con anomalía positiva de Ce y negativa de Eu, característico de circones ígneos, sin tener en cuenta la edad arrojada por cada circón (figura 37). La muestra MIA-630B presenta una me-

nor anomalía negativa de Eu que las otras dos muestras. Los circones que arrojaron edades del Proterozoico en la muestra MIA-627A presentaron una anomalía positiva de Ce y una anomalía negativa de Eu, con menores valores de Pr que el resto de circones. El circón Zr-138 de la muestra MIA-630B arrojo una edad de 80 Ma y presentó un patrón ígneo con mayor anomalía de Eu que los demás circones, que en su mayoría tienen patrones paralelos. El cristal Zr-172 no presenta anomalía de Eu y se cruza con el patrón del resto de circones. En la muestra AMC-0128A, los circones Zr-037, Zr-0,39 y Zr-0.68 presentan un patrón horizontal entre La y Sm, diferente del de los demás circones.

Figura 37. Patrones de los elementos de las tierras raras (REE) normalizados según el condrito de McDonough y Sun (1995), en circones de las muestras MIA-627A, MIA-630B y AMC-0128A, y tipo de magma según los valores de Th y Pb (diagrama de Wang *et al.*, 2012), en muestras tomadas en el Monzogranito de La Corcova. En azul, circones con edades jurásicas a triásicas superiores, y en ocre, circones heredados del Paleozoico al Precámbrico

En el diagrama de Th vs. Pb se observa que los circones de la muestra MIA-627A, con edades triásica-jurásicas, pertenecen al campo de los granitos tipo I, al igual que los circones con edades heredadas del Paleozoico al Mesoproterozoico (diagrama modificado de Wang et al., 2012) (figura 37). En su mayoría, los contenidos de Pb y Th en circones de la muestra MIA-630B, con edades entre 196 y 213 Ma, se sitúan por fuera del campo de los granitos tipo I, debido a sus altos valores en Th > 1000 ppm. Los valores de los contenidos de Pb y Th en circones de la muestra AMC-0128A, correspondiente a un xenolito metamórfico con edades entre 382 y 1099 Ma, al ser graficados en el diagrama de Th vs. Pb, permiten observar que la mayoría de los circones se localizan en el campo de los granitos tipo I, y algunos pocos alcanzan el campo de los granitos tipo A, lo que, de acuerdo a Wang et al. (2012), se puede presentar en granitos altamente evolucionados, de los que no hay una buena discriminación. Por lo tanto, se presenta una distribución similar entre los circones heredados en la muestra MIA-627A y los circones del xenolito de la muestra AMC-0128A.

6. Correlaciones

El Monzogranito de La Corcova hace parte de los cuerpos ígneos producto del magmatismo triásico-jurásico, que se emplazaron en el basamento metamórfico del Macizo de Santander y cuya correlación se extiende tanto a los cuerpos subvolcánicos porfídicos como a los cuerpos plutónicos de composición granítica, entre los que se destacan la tonalita y granodiorita de páramo Rico (Ward *et al.*, 1973), el Batolito de Mogotes (Ward *et al.*, 1973, Correa Martínez *et al.*, 2016), el Granito de Pescadero (Ward *et al.*, 1973; Zapata et al., 2016), el Monzogranito de Rionegro (Arango *et al.*, 2016) y pequeños plutones subvolcánicos, como las Riolitas de El Uvo (Zapata *et al.*, 2018), la Riolita de San Joaquín (Rodríguez *et al.*, 2018) y la Riolita del Alto Los Cacaos (Correa *et al.*, 2018).

7. Localidad tipo

La sección tipo del Monzogranito de La Corcova se encuentra a lo largo de la carretera Bucaramanga-Páramo de Berlín, entre las coordenadas X: 1113267, 116656 y Y: 1280836, 1281584. Como sección tipo alternativa se presenta la vía terciaria Piedecuesta-sector La Nevera, y en la carretera que de Los Curos conduce a Guaca (cuadrángulo H-12), donde se puede observar el contacto intrusivo del Monzogranito de La Corcova con el Neis de Bucaramanga y afloran rocas miloníticas, neises y granofélsicos instruidos por rocas asociadas a este plutón.

8. Génesis

El Monzogranito de La Corcova presenta una mineralogía característica de granitoides tipo S e I, con presencia de feldespato potásico de color blanco, biotita parda, escasa hornblenda y magnetita e ilmenita, comunes en plutones altamente diferenciados, de acuerdo con Chappell y White (2001). Se presentan gabarros de rocas ígneas intermedias con presencia de hornblenda que son frecuentes en granitos tipo I. La química de las rocas permitió ubicarlas en el campo de los granitos tipo I, peraluminosos, y la geoquímica de los elementos traza en circones los situó igualmente en el campo de los granitos tipo I.

Las características macroscópicas y microscópicas de las rocas del Monzogranito de La Corcova, como texturas equigranulares, inequigranulares, aplíticas sacaroidales y porfídicas, son indicativas de un emplazamiento epizonal a subvolcánico del cuerpo, emplazamiento que ocurrió en un basamento metamórfico que sufrió fusión e incorporó xenocristales de circón y bloques a manera de xenolitos del Neis de Bucaramanga y de la formación Silgará.

Los monzogranitos presentan comúnmente ortosa pasando a microclina pertítica, característica de rocas plutónicas que se forman en ambientes de temperaturas intermedias.

La química mineral obtenida en cristales de biotita, en un monzogranito de la facies principal del plutón, permitió asociarlo a rocas de las series calcoalcalinas orogénicas y a rocas peraluminosas, de acuerdo con el diagrama de Abdel Rahman (1994). Este resultado es concordante con los de la química de óxidos de elementos mayores, que permitió clasificar las rocas como subalcalinas de la serie calcoalcalina alta en K y peraluminosas.

El Monzogranito de La Corcova presenta valores de SiO₂ entre 69,56 y 75,45%. Los valores de Al₂O₃, Fe₂O₃, MgO, Na₂O y CaO disminuyen con el aumento de SiO₂; el K₂O varía entre 4,6 y 5,3%; el CaO varía entre 0,7 y 2,5%; MgO < 1; las relaciones K₂O/Na₂O > 1, con alto contenido de álcalis (Na₂O + K₂O), y Al₂O₃ > Cao+Na₂O+K₂O. Se trata de granitos de la serie calcoalcalina alta en K. Las rocas también presentan un enriquecimiento en tierras

raras livianas (LREE) de más de cien veces con respecto al valor del condrito, que se va empobreciendo progresivamente hacia las tierras raras pesadas (HREE), comportamiento normal en rocas generadas en ambientes de subducción (arco).

La presencia de xenocristales y núcleos de circones heredados del Paleozoico al Mesoproterozoico, en rocas monzograníticas y sienograníticas del Monzogranito de La Corcova, indica la fusión de rocas de la corteza continental en la que se emplazó, corteza que aportó material a los pulsos magmáticos que formaron el plutón. Las edades U/Pb ordovícicas obtenidas a partir de xenocristales y núcleos heredados en circones de rocas clasificadas como monzogranitos son comparables con edades U/Pb obtenidas en el Neis de Bucaramanga y en xenolitos del neis cuarzo-feldespático que se encuentran incluidos en el Monzogranito de La Corcova, con relaciones Th/U similares. Esto sugiere que el Neis de Bucaramanga fue una fuente importante en la formación del magma de los pulsos graníticos triásico-jurásicos, como se desprende de las edades heredadas en circones (figura 36).

Se puede interpretar que el magma parental se generó en una zona de subducción y que habría tenido dos fuentes: por un lado, la placa oceánica más los sedimentos oceánicos subducidos, y, por otra parte, la fusión de la corteza continental, que en algunos diagramas hace que las rocas se desplacen hacia el campo de los granitos tipo S, aunque el ambiente de formación es típico de granitos de arco de margen continental tipo I.

El Monzogranito de La Corcova presenta relaciones $(La/Yb)_{N} > 2$, valores que se asocian con rocas formadas en la corteza continental. Se presentan notables diferencias en la relación (La/Yb)_N entre los cuatro patrones de REE, que a su vez presentan mayor o menor pendiente, lo que permite sugerir diferentes pulsos que representan variaciones composicionales en los magmas, diferencias que podrían explicarse con cambios en la fuente de los magmas de cada patrón, con mayor o menor aporte del manto y de corteza en cada uno de ellos. Así, los valores altos de (La/Yb)_N representarían mayores aportes de corteza al magma, periodos de mayor flujo magmático y corteza más gruesa, y estarían caracterizados por patrones con pronunciada pendiente entre los LREE y los HREE, mientras los menores valores de (La/Yb)_N indicarían mayores aportes al magma de material del manto, periodos de más bajo flujo magmático, origen del magma en profundidades menores, y presentarían menores

pendientes en los patrones de REE, de acuerdo con el modelo propuesto por Girardi (2008).

9. Recursos minerales

Existen pequeñas explotaciones de arena a partir de saprolito del Monzogranito de La Corcova, sobre la vía Bucaramanga-Berlín.

Conclusiones

Este catálogo presenta nueva información acerca de las rocas del Monzogranito de La Corcova, mejora el conocimiento petrográfico, química mineral, litogeoquímico y geocronológico del cuerpo plutónico y define el cuerpo como un granito formado por varios pulsos magmáticos que incluye diques y cuerpos intrusivos menores de similar composición.

Composicionalmente, las rocas del Monzogranito de La Corcova varían entre monzogranitos y subordinadas granodioritas, sienogranitos y tonalitas. Se encuentra intruido por diques de riolitas y sienogranitos, con xenolitos de rocas metamorficas del Neis de Bucaramanga y de la Formación Silgará.

Se trata de rocas ácidas con contenidos de SiO₂ entre 69,56 y 75,45%, el K₂O varía entre 4,6 y 5,3%, el CaO varía entre 0,7 y 2,5%, MgO < 1%, y TiO₂ < 0,6%; la relación K₂O/Na₂O > 1.

El Monzogranito de La Corcova es un plutón subalcalino de la serie calcoalcalina alta en K, peraluminoso, con valores de A/NK > 1 y valores de A/CNK > 1, con valores de Al₂O₃ > Cao+Na₂O+K₂O.

En los diagramas multielementales se reconocen al menos cuatro patrones con edades de cristalización, U/ Pb en circón entre $192,5 \pm 2,6 \ y \ 204,8 \pm 6,1$ Ma, que representan rocas de la facies principal, rocas de dique y cuerpos menores intrusivos, y sugieren que se trata de un cuerpo formado por varios pulsos magmáticos formados en un ambiente de arco continental.

Con base en la composición química de rocas y la química de circones, estas se clasifican como granitos tipo I.

En la rocas monzograníticas y sienograníticas, la presencia de xenocristales y núcleos de circones heredados del Paleozoico al Mesoproterozoico revela la contaminación con rocas de la corteza continental que aportaron material a los pulsos magmáticos que formaron este cuerpo intrusivo, y probablemente incidieron en el carácter peraluminoso de las rocas. Las edades U/Pb ordovícicas obtenidas a partir de circones heredados en rocas clasificadas como monzogranitos son comparables con las edades U/Pb obtenidas en rocas del Neis de Bucaramanga y en xenolitos de neis cuarzo-feldespático que se encuentran incluidos en el Monzogranito de La Corcova, con relaciones Th/U similares. Esto sugiere que el Neis de Bucaramanga fue una fuente importante en la formación del magma de los pulsos graníticos triásico-jurásicos, como se desprende de las edades heredadas en circones.

Referencias

- Abdel Rahman, A. M. (1994). Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. *Journal of Petrology*, 35 (2), 525-541. https://doi. org/10.1093/petrology/35.2.525.
- Arango, M. I., Rodríguez, G., Zapata, G. y Correa M., A. M. (2016). Catálogo de Unidades Litoestratigráficas de Colombia. Monzogranito de Rionegro, Cordillera Oriental, Departamento Santander. Medellín: Servicio Geológico Colombiano.
- Chappell, B. W. y White, A. J. R. (2001). Two contrasting granite types: 25 years later. *Australian Journal of Earth Sciences*, 48 (4), 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x.
- Clavijo, J. (1994). *Mapa geológico generalizado del departamento de Norte de Santander. Memoria explicativa. Escala 1:250.000.* Informe. Ingeominas.
- Clavijo, J., Mantilla, F. L. C., Pinto, J., Bernal, L. y Pérez, A. (2008). Evolución geológica de la serranía de San Lucas, norte del valle medio del Magdalena y noroeste de la cordillera Oriental. *Boletín de Geología*, 30 (1), 45-62.
- Cordani, U. G., Cardona, A., Jiménez, D. M., Liu, D. y Nutran, A. P. (2005). Geochronology of Proterozoic basement inliers from the Colombian Andes: Tectonic history of remnants from a fragmented Grenville belt. Special Publication 246. Londres: Geological Society.
- Correa Martínez, A. M., Rodríguez, G., Arango, M. I., Zapata, G. y Bermúdez J. G. (2016). *Catálogo de Unidades Litoestratigráficas de Colombia. Batolito de Mogotes*. Medellín: Servicio Geológico Colombiano.
- Correa Martínez., A. M., Rodríguez, G., Arango, M. I., Zapata, G. y Bermúdez, J. G. (2018). *Catálogo de unidades litoestratigráficas de Colombia. Riolitas del Alto Los Cacaos.* Medellín: Servicio Geológico Colombiano.
- Debon, F. y Le Fort, P. (1983). A chemical-mineralogical classification of common plutonic rocks and associa-

tions. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 73 (3), 153-149. https://doi.org/10.1017/S0263593300010117.

- Droop, G. (1987). A general equation for estimating Fe³⁺ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. *Mineralogical Magazine*, 51 (361), 431-435. https://doi.org/10.1180/minmag.1987.051.361.10.
- Etayo, F., Barrero, D., Lozano, H., Espinosa, A., González, H., Orrego, A. Ballesteros, I., Forero, H., Ramírez, C., Zambrano, F., Duque-Caro, H., Vargas., R., Núñez, A., Álvarez, J., Ropaín, C., Cardozo, E., Galvis, N. y Sarmiento, L. (1983). *Mapa de terrenos geológicos de Colombia*. Publicaciones Geológicas Especiales 14. Bogotá: Ingeominas.
- Frost, B. R. y Frost, C. D. (2008). A geochemical classification for feldspathic igneous rocks. *Journal of Petrology*, 49 (11), 1955-1969. https://doi.org/10.1093/ petrology/egn054.
- Frost, R. B., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. y Frost, C. D. (2001). A geochemical classification for granitic rocks. *Journal of Petrology*, 42 (11), 2033-2048. https://doi.org/10.1093/petrology/42.11.2033.
- García, C. y Ríos, C. (1999). Metamorfismo y metalogénia asociada del Macizo de Santander, cordillera Oriental, Colombia. Informe final Proyecto de Investigación 1102-05-083-95. Bucaramanga: Colciencias y Universidad Industrial de Santander.
- Girardi, D. J. (2008). Evolution of magmas and magma sources to the Coast Mountains batholith, British Columbia, Canada, reflected by elemental and isotopic geochemistry (tesis). University of Arizona.
- Goldsmith, R., Marvin, R. F. y Mehnert, H. H. (1971). Radiometric ages in the Santander Massif, Eastern Cordillera, Colombian Andes. U. S. Geological Survey Professional Paper (750): D44-D49.
- Harris, N. W., Pearce, J. A. y Tindle, A. (1986). Geochemical characteristics of collision zone magmatism.En M. P. Coward y A. C. Ries (eds.), *Collision tectonics*.Special Publication, London: Geology Society.
- Hastie, A. R., Kerr, A. C., Pearce, J. A. y Mitchell, S. F. (2007). Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. *Journal of Petrology*, 48 (12), 2341-2357. https://doi.org/10.1093/ petrology/egm062.

- International Subcommision on Stratigraphic Classification (1987). Stratigraphic classification and nomenclature of igneous and metamorphic rock bodies. GSA Bulletin, 99 (3), 440-442. https://doi.org/ 10.1130/0016-7606(1987)99<440:SCANOI>2.0.CO;2.
- International Subcommision on Stratigraphic Classification (1994). *International Stratigraphic Guide: A guide to stratigraphic classification, terminology and procedure,* 2^a ed., Amos Salvador (ed.). Boulder: International Union of Geological Sciences, International Subcommission on Stratigraphic Classification y Geological Society of America.
- Irvine, T. N. y Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rock. *Canadian Journal of Earth Sciences*, 8 (5), 523-548. https://doi.org/10.1139/e71-055.
- Janoušek, V., Farrow, C. M. y Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing Geochemical Data Toolkit (GCDkit). *Journal of Petrology*, 47 (6), 1255-1259. https://doi.org/10.1093/petrology/egl013.
- Le Bas, M. J., Le Maitre, R. N., Streckeisen, A. y Zanettin, B. (1986). A chemical classification of volcanic rock based on total silica diagram. *Journal of Petrology*, 27 (3), 745-750. https://doi.org/10.1093/petrology/27.3.745.
- Leal Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes: A tectono- magmatic approach (tesis Ph. D.). Universitat de Barcelona.
- Ludwig, K. R. (2012). *User's manual for Isoplot 3.75-4.15. A Geochronological Toolkit Microsoft Excel.* Special Publication n.° 5. Berkeley: Berkeley Geochronology Center.
- Mantilla, L. C., Bissig, T., Valencia, V. y Hart, C. (2013). The magmatic history of the Vetas-California mining district, Santander Massif Eastern Cordillera, Colombia. *Journal of South American Earth Sciences*, 45, 235-249. https://doi.org/10.1016/j.jsames.2013.03.006.
- Martin, H. (1994). Archean grey gneisses and the genesis of the continental crust. En K. Codie (ed.), *Archean crustal evolution* (pp. 205-260). Netherland: Elsevier Scientific Publishers.
- Mcdonough, W. F. y Sun, S. S. (1995). The composition of the Earth. *Chemical Geology*, 120 (3-4), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4.

- Middlemost, E. A. K. (1985). *Magmas and magmatic rocks: An introduction to igneous petrology*. London/New York: Longman.
- Middlemost, E. A. K. (1994). Naming materials in magma-igneous rock system. *Earth-Science Reviews*, 37 (3-4), 215-224. https://doi.org/10.1016/0012-8252(94)90029-9.
- Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. *Geochimica et Cosmochimica Acta*, 38 (5), 757-775. https://doi.org/10.1016/0016-7037(74)90149-5.
- Ordóñez Cardona, O., Restrepo Álvarez, J. J. y Pimentel, M. M. (2006). Geochronological and isotopical review of pre-Devonian crustal basement of the Colombian Andes. *Journal of South American Earth Sciences*, 21 (4), 372-382. https://doi.org/10.1016/j. jsames.2006.07.005.
- Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A. y Maas R. (2010). Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. *Geochemistry, Geophysics, Geosystems*, 11 (3). https://doi.org/10.1029/ 2009GC002618.
- Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. *Lithos*, 100 (1-4), 14-48. https://doi.org/10.1016/j. lithos.2007.06.016.
- Peccerillo, A. y Taylor, T. S. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey. *Contributions to Mineralogy and Petrology*, 58 (1), 63-81. https://doi. org/10.1007/BF00384745.
- Petrus, J. A. y Kamber, B. S. (2012). Vizual age: A novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. *Geostandards and Geoanalytical Research*, 36 (3), 247-270. https://doi.org/10.1111/ j.1751-908X.2012.00158.x.
- Rieder, M., Cavazzini, G., D'yakonov, Y. U, S., Frank Kamenetskii, V. A., Gottardi, G., Guggenheim, S., Koval, P. V., Muller, G., Neiva, A. M. R. y Radoslovich, E. W. (1998). Nomenclature of the micas. *Clays and Clay Minerals*, 46 (5), 586-595. https://doi.org/10.1346/ CCMN.1998.0460513.
- Restrepo, J. J., Ordóñez Carmona, O., Armstrong, R. y Pimentel, M. M. (2011). Triassic metamorphism in the

northern part of the Tahamí Terrane of the Central Cordillera of Colombia. *Journal of South American Earth Sciences* (32), 497-507.

- Restrepo, J. J. y Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. *Episodes*, 11 (3), 189-193.
- Restrepo-Pace, P. A., Ruiz, J., Gehrels, G. y Cosca, M. (1997). Geochronology and Nd isotopic data of Grenville-age rocks in the Colombian Andes: new constraints for Late Proterozoic-Early Paleozoic paleocontinental reconstructions of the Americas. *Earth and Planetary Science Letters*, 150 (3-4), 427-441. https://doi.org/10.1016/S0012-821X(97)00091-5.
- Ríos, C., García, C. y Takusa, A. (2003). Tectono-metamorphic evolution of the Silgara Formation metamorphic rocks in the Southwestern Santander Massif, Colombian Andes. *Journal of South American Earth Sciences*, 16 (2), 133-154. https://doi. org/10.1016/S0895-9811(03)00025-7.
- Rodríguez, G., Arango, M. I., Correa, M., A. M. y Zapata, G. (2018). Catálogo de Unidades Litoestratigráficas de Colombia. Riolita de San Joaquín. Medellín: Servicio Geológico Colombiano.
- Rubatto, D. (2002). Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. *Chemical Geology*, 184 (1-2), 123-138. https://doi.org/10.1016/S0009-2541 (01)00355-2.
- Shand, S. J. (1943). Eruptive rocks: Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. New York: John Wiley & Sons.
- Smith, J. V. y Brown, W. L. (1988). *Feldspar minerals*. Vol.I: Crystal structures, physical, chemical and microtextural properties. Berlin: Springer-Verlag.
- Solari, L., Gómez Tuena, A., Bernal, J., Pérez Arvizu, O. y Tanner, M. (2010). U-Pb zircon geochronology with an integrated LA-ICP-MS microanalytical workstation: Achievements in precision and accuracy. *Geostandards and Geoanalytical Research*, 34 (1), 5-18. https://doi.org/10.1111/j.1751-908X.2009.00027.x.
- Stacey,J.S.yKramers,J.D.(1975). Approximation of terrestrial lead isotope evolution by a 2-Stage Model. *Earth and Planetary Science Letters*, 26 (2), 207-221. https:// doi.org/10.1016/0012-821X(75)90088-6.
- Streckeisen, A. (1976). Classification and nomenclature of plutonic rocks: recommendations of the IUGS

subcommission on the systematics of Igneous Rocks. *Geologische Rundschau*, 63 (2), 773-786. https:// doi.org/10.1007/BF01820841.

- Streckeisen, A. L. (1978). Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilite rocks. Recommendations and suggestions. *Neues Jahrbuch für Mineralogie*, 141, 1-14.
- Sun, S. y McDonough, W. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Special Publication 42, 313-345. London: Geological Society. https://doi. org/10.1144/GSLSP.1989.042.01.19.
- Van der Lelij, R. (2013). Reconstructing North-Western Gondwana with implications for the evolution of the lapetus and Rheic Oceans: A geochronological, thermochronological and geochemical study (tesis de doctorado), Université de Genève.
- Van der Lelij, R., Spikings, R. y Mora, A. (2016). Thermochronology and tectonics of the Mérida Andes and the Santander Massif, NW South America. *Lithos*, 248, 220-239. https://doi.org/10.1016/j.lithos.2016.01.006.
- Villaseca, C., Barbero, L. y Herreros. V. (1998). A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. *Earth* and Environmental Science Transactions of The Royal Society of Edinburgh, 89 (2), 113-119. https://doi. org/10.1017/S0263593300007045.
- Wang, Q., Zhu, D. C., Zhao, Z. D., Guan, Q., Zhang, X. Q., Sui, Q. L., Chu Hu, Z. y Mo, X. X. (2012). Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. *Journal of Asian Earth Sciences*, 53, 59-66. https://doi.org/10.1016/j. jseaes.2011.07.027.
- Ward, D. E., Goldsmith, R., Cruz, B. J., Jaramillo, C. L. y Vargas, L. R. (1970). Mapa geológico del cuadrángulo H-13, Pamplona, Colombia. Bogotá: Ingeominas.
- Ward, D., Goldsmith, R., Cruz, J. y Restrepo, H. (1973).
 Geología de los cuadrángulos H-12 Bucaramanga y
 H-13 Pamplona. *Boletín Geol*ógico, 21 (1-3), 132.
- Ward, D. E., Goldsmith, R., Jimeno, A., Cruz, J., Restrepo,
 H. y Gómez, E. (1977a). *Geología de la Plancha 109 Rionegro. Escala 1:100.000. Parte del cuadrángulo H-12.* Versión digital 2010. Bogotá: Ingeominas.
- Ward, D. E., Goldsmith, R., Jimeno, A., Cruz, J., Restrepo, H. y Gómez, E. (1977b). *Geología de la Plancha 120*

Bucaramanga. Escala 1:100.000. Parte del cuadrángulo H-12. Versión digital 2010. Bogotá: Ingeominas.

- Ward, D. E., Goldsmith, R., Cruz, J., Jaramillo, L. y Vargas, R. (1977c). Geología de la Plancha 121 Cerrito. Escala 1:100.000. Versión digital 2010. Bogotá: Ingeominas.
- Whalen, J. B., Currie, K. L. y Chappell, B. W. (1987). A-type granites: Geochemical characteristics, discrimination and petrogenesis. *Contributions to Mineralogy and Petrology*, 95 (4), 407-419. https://doi. org/10.1007/BF00402202.
- Whalen, J. B. y Chappell B. W. (1988). Opaque mineralogy and mafic mineral chemistry of I- and S-type granites of the Lachlan Fold Belt, Southeast Australia. *American Mineralogist*, 73 (3-4), 281-296.

- Wilson, M. (1991). *Igneous petrogenesis: A global tectonic approach*. New York: Harper Collins Academic. ht-tps://doi.org/10.1007/978-1-4020-6788-4.
- Winter, J. (2001). An introduction to igneous and metamorphic petrology. New Jersey: Prentice Hall.
- Zapata, G., Correa M., A. M., Rodríguez, G. y Arango, M.
 I. (2016). *Catálogo de Unidades Litoestratigráficas de Colombia. Granito de Pescadero*. Medellín: Servicio Geológico Colombiano.
- Zapata, G., Arango, M. I., Rodríguez, G., y Correa M, A. M. (2018). Catálogo de Unidades Litoestratigráficas de Colombia. Riolitas El Uvo. Medellín: Servicio Geológico Colombiano.

ANEXOS

Anexo A. Edades U-Pb del Monzogranito de La Corcova

Muestra LMC-077, Laboratorio del Servicio Geológico Colombiano

Identificación	Relación Final	Error Interno relación final	Relación Final	Error Interno relación final	Ajuste error de correlación	Error de correlación	Edad corregida 206Pb_238U	Edad 207Pb_	%	Edad corregida	± 2σ	Relación Final
Muestra	²⁰⁷ Pb_ ²³⁵ U	^{20/} Pb_236U a 2 D.E.	²⁰⁶ Pb_ ²³⁸ U	²⁰⁰ Pb_ ²³⁸ U a 2 D.E.	(Datos negativos)	²⁰⁶ Pb_ ²³⁶ U vs, ²⁰⁷ Pb ²³⁵ U	(M,A,)	²³⁵ U (M,A,)	Discordia	²⁰⁶ Pb_ ²³⁸ U (M.A.)		²³⁸ U/ ²³² Th
LMC_077_24	1,01	0,051	0,076	0,001	0,253	0,253	452,127	711	57,257	452,127	13,28	2,695
LMC_077_55	0,235	0,013	0,026	0,001	0,35	0,35	167,332	213	27,292	167,332	31,91	2,121
LMC_077_53	0,233	0,017	0,026	0,001	0,31	0,31	166,866	212	27,048	166,866	31,93	26,65
LMC_077_56	0,202	0,008	0,024	0,001	0,597	0,597	151,304	186,3	23,129	151,304	29,44	5,468
LMC_077_54	0,555	0,019	0,058	0,002	0,682	0,682	363,592	447	22,94	363,592	68,66	1,482
LMC_077_57	0,45	0,021	0,049	0,002	0,799	0,799	308,933	376	21,709	308,933	60,24	1,601
LMC077_3	0,338	0,03	0,038	0,001	0,401	0,401	238,219	283	18,798	238,219	8,20	1,495
LMC_077_52	0,428	0,028	0,049	0,001	0,288	0,288	307,356	361	17,453	307,356	57,90	0,487
LMC_077_45	0,233	0,023	0,032	0,002	0,779	0,779	201,891	206	2,035	201,891	39,42	1,55
LMC_077_48	0,221	0,008	0,032	0,001	0,805	0,805	202,306	202,7	0,195	202,306	38,22	8,091
LMC_077_58	0,233	0,009	0,032	0,001	0,659	0,659	202,316	211,4	4,49	202,316	39,46	1,484
LMC_077_51	0,369	0,022	0,045	0,002	0,761	0,761	286,375	314	9,646	286,375	55,49	1,443
LMC_077_43	0,597	0,02	0,079	0,003	0,855	0,855	488,387	474	-2,946	488,387	92,38	1,491
LMC_077_47	0,348	0,02	0,052	0,003	0,826	0,826	329,211	301	-8,569	329,211	62,81	3,342
LMC_077_59	0,565	0,023	0,072	0,003	0,829	0,829	450,048	452	0,434	450,048	86,72	19,084
LMC_077_50	0,205	0,007	0,027	0,001	0,719	0,719	172,317	189,1	9,74	172,317	32,57	0,64
LMC 077 49	0,201	0,008	0,027	0,001	0,778	0,778	173,454	185,1	6,714	173,454	33,20	1,043
LMC 077 46	2,139	0,079	0,204	0,006	0,507	0,507	1196,406	1151	-3,795	1196,406	226,40	2,1
LMC_077_44	0,47	0,021	0,069	0,002	0,531	0,531	434,479	388	-10,698	434,479	80,80	2,036
LMC 077 31	0,21	0,006	0,031	0,001	0,613	0,613	196,002	193	-1,532	196,002	6,20	1,524
LMC 077 8	0,229	0,013	0,031	0,001	0,282	0,282	198,063	208	5,017	198,063	5,84	1,235
LMC 077 5	0,228	0,008	0,032	0,001	0,385	0,385	199,498	209,4	4,963	199,498	6,31	2,151
LMC 077 38	0,219	0,007	0,032	0	0,262	0,262	204,326	201,7	-1,285	204,326	5,51	1,561
LMC 077 10	0,21	0,022	0.032	0,001	0,093	0,093	205,668	192	-6,646	205,668	7,07	1,045
LMC077_19	0,234	0,012	0,033	0,001	0,263	0,263	211,522	213	0,699	211,522	6,96	4,463
LMC 077 17	0,226	0,021	0.033	0,001	0,1	-0,038	211,536	208	-1,672	211,536	7,68	4,605
LMC 077 25	0,244	0,009	0,034	0	0,171	0,171	216,175	220,7	2,093	216,175	6,07	2,34
LMC 077 36	0,249	0,02	0,035	0,001	0,226	0,226	220,317	222	0,764	220,317	7,00	0,716
LMC 077 26	0.247	0.005	0.035	0	0.28	0.28	222.645	223.6	0.429	222.645	5.87	3.161
LMC 077 6	0,245	0,007	0,035	0	0,334	0,334	224,816	222,2	-1,164	224,816	6,00	1,346
LMC 077 23	0,255	0,008	0,036	0,001	0,503	0,503	228,112	229,7	0,696	228,112	6,93	6,355
LMC 077 18	0.252	0.009	0.036	0.001	0.398	0.398	229.994	227.1	-1.258	229.994	6.32	64.222
LMC 077 37	0,256	0,008	0,036	0	0,21	0,21	230,13	230,1	-0,013	230,13	6,00	1,45
LMC 077 33	0,262	0,006	0,036	0	0,204	0,204	230,226	235,4	2,247	230,226	5,93	4,195
LMC 077 20	0,274	0,007	0,037	0	0,203	0,203	231,781	246,3	6,264	231,781	6,10	1,192
LMC077_22	0,28	0,009	0,037	0	0,328	0,328	232,015	249,7	7,622	232,015	6,28	4,138
LMC077_32	0,261	0,008	0,037	0	0,165	0,165	232,524	236,5	1,71	232,524	6,12	3,882
LMC 077 29	0,287	0,009	0,038	0	0,108	0,108	239,673	257,4	7,397	239,673	6,29	3,768
LMC 077 11	0,287	0,01	0,039	0,001	0,241	0,241	243,452	255,9	5,113	243,452	6,91	12,007
LMC 077 35	0,271	0,013	0,039	0,001	0,166	0,166	247,047	241	-2,448	247,047	6,95	4,356
LMC 077 21	0,292	0,023	0,041	0,001	0,117	0,117	259,302	254	-2,045	259,302	9,46	14,943
LMC 077 27	0,292	0,013	0,042	0,001	0,663	0,663	264,837	259,1	-2,166	264,837	9,40	28,977
LMC 077 1	0,34	0,016	0,046	0,001	0,18	0,18	289.012	295	2,072	289.012	8.16	15,643
LMC 077 4	0.413	0.016	0.057	0.001	0.339	0,339	359.824	351	-2,452	359,824	10.57	4,319
LMC 077 42	0,482	0.034	0.059	0.001	0,134	0,134	365.763	402	9,907	365,763	11.83	4.617
LMC 077 28	0.483	0.016	0.063	0.001	0.744	0.744	390.04	399	2,297	390.04	12.94	4,526
LMC 077 41	0,483	0,021	0,067	0,001	0,187	0,187	415.623	399	-4	415.623	11.78	1,867
LMC_ 077 34	0,551	0,02	0,07	0,001	0,191	0,191	435,62	445	2,153	435.62	12,31	4,583
LMC 077 39	0,534	0,02	0,071	0,001	0,385	0,385	443.099	435	-1,828	443.099	13.53	8,978
LMC077_15	0,616	0,018	0,074	0,001	0,238	0,238	457,051	485	6,115	457,051	12,87	5,138

Identificación Muestra	Relación Final ²⁰⁷ Pb_ ²³⁵ U	Error Interno relación final ²⁰⁷ Pb_ ²³⁵ U a 2 D,E,	Relación Final 206Pb_238U	Error Interno relación final ²⁰⁶ Pb_ ²³⁸ U a 2 D,E,	Ajuste error de correlación (Datos negativos)	Error de correlación ²⁰⁶ Pb_ ²³⁸ U vs, ²⁰⁷ Pb_ ²³⁵ U	Edad corregida ²⁰⁶ Pb_ ²³⁸ U (M,A,)	Edad ²⁰⁷ Pb_ ²³⁵ U (M,A,)	% Discordia	Edad corregida ²⁰⁶ Pb_ ²³⁸ U (M,A,)	± 2σ	Relación Final ²³⁸ U/ ²³² Th
LMC077_2	0,584	0,015	0,075	0,001	0,352	0,352	464,74	466,8	0,443	464,74	12,89	1,127
LMC077_9	0,588	0,017	0,076	0,001	0,402	0,402	469,66	471	0,285	469,66	12,88	1,377
LMC077_13	0,6	0,023	0,078	0,001	0,242	0,242	481,984	474	-1,656	481,984	13,51	1,869
LMC077_7	0,637	0,022	0,079	0,001	0,327	0,327	489,776	497	1,475	489,776	13,48	4,17
LMC077_14	0,613	0,021	0,08	0,001	0,146	0,146	498,184	487	-2,245	498,184	13,50	1,979
LMC077_12	0,868	0,065	0,101	0,005	0,777	0,777	618,317	633	2,375	618,317	30,57	7,312
LMC077_40	1,519	0,081	0,153	0,006	0,848	0,848	911,641	943	3,44	911,641	40,00	5,459
LMC077_30	2,26	0,15	0,188	0,005	0,433	0,433	1091,301	1190	9,044	1091,301	39,07	4,371
LMC077_16	3,215	0,053	0,249	0,003	0,583	0,583	1426,432	1460	2,353	1426,432	38,40	6,725

MIA-630B, Laboratorio de la Universidad Nacional Autónoma de México

	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	± 2s abs	²⁰⁶ Pb/ ²³⁸ U	± 2s abs	Correlación de errores	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc%	Error	²⁰⁶ Pb/ ²³⁸ U	±2s
Circón-162	3.030	10.330	3,41	0,0504	0,0019	0,2261	0,009	0,0326	0,0003	0,189	206,9	7,4	213	86	206,7	1,9	0,1	0,92%	206,7	1,9
Circón-164	477	684	1,43	0,0503	0,0028	0,222	0,013	0,0326	0,0005	0,054	203	10	190	120	206,7	3	-1,82	1,45%	206,7	3
Circón-152	2.030	4.290	2,11	0,0498	0,002	0,2241	0,0095	0,0326	0,0004	0,102	205,3	7,9	180	90	206,8	2,5	-0,73	1,21%	206,8	2,5
Circón-166	2.580	7.610	2,95	0,0508	0,0018	0,2277	0,0092	0,0327	0,0004	0,387	208,2	7,6	224	84	207,2	2,6	0,48	1,25%	207,2	2,6
Circón-163	1.000	1.890	1,89	0,0536	0,003	0,239	0,015	0,033	0,0004	0,052	217	12	340	120	209,3	2,4	3,55	1,15%	209,3	2,4
Circón-141	404	530	1,31	0,0487	0,0029	0,227	0,015	0,033	0,0005	0,263	209	12	130	130	209,3	2,9	-0,14	1,39%	209,3	2,9
Circón-156	2.560	8.430	3,29	0,0513	0,002	0,2326	0,0093	0,0331	0,0004	0,257	212,3	7,9	244	87	209,6	2,6	1,27	1,24%	209,6	2,6
Circón-172- MIA-630B	2.050	2.790	1,36	0,0515	0,0037	0,234	0,019	0,0332	0,0003	0,344	214	15	250	130	210,6	2,1	1,59	1,00%	210,6	2,1
Circón-171	2.510	7.860	3,13	0,0509	0,002	0,2305	0,0097	0,0333	0,0003	0,429	211,2	7,7	226	90	210,9	2,1	0,14	1,00%	210,9	2,1
Circón-165	2.050	2.630	1,28	0,0523	0,0057	0,24	0,026	0,0333	0,0005	0,117	218	19	280	160	211,3	2,9	3,07	1,37%	211,3	2,9
Circón-146	661	829	1,25	0,0511	0,0023	0,239	0,011	0,0335	0,0005	0,053	1053	20	230	100	212,6	2,9	2,07	2,07	217,1	8,7

	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	± 2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	± 2s abs	Correlación de errores	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	± 2s	Mejor edad (Ma)	± 2s	Disc%	Error	²⁰⁶ Pb/ ²³⁸ U	±2s
Circón-132	1.590	69	0,043	0,075	0,007	0,404	0,090	0,039	0,003	0,880	344,000	52	1.050	130	246	20	28,4884	0,0813	246,0	20
Circón-110	436	30,8	0,071	0,081	0,003	1,720	0,120	0,151	0,008	0,051	1.016,000	55	1.218	83	1218	83	10,6299	0,0681	908,0	46
Circón-137-MIA-627A	2.790	81	0,029	0,055	0,003	0,203	0,043	0,027	0,004	0,427	188,000	32	400	97	169	25	10,1064	0,1479	169,0	25
Circón-127	1.780	8	0,004	0,051	0,002	0,244	0,037	0,035	0,004	0,188	221,000	27	249	95	222	24	-0,4525	0,1081	222,0	24
Circón-113	5.870	93,8	0,016	0,050	0,002	0,192	0,008	0,028	0,000	0,427	178,400	6,6	210	87	175	2	1,9058	0,0114	175,0	2
Circón-119	591	182	0,308	0,056	0,003	0,234	0,011	0,030	0,000	0,025	213,400	9,4	430	110	192,9	2,2	9,6064	0,0114	192,9	2,2
Circón-136	2.570	2030	0,790	0,051	0,002	0,216	0,009	0,031	0,000	0,060	198,200	7,4	212	93	195,9	2	1,1604	0,0102	195,9	2
Circón-124	881	840	0,953	0,055	0,002	0,230	0,010	0,031	0,000	0,059	210,900	8,6	381	97	196,1	2,4	7,0175	0,0122	196,1	2,4
Circón-112	5.110	84	0,016	0,050	0,002	0,220	0,009	0,032	0,000	0,486	202,800	7	177	85	201,2	1,6	0,7890	0,0080	201,2	1,6
Circón-109	539	46,8	0,087	0,048	0,002	0,221	0,011	0,032	0,001	0,493	202,700	9,3	96	98	205,7	4,3	-1,4800	0,0209	205,7	4,3
Circón-111	3.530	109	0,031	0,054	0,002	0,241	0,018	0,033	0,001	0,527	219,000	14	366	85	206,9	8	5,5251	0,0387	206,9	8
Circón-115	5.010	692	0,138	0,050	0,002	0,227	0,010	0,033	0,000	0,451	207,400	8	192	84	207,7	2,8	-0,1446	0,0135	207,7	2,8
Circón-130	1.190	1440	1,210	0,052	0,002	0,233	0,010	0,033	0,001	0,040	212,800	8,3	255	93	209,6	3,9	1,5038	0,0186	209,6	3,9
Circón-104	254	247	0,972	0,057	0,004	0,355	0,027	0,045	0,001	0,088	307,000	20	430	150	281,2	5,6	8,4039	0,0199	281,2	5,6
Circón-107	1.810	82	0,045	0,056	0,002	0,472	0,020	0,061	0,001	0,523	394,000	13	455	81	382,4	3,6	2,9442	0,0094	382,4	3,6
Circón-118	650	245	0,377	0,055	0,002	0,511	0,024	0,067	0,001	0,012	419,000	16	406	97	419,4	7	-0,0955	0,0167	419,4	7
Circón-135	503	243	0,483	0,056	0,002	0,532	0,023	0,069	0,001	0,169	433,000	16	448	92	430,5	4,7	0,5774	0,0109	430,5	4,7
Circón-126	1.010	892	0,883	0,056	0,002	0,552	0,022	0,072	0,001	0,231	446,000	15	427	84	447,9	4,2	-0,4260	0,0094	447,9	4,2
Circón-105	744	830	1,116	0,056	0,002	0,568	0,024	0,073	0,001	0,172	456,000	15	435	90	451,5	4,4	0,9868	0,0097	451,5	4,4
Circón-134	2.400	666	0,278	0,058	0,003	0,586	0,066	0,073	0,005	0,779	468,000	39	532	90	452	31	3,4188	0,0686	452,0	31
Circón-129	890	223	0,251	0,055	0,003	0,554	0,034	0,073	0,002	0,630	446,000	23	410	100	452	14	-1,3453	0,0310	452,0	14
Circón-121 1.420	227	0,160	0,056	0,002	0,558	0,023	0,073	0,001	0,289	450,000	15	426	84	452,9	4,3	-0,6444	0,0095	452,9	4,3	
Circón-128 318	200	0,629	0,055	0,003	0,555	0,027	0,074	0,001	0,002	447,000	18	380	110	459,1	5,2	-2,7069	0,0113	459,1	5,2	
Circón-106 808	348	0,431	0,055	0,002	0,572	0,024	0,074	0,001	0,425	459,000	15	419	85	459,3	6	-0,0654	0,0131	459,3	6	
Circón-120 268	133	0,496	0,057	0,003	0,581	0,028	0,074	0,001	0,208	464,000	17	480	110	462,5	7,6	0,3233	0,0164	462,5	7,6	
Circón-116 906	564	0,623	0,057	0,002	0,576	0,026	0,075	0,002	0,401	463,000	16	471	88	463,5	9,4	-0,1080	0,0203	463,5	9,4	
Circón-131 624	298	0,478	0,055	0,002	0,574	0,025	0,075	0,001	0,279	460,000	16	430	92	466,2	4,4	-1,3478	0,0094	466,2	4,4	
Circón-114 5.130	543	0,106	0,056	0,002	0,590	0,022	0,076	0,001	0,881	471,000	14	461	76	470,4	6,7	0,1274	0,0142	470,4	6,7	
Circón-108 616	373	0,606	0,056	0,002	0,606	0,025	0,078	0,001	0,242	482,000	16	457	84	481,4	3,9	0,1245	0,0081	481,4	3,9	
Circón- 103-MIA- 267 627A	77,8	0,291	0,056	0,003	0,604	0,030	0,078	0,001	N30, 19438	478,000	20	430	110	482,2	6,1	-0,8787	0,0127	482,2	6,1	
Circón-125 364	233	0,640	0,059	0,003	0,612	0,036	0,078	0,002	0,402	484,000	21	562	96	484	12	0,0000	0,0248	484,0	12	
Circón-117 182	95	0,522	0,057	0,003	0,621	0,042	0,080	0,003	0,106	489,000	28	460	110	495	20	-1,2270	0,0404	495,0	20	
Circón-122 252	127	0,504	0,090	0,003	2,334	0,099	0,189	0,004	0,704	1.221,000	32	1418	69	1418	69	8,5995	0,0487	1116,0	22	
Circón-123 264	145	0,549	0,092	0,004	3,290	0,130	0,260	0,003	0,377	1.483,000	34	1470	73	1470	73	-0,4046	0,0497	1489,0	15	
Circón-133 174	78,2	0,449	0,094	0,004	3,380	0,140	0,264	0,003	0,235	1.499,000	32	1498	74	1498	74	-0,6004	0,0494	1508,0	14	

MIA-627A, Laboratorio de la Universidad Nacional Autónoma de México

AMC-128, Laboratorio de la Universidad Nacional Autónoma de México

	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	± 2s abs	²⁰⁷ Pb/ ²³⁵ U	± 2s abs	²⁰⁶ Pb/ ²³⁸ U	± 2s abs	correlación de errores	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc%	Error	²⁰⁶ Pb/ ²³⁸ U	±2s
Circón-044	410	150,1	0,37	0,0598	0,0029	0,5220	0,0210	0,0628	0,0012	0,3556	426,0	14,0	600,0	100,0	0,0	0,4	7,82	1,81%	392,7	7,1
Circón-067	1.098	1120	1,02	0,06	0,00	0,59	0,02	0,07	0,00	0,72	470,00	15,0	624,0	89,0	0,0	0,7	6,00	2,11%	441,8	9,3
Circón-045	346,8	122,7	0,35	0,05	0,00	0,46	0,02	0,06	0,00	0,22	384,00	14,0	380,0	100,0	0,0	0,2	0,44	1,36%	382,3	5,2
Circón-065	566	191	0,34	0,06	0,00	0,56	0,02	0,07	0,00	0,12	454,00	15,0	512,0	91,0	0,0	0,1	2,25	2,12%	443,8	9,4
Circón-052	1.440	751	0,52	0,06	0,00	0,57	0,02	0,07	0,00	0,18	458,00	13,0	467,0	89,0	0,0	0,2	0,48	1,14%	455,8	5,2
Circón-062	383,9	212,9	0,55	0,06	0,00	0,58	0,02	0,07	0,00	0,19	464,00	15,0	500,0	100,0	0,0	0,2	0,80	1,35%	460,3	6,2
Circón-037	613	431	0,70	0,06	0,00	0,58	0,02	0,07	0,00	0,23	465,00	13,0	502,0	92,0	0,0	0,2	0,99	1,19%	460,4	5,5
Circón-046	288,8	265	0,92	0,06	0,00	0,58	0,03	0,07	0,00	0,13	465,00	17,0	520,0	110,0	0,0	0,1	0,54	1,60%	462,5	7,4
Circón-054	636	1160	1,82	0,06	0,00	0,57	0,03	0,07	0,00	0,40	459,00	18,0	410,0	110,0	0,0	0,4	-1,00	2,05%	463,6	9,5
Circón-053	458,3	243	0,53	0,06	0,01	0,59	0,06	0,07	0,00	0,17	471,00	32,0	470,0	160,0	0,0	0,2	1,34	1,40%	464,7	6,5
Circón-069	561,2	267,3	0,48	0,06	0,00	0,59	0,02	0,07	0,00	0,09	469,00	15,0	490,0	95,0	0,0	0,1	0,81	1,14%	465,2	5,3
Circón-047	417,1	250	0,60	0,06	0,00	0,59	0,02	0,08	0,00	0,05	471,00	15,0	510,0	100,0	0,0	0,1	0,93	1,24%	466,6	5,8
Circón-051	407	459	1,13	0,06	0,00	0,58	0,02	0,08	0,00	0,12	464,00	15,0	461,0	93,0	0,0	0,1	-0,73	1,31%	467,4	6,1
Circón-060	747,7	542	0,72	0,06	0,00	0,59	0,02	0,08	0,00	0,17	473,00	13,0	483,0	84,0	0,0	0,2	0,13	1,02%	472,4	4,8
Circón-070- AMC-0128	193	185	0,96	0,06	0,00	0,59	0,03	0,08	0,00	0,14	470,00	18,0	470,0	120,0	0,0	0,1	-0,96	1,83%	474,5	8,7
Circón-038	902,9	432,7	0,48	0,06	0,00	0,60	0,02	0,08	0,00	0,11	477,00	13,0	491,0	88,0	0,0	0,1	0,42	1,05%	475,0	5,0
Circón-061	484,5	302,4	0,62	0,06	0,00	0,61	0,02	0,08	0,00	0,28	483,00	12,0	495,0	87,0	0,0	0,3	1,28	1,32%	476,8	6,3
Circón-041	386,8	389,9	1,01	0,06	0,00	0,59	0,03	0,08	0,00	0,02	471,00	15,0	470,0	110,0	0,0	0,0	-1,42	1,30%	477,7	6,2
Circón-039	398,5	217,4	0,55	0,06	0,00	0,62	0,03	0,08	0,00	0,15	487,00	17,0	537,0	96,0	0,0	0,1	1,83	1,51%	478,1	7,2
Circón-059	539,8	473,9	0,88	0,06	0,00	0,60	0,02	0,08	0,00	0,25	478,00	15,0	484,0	93,0	0,0	0,2	-0,10	1,44%	478,5	6,9
Circón-050	1.181	489,6	0,41	0,06	0,00	0,60	0,02	0,08	0,00	0,26	474,00	14,0	445,0	85,0	0,0	0,3	-1,29	1,85%	480,1	8,9
Circón-049	509,3	378	0,74	0,06	0,00	0,60	0,02	0,08	0,00	0,12	476,00	16,0	470,0	110,0	0,0	0,1	-1,07	1,16%	481,1	5,6
Circón-063	553	246,7	0,45	0,06	0,00	0,63	0,02	0,08	0,00	0,07	493,00	14,0	548,0	91,0	0,0	0,1	1,70	1,16%	484,6	5,6
Circón-064	411,7	188,7	0,46	0,06	0,00	0,65	0,02	0,08	0,00	0,05	505,00	15,0	593,0	88,0	0,0	0,0	4,02	1,22%	484,7	5,9
Circón-043	2.940	2033	0,69	0,06	0,00	0,61	0,02	0,08	0,00	0,64	481,00	13,0	493,0	80,0	0,0	0,6	-0,77	1,88%	484,7	9,1
Circón-066	321,1	227,9	0,71	0,06	0,00	0,60	0,03	0,08	0,00	0,33	479,00	16,0	446,0	99,0	0,0	0,3	-1,21	1,30%	484,8	6,3
Circón-068	465	200	0,43	0,06	0,00	0,62	0,03	0,08	0,00	0,36	489,00	15,0	514,0	90,0	0,0	0,4	0,65	1,44%	485,8	7,0
Circón-058	1.117	924	0,83	0,06	0,00	0,62	0,02	0,08	0,00	0,19	488,00	13,0	499,0	87,0	0,0	0,2	0,43	1,34%	485,9	6,5
Circón-040	241,1	238,2	0,99	0,06	0,00	0,61	0,03	0,08	0,00	0,14	481,00	19,0	440,0	120,0	0,0	0,1	-2,02	1,61%	490,7	7,9
Circón-048	573,6	305,9	0,53	0,06	0,00	0,62	0,02	0,08	0,00	0,16	490,00	14,0	478,0	90,0	0,0	0,2	-0,22	1,30%	491,1	6,4
Circón-057	661	636	0,96	0,06	0,00	0,63	0,02	0,08	0,00	0,05	493,00	15,0	512,0	86,0	0,0	0,0	-0,22	1,76%	494,1	8,7
Circón-055	662	438	0,66	0,06	0,00	0,63	0,02	0,08	0,00	0,23	493,00	13,0	501,0	83,0	0,0	0,2	-0,24	1,01%	494,2	5,0
Circón-042	534	572	1,07	0,06	0,00	0,67	0,03	0,08	0,00	0,17	522,00	17,0	521,0	97,0	0,0	0,2	-0,59	1,49%	525,1	7,8
Circón-056	293	174	0,59	0,06	0,00	0,68	0,03	0,09	0,00	0,09	524,00	18,0	480,0	100,0	0,0	0,1	-1,87	1,29%	533,8	6,9
Circón-036- AMC-0128	652	39	0,06	0,08	0,00	1,81	0,06	0,17	0,00	0,39	1.053,00	20,0	1.099,0	74,0	0,0	0,4	2,65	6,73%	1.025,1	9,2

Anexo B. Química de elementos traza en circones

(ppm)	Р	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
									ML	A-627A											
Circón-103-MIA-627A	580	5,92	924	2,45	0	5,69	0,02	0,41	1,43	0,18	11,1	4,86	67,5	30,8	164	368	81,4	11700	22,1	77,8	267
Circón-104	420	11,2	1.590	1,08	0,06	16,6	0,19	2,47	5,6	1,1	31,5	12,8	141	57,9	250	428	81	11.800	11,8	247	254
Circón-105	1.200	13,4	5.480	4,34	0,63	25,2	1,13	13,9	24,1	2,01	138	46,9	537	196	820	1.280	240	9.800	57	830	744
Circón-106	1.400	9,4	3.470	2,36	0,4	14,2	0,26	3,44	7,04	0,41	50,8	21,5	289	120	562	1.070	209	13.400	63,3	348	808
Circón-107	760	9,2	1.040	30	0,17	3,19	0,32	3,3	5,3	0,11	17,6	5,7	71	29,8	185	860	244	20.200	112	82	1.810
Circón-108	980	7,9	2.690	2,33	0	14,9	0,09	2,13	5,62	0,22	39,2	17,1	229	92,5	431	810	156	12.000	50	373	616
Circón-109	450	5,8	970	5,12	0	5,8	0,01	0,08	0,71	0,15	10,2	4,69	75	32,5	166	417	89	10.200	18,5	46,8	539
Circón-110	130	10,6	401	4,49	0,09	5,11	0,08	0,78	0,85	0,16	5,22	2,17	28,9	13	70,5	171	40,6	12.500	60,3	30,8	436
Circón-111	1.150	11,5	2.150	15,7	0,09	2,31	0,1	0,69	2,9	0,26	18,3	10,9	175	70	374	1.210	261	18.300	107	109	3.530
Circón-112	1.520	5,72	1.940	10,8	0,15	1,48	0,23	3,12	6,3	0,69	26,6	14,4	176	61	313	1.190	261	20.100	178	84	5110
Circón-113	1.370	5,86	2.410	18,3	0	1,52	0	0,04	2,42	0,18	21,8	16,1	222	72,6	376	1.750	379	25.400	172	93,8	5.870
Circón-114	460	34	1.990	34,8	0,35	18,6	0,23	1,84	2,88	0,06	15,3	7,25	110	54,2	328	1.170	265	23.100	425	543	5.130
Circón-115	2.060	7,2	5.190	37,7	0,02	16,7	0,05	0,82	4,93	0,63	50,2	27,2	391	177	890	1.920	391	15.000	165	692	5.010
Circón-116	605	7,43	2.710	5,28	0	25,2	0,13	3,13	7,49	0,28	46,1	19,3	240	95,8	429	765	150	11.300	71,3	564	906
Circón-117	910	12,9	2.060	0,9	0,1	5,86	0,12	3,08	6,6	0,65	39,9	14,8	181	71	317	580	114	10.100	15,6	95	182
Circón-118	340	6.7	1.550	9.2	0.13	22.2	0.09	1.23	2.73	0.33	21.2	8.9	124	52.6	258	619	137	12.300	47	245	650
Circón-119	710	6.7	1.400	4.28	0	9.17	0.02	0.52	2.17	0.31	17.3	7.1	106	46.7	235	549	119	11.440	18.8	182	591
Circón-120	490	7.15	1.143	2.22	0.01	10.6	0.06	0.95	3	0.3	19.9	7.17	95	39.2	181	368	75.9	9.270	20.4	133	268
Circón-121	380	6.65	1.350	13.2	0	9.42	0.02	0.29	1.29	0.22	14.4	7.02	103	46.8	239	591	129	13,800	107	227	1.420
Circón-122	180	8.7	822	3.62	0	23.3	0.04	0.65	1.87	0.3	11.3	4.71	62.5	27.4	137	327	70.9	11.500	49	127	252
Circón-123	222	10.5	795	5.78	0	44.6	0.14	1.95	2.98	0.56	16.4	5.67	70.6	27	130	299	65.2	12.500	65.5	145	264
Circón-124	730	10.2	3 510	14.4	0.09	80	0.44	7.7	15.2	2 44	79	27.8	327	124	543	1 010	196	9 600	28	840	881
Circón-125	490	8.5	1.310	5.6	0	24.4	0.02	0.89	3.06	0.43	16.8	8.1	108	45.2	217	447	94	13 500	27	233	364
Circón-126	1 880	11	4 070	10	1.21	56.7	1.03	9.9	14	2.68	75.9	27.5	352	140	659	1.350	276	11 200	71.5	892	1 010
Circón-127	290	4.66	480	11.3	0.01	0 39	0	0	0.08	0	1 28	1.09	19.8	13.4	99	453	133	13 400	57	8	1 780
Circón-128	1 010	14.6	2 510	1.23	0.01	6.77	0.16	2 59	6.3	0.43	44.3	16.8	212	83.2	370	700	138	9 400	23.4	200	318
Circón-129	1.590	8.7	3 400	2.63	0,01	6.6	0.05	0.92	4.51	0,40	40.2	18.6	284	124	610	1 240	246	14 800	67.5	223	890
Circón 120	620	7.5	3.400	16.7	0	0,0	0,00	4.54	4,51	1.14	40,2	20.7	204	95.4	204	669	100	10.490	41.2	1 4 4 0	1 100
Circón 121	1 550	12.1	1.570	4.65		75	7.0	4,04	10.0	0.54	25.0	20,7	100	60,4 E4 E	047	472	04.5	11,600	41,3	2009	604
Circón 122	500	0.4	1.090	4,05	23	0.66	0.00	9.07	0.57	0,54	16	6 70	07	24,5	101	473 	110	14.200	47,5 50.0	290	1 500
01/011-132	500	9,4	1.000	0,7	0,3	0,00	0,22	3,07	2,57	0,00		0,72		34,7	101		70.7	14.300	50,0	70.0	1.590
Circon-133	70	11,8	1.270	1	0	6,26	0,07	2,1	4,02	0,44	28,5	9,25	111	42,7	192	368	73,7	10.600	48	78,2	1/4
Circon-134	960	10,5	3.960	32,8	0,44	31,4	0,32	3,1	0,7	0,66	46,3	22	307	133	060	1.600	344	15.600	170	000	2.400
Circon-135	470	9,8	1.670	4,4	0,09	23,0	0,14	1,52	4,8	1,03	30,2	11,1	143	58,7	207	520	106	14.100	35,3	243	503
Circon-136	2.080	7,8	6.510	21,2	0,14	79,9	0,31	5,16	15,7	1,58	121	46,1	583	224	1.007	1.800	350	12.200	79,3	2.030	2.570
Circon-137-MIA-627A	820	7,7	2.100	17,8	0,05	3,87	0,01	0,23	1,24	0,15	14	9,1	150	66,9	375	1.220	270	16.100	68,5	81	2790
									MI	A-630B											
Circon-138-MIA-630B	349	8,83	/65	1,24	0	11,2	0,01	0,39	1,67	0,2	11,3	4,56	59,3	25	123	257	55,1	12530	3,06	113,1	235
Circon-139	520	21,4	4.500	37,8	0,17	606	1,02	18	26,4	8,58	114	35,9	406	151	664	1.290	257	8.000	83	9.970	2.620
Circon-140	257	5,86	1.460	3,13	0,03	80,6	0,3	5,66	6,91	2,49	33	11	125	48,7	232	518	114	8.200	42	1.030	1.231
Circon-141	100	6,38	860	2,81	0	49,6	0,05	0,74	2,02	0,7	13	4,8	67	27,5	138	328	74,6	12.200	14	530	404
Circón-142	200	284	2.170	20,8	0,36	293	0,46	6,5	11,3	3,58	46,5	16,1	179	67,7	305	620	127	6.400	45,3	4.520	1.470
Circon-143	440	9,8	4.880	18,3	0,54	460	0,93	13,5	18,9	6,95	100	32,9	412	163	705	1.330	258	9.230	67,3	8.400	2.060
Circón-144	154	6,71	714	4,64	0	38	0,04	0,76	1,29	0,66	8,8	3,75	46	21,8	121	340	80	10.190	27,5	511	885
Circón-145	480	9	3.510	11	0,05	257	0,45	7,5	11,4	4,5	65,9	22	286	115	521	1.150	241	7.250	51,3	3.450	1.510
Circón-146	87	6,31	872	4,66	0	79,7	0,08	1,32	2,94	1,08	14,8	5,19	67,6	27,4	130	296	62,3	9.640	22,5	829	661
Circón-147	540	7,68	2.890	19,7	0,31	266	0,45	6,39	10,1	3,06	50,7	17	218	89,9	459	1.030	220	9.860	77	4.360	2.250
Circón-148	888	9,5	6.600	26	0,2	552	0,94	14,1	21,6	7,75	108	38,4	484	205	1.030	2.280	468	7.090	100	9.500	3.180
Circón-149	390	7,07	2.060	11,8	0,02	187	0,16	3,01	6,9	2,14	40,8	14,1	176	67,9	302	560	110	10.410	40,8	2.310	1.280
Circón-150	282	7,87	1.850	11,9	0,1	184	0,32	4,51	6,43	2,81	31	10,8	133	56,3	289	757	171	7.990	42	2.400	1.280
Circón-151	377	7,7	2.940	9,84	0	218	0,21	4,23	8,06	2,9	48,7	18,3	235	92,7	426	855	169	8.590	42	2.890	1.270
Circón-152	693	6,55	4.280	13,9	0,01	248	0,25	4,26	9	3,11	68,7	25,1	335	139	647	1.300	265	9.680	67,8	4.290	2.030
Circón-153	240	6,07	900	3,05	0,08	58,9	0,11	1,27	2,08	0,96	12,1	4,72	60,1	25,8	129	314	72,2	13.800	34,5	740	1.040
Circón-154	317	10,1	2.920	24,6	0,08	438	0,85	13	18,1	6,86	75,1	23,9	264	94	407	790	156	8.780	74,8	8.800	2.270
Circón-155	342	13,5	1.950	15,4	4,91	203	3,13	22,5	12,9	3,1	47,3	13,4	154	62,7	287	608	128	7.990	170	36.600	5.290

(ppm)	Р	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
Circón-156	311	12	3.590	32	0,2	540	0,76	11,4	19,5	7,61	89,5	28,1	323	119	505	957	188	7.670	89,5	8.430	2.560
Circón-157	250	32.8	2.280	5.63	0.1	136	0.42	6.5	9.5	3.1	43.9	14.4	183	72.7	332	765	162	8.850	23.2	1.520	759
Circón-158	50	7 13	606	2 11	0.06	42.9	0.11	1 45	1 78	0.71	11.9	4	47.6	18.8	92	218	52.1	13 100	27	630	840
Circón-159	550	6.94	7 090	16.9	0.31	496	24	32.6	43.3	14.6	181	55.6	632	231	1 020	1.920	375	8 430	60.3	6 190	1 810
Circón 160	600	20.9	4 140	15.6	0.05		0.01	4.61		2 20	67.5	05,0	210	100	E0E	1150	220	0.400	42	2.070	1.010
Circon-160	540	29,0	4.140	13,0	0,05	200	0,21	4,01	9,5	0.59	67,5	20,0	055	07	450	050	400	7.500	40	5.070	0.000
Circon-161	540	8,4	3.110	14,7	0,47	280	0,46	5,8	10	3,58	60,6	19,9	200	97	452	950	192	7.500	63,5	5.500	2.020
Circon-162	560	9,19	5.540	33,1	0,08	629	0,9	14,2	24,3	8,64	116	39	404	1/5	//3	1470	284	8.210	103	10.330	3.030
Circon-163	400	9	2.170	8,02	0,08	167	0,15	2,56	6,8	2,52	34,3	12,4	163	66,9	318	674	145	8.400	33,8	1.890	1.000
Circón-164	31	6,89	1.560	5,9	0	94,2	0,09	1,55	4,35	1,41	24,7	9,81	127	50,4	224	458	91,7	10.580	16,1	684	477
Circón-165	130	7,6	1.010	8,3	0,81	66	0,41	2,54	2,89	1,09	12,5	4,63	59,7	28,7	159	458	120	8.400	72	2.630	2.050
Circón-166	412	9,6	3.620	27,6	0,02	531	0,58	8,44	17,1	6,57	84,2	27,7	320	121	517	977	186	8.990	86,5	7.610	2.580
Circón-167	105	6,21	1.060	6,48	0,02	94,5	0,08	1,24	3,29	1,15	19,7	6,95	85	34,8	160	341	75,4	9.500	47,3	1.600	1.440
Circón-168	197	6,64	1.110	4,82	0,04	92,6	0,26	3,5	5,25	1,96	23,7	7,82	93	36	162	346	78,5	9.400	63,5	1.420	1.900
Circón-169	1.060	11,3	4.230	14,6	1,61	317	1,09	12,3	15,6	5,34	79,5	27,6	340	137	639	1.390	291	6.800	65	6.620	1.970
Circón-170	193	6,66	1.930	8,21	0,03	162	0,28	3,66	6,62	2,42	37,7	13,1	159	63,9	300	659	143	9.290	46,5	2.070	1.420
Circón-171	366	13,7	3.950	40,8	0,05	562	0,79	11,4	20,3	6,98	95,2	30,7	353	132	565	1.075	209	8.650	87,3	7.860	2.510
Circón-172-MIA-630B	248	7,64	1.480	12,9	0,15	199	0,33	4,4	6,02	2,73	29,9	10,4	126	45,4	214	470	107	9.360	66	2790	2050
									AM	C-128A											
Circón-036-AMC- 012B	139	7,42	576	3,94	0	10,9	0	0,2	0,54	0,12	5,5	2,56	37,4	17,4	96,1	278	64,7	12670	115	39	652
Circón-037	4.120	31,8	2.221	6,35	6,13	44,8	3,03	19	12,7	1,1	46,6	16,1	196	75,2	345	714	147	12.030	48	431	613
Circón-038	433	6,76	2.094	13,2	0,14	20,3	0,13	1,07	3,77	0,63	27,5	12	166	71,4	344	748	153	12.540	72,2	432,7	903
Circón-039	10.200	75	1.300	3,76	10,6	50,9	5,7	32,1	18,5	1,72	41,2	13,1	129	42,5	183	373	78,9	12.400	31,1	217,4	399
Circón-040	544	9.43	1.758	2.8	0.43	24.4	0.27	3.87	7.17	1.11	37.8	13.6	157	60.8	274	523	106	11.170	19.1	238.2	241
Circón-041	394	8.42	1.470	6.27	0	33.6	0.09	1.8	3.9	0.64	24.4	9.53	122	49.4	230	462	92.5	11.180	31.2	389.9	387
Circón-042	328	7 44	1 604	9.17	0	34.2	0.08	1.38	3.86	0.7	27.2	10.4	133	53.2	254	535	110	11 220	47.9	572	534
Circón-043	782	10.5	4 980	52.8	0.03	55.9	0,00	5.21	12 7	1 99	86.9	34	427	175	806	1 728	337	11.370	220	2033	2940
Circón-044	220	16	1 109	5.61	0.1	11.5	0.04	0.53	1.94	0.44	13.7	5.7	92.1	35.2	193	452	08.1	12 370	26.0	150.1	
	2.30	5.01	0.07	0.04	0,1	744	0,04	0,55	1,04	0,44	10,7	3,7	50.0	00.0	100	452	30,1	12.070	20,5	100,1	
Circon-045	148	5,81	807	3,24	0	7,14	0,01	0,49	7.05	0,24	11,5	4,6	59,8	20,2	133	319	70,5	13.840	21,6	122,7	
Circon-046	464	9,6	1.911	3,21	0,04	20,7	0,22	3,93	7,05	1,23	37,9	13,4	165	65,1	301	614	126	11.130	22,3	265	289
Circon-047	187	6,91	960	4,41	0	16,4	0,03	0,9	1,75	0,32	12,4	5	/1,6	30,4	154	385	85	11.760	32,8	250	417
Circón-048	345	7,5	1.053	5,6	1,38	18,7	0,51	2,89	2,11	0,38	13,1	5,69	77,6	34	176	440	93,1	12.690	46,1	305,9	574
Circón-049	190	6,87	1.051	4,76	0	18,9	0,03	0,77	2,29	0,34	13,6	5,86	77,2	34,1	170	396	84,3	12.230	41,2	378	509
Circón-050	410	7,18	1.722	16,2	0,35	19,4	0,16	1,41	2,07	0,3	18,6	8,92	125	55,7	285	691	147	13.490	91,1	489,6	1181
Circón-051	452	11,1	2.812	5,09	0,14	40,5	0,38	5,75	10,2	1,91	58,2	20,7	248	96,8	438	853	171	10.110	31,6	459	407
Circón-052	381	6,83	2.240	21,7	0	40,7	0,05	1,4	5,03	0,6	30,8	12,3	174	73,6	364	826	173	13.600	111	751	1440
Circón-053	260	176	1.680	10,6	0,07	21,8	0,18	2,04	3,73	0,81	25,1	9,59	129	55,8	273	609	132	11.030	37,3	243	458
Circón-054	550	25,4	3.730	10,5	0,21	95	0,52	10,1	15,6	3,14	91	29,6	349	129	565	1.000	193	10.240	54	1160	636
Circón-055	561	7,47	2.229	6,96	0,37	27,4	0,26	2,08	5,22	0,78	35,5	13,6	180	73,9	359	752	156	12.190	55,2	438	662
Circón-056	341	6,41	786	3,8	0	15	0,02	0,6	1,73	0,22	10,4	4,29	59,8	25,5	128	307	67,4	12.240	26,9	174	293
Circón-057	393	8,06	1.696	8,37	0,06	31,6	0,12	1,75	4,42	0,92	26,9	10,8	138	56,2	276	587	123	11.720	52,4	636	661
Circón-058	700	18,2	2.688	12,1	0,36	53,5	0,23	2,64	6,21	1,12	41,4	16,5	211	88,8	429	953	202	11.980	91,5	924	1117
Circón-059	409	7,01	1.635	6,72	0,02	41,5	0,11	2,2	4,61	0,68	25,3	9,75	127	52,7	260	571	122	11.440	42,8	473,9	540
Circón-060	212	6,4	1.653	8,08	0	26,3	0,05	0,9	3,14	0,59	22,9	9,15	124	53,3	270	625	135	12.590	59,4	542	748
Circón-061	251	6,74	1.188	5,82	0	19,2	0,02	0,83	2,12	0,54	15,3	6,27	84,9	37,7	193	475	104	12.230	39	302,4	485
Circón-062	192	6,79	969	4,78	0	17,4	0,02	0,68	1,48	0,36	13,2	5,18	69,4	31,4	160	388	86,3	12.500	29,6	212,9	384
Circón-063	398	7.25	1.075	5.11	0.88	18.2	0.26	1.71	1.63	0.35	13	5.79	78.6	34.7	180	440	96.4	12.800	44.7	246.7	553
Circón-064	182	6.03	832	3.41	0.03	13.4	0.01	0.51	1 14	0.20	9.91	3.90	59.2	25.7	136	349	78.3	12 600	33.7	188 7	412
Circón-065	196	6.93	1.060	5 13	0	16.6	0.07	1 12	2.67	0.63	16.6	6 15	70.1	34.3	179	388	81 4	13 600	42.3	191	566
	304	7 40	1.000	5,15 E 40	0	20.4	0.04	0.04	2,07	0.50	17.0	7.04	074	A4 4	205	460	404	11.010	72,0	207.0	201
	391	1,49	1.200	0,48	0.10	23,4	0.07	0,94	2,0	1,50	17,3	10.4	97,1	41,1	205	403	101	10.500	20,0	227,9	1000
	338	0,7	3.062	8,63	0,13	34,2	0,27	4,84	10,5	1,58	50,2	19,4	241	99,7	480	1.093	238	10.560	/0,2	1120	1098
Circon-068	2.090	15	1.158	5,49	12,4	45	4	22,3	5,8	0,62	16,6	5,98	83,3	36,8	195	488	110	12.640	38,7	200	465
Circón-069	220	6,44	1.172	7,21	0	14,9	0,02	0,54	1,68	0,39	12,9	5,82	83,9	37,7	195	464	99,6	12.680	43,6	267,3	561
012B	391	8,88	1.720	3,32	0	18,9	0,14	2,87	6,18	1,02	36,4	12,5	155	60,5	265	484	97,4	10.430	15,5	185	193

MONZOGRANITO DE RIONEGRO

»Cordillera Oriental Departamentos de Santander y Norte de Santander

María Isabel Arango, Gabriel Rodríguez, Gilberto Zapata y Ana María Correa Martínez

Catálogo de las unidades litoestratigráficas de Colombia / Triásico-Jurásico

Citación: Arango, M. I., Rodríguez, G., Zapata, G. y Correa Martínez, A. M. (2020). Monzogranito de Rionegro. En *Catálogos de las unidades litoestratigráficas de Colombia: Macizo de Santander.* Vol. 1. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585279445.5

Origen del nombre, distribución geográfica y reseña histórica El nombre de este cuerpo ígneo plutónico deriva de su composición modal dominante y de su localización geográfica cerca del municipio de Rionegro (Santander).

1.1. Distribución geográfica

El Monzogranito de Rionegro tiene un área total aproximada de 1.445 km² y está situado entre las planchas 86, 97 y 109. Es un cuerpo de forma alargada que se extiende en sentido NNW-SSE desde el flanco occidental de la cordillera Oriental, sobre los departamentos de Santander y Norte de Santander. Su parte más angosta se encuentra hacia el sur en la plancha 109 (1,8 km) y se amplía hasta 17,13 km hacia el norte de la plancha 97.

Por su parte, el cuerpo de granodiorita que fue cartografiado como una unidad aparte en la Plancha 109 (Ward *et al.*, 1973), aflora en cercanías del municipio de Rionegro, en el extremo sur del Monzogranito de Rionegro, tiene un área de 36 km² y se encuentra en la carretera que comunica el municipio de Rionegro con Santa Cruz. El cuerpo intrusivo tiene forma irregular alargada en sentido NE-SW (Ward *et al.*, 1973).

El Monzogranito de Rionegro se encuentra limitado hacia el occidente por la falla de Bucaramanga, en contacto con la Formación Bocas y la Formación Girón. En cercanías del municipio de San Alberto se encuentra en contacto fallado e intrusivo con la unidad Ortoneis y con el Neis de Bucaramanga. Hacia el norte, el límite de la unidad es impreciso y ha sido incluido como parte del complejo extrusivo-intrusivo en la Plancha 76-Ocaña (Daconte y Salinas, 1980).

De acuerdo con la cartografía existente, el límite oriental del Monzogranito de Rionegro intruye la Formación Silgará y el Monzogranito de Cáchira, y en algunos sectores está limitado por la falla Veguitas y las fallas satélites de la falla de Cáchira.

Trabajos de campo, junto con análisis petrográficos y geocronológicos durante la ejecución del Proyecto Magmatismo Jurásico de Santander, permitieron delimitar el Monzogranito de Rionegro en su borde oriental, con una extensión menor que la presentada en las planchas 86 y 97, en las que aparece como parte de este cuerpo intrusivo otro cuerpo que denominamos *Monzogranito de* *Cáchira* (figura 1), que presentó una edad U/Pb en circones del Paleozoico, diferencias geoquímicas, textura granoblástica con contenidos mayores de moscovita y diques pegmatíticos de cuarzo y moscovita.

1.1. Reseña histórica

Esta unidad ha sido nombrada por Ward *et al.* (1973), teniendo en cuenta su diversidad litológica y su amplia distribución geográfica entre las planchas geológicas 86 (Ábrego), 97 (Cáchira) y 109 (Rionegro), *Batolito de Rionegro*, y está situada hacia el este del municipio de Rionegro, de donde toma su nombre en la plancha 109. En el norte, en cercanías del municipio de Ocaña, Arias y Vargas (1978) la nombraron *Batolito de Ocaña*, refiriéndose así a un conjunto de rocas intrusivas con similitudes composicionales al Batolito de Rionegro, junto con rocas extrusivas de composición riolítica, sin precisar límites cartográficos entre estas unidades.

Ward et al. (1973) definieron y separaron dos facies del Batolito de Rionegro: una facies principal de cuarzomonzonita (equivale a monzogranitos) localizada hacia el norte del municipio de Rionegro, en cercanías de la localidad de La Reforma; esta se extiende hacia el norte hasta el límite de las planchas 86 y 76, donde es cartografiada como complejo intrusivo-extrusivo (Daconte y Salinas, 1980). Posteriormente, esta facies es denominada unidad cuarzomonzonita (Arias y Vargas, 1978; Arias y Morales, 2003); unidad intrusiva cuarzomonzonita (Clavijo, 1994) y cuarzomonzonita-granito (Royero y Clavijo, 2001). En el empalme entre las planchas 97 (Cáchira) y 98 (Durania) no hay continuidad en la nomenclatura cartográfica del batolito, por lo que Fuquen et al., (2010), denominan el cuerpo intrusivo localizado al oeste de la plancha de Durania como Granito de Arboledas.

Subordinadamente, la facies granodiorítica está asociada en la literatura con la unidad granodiorita y granodiorita biotítica, que inicialmente correspondía a dos cuerpos: el primero de ellos, en la Plancha 86 (Arias y

Figura 1. Localización de afloramientos del Monzogranito de Rionegro

Fuente: modificado a partir de Ward *et al.* (1973), Arias y Vargas (1978), Daconte y Salinas (1980), Arias y Morales (2003), Clavijo (1994) y Royero y Clavijo (2001) y este trabajo

Vargas, 1978), y el otro, ubicado en la Plancha 109 (Ward *et al.*, 1973).

Según Arias y Vargas (1978), estos dos cuerpos granodioríticos presentan similitudes entre sí; sin embargo, una edad reportada por Van der Lelij (2013) de 443,4 \pm 3,2 Ma, U-Pb en circones para la unidad que aflora en la plancha 86 indica que se trata de un plutón diferente del Batolito de Rionegro y de la facies granodiorita que aflora al sur de este, localizada en cercanías del municipio de Rionegro y la población de Santa Cruz, en la Plancha 109 (Ward *et al.*, 1973) (figura 1). La granodiorita que aflora en los alrededores de Rionegro debe ser tratada como una unidad aparte del Monzogranito de Rionegro, de acuerdo con la edad U/Pb en circones obtenida en este proyecto, de 214,5 \pm 2,7 Ma, pues es anterior a la cristalización de las rocas del Monzogranito de Rionegro.

2. Descripción geológica

2.1. Marco geológico

El Macizo de Santander hace parte de un bloque regional de forma triangular conformado por las fallas de Santa Marta-Bucaramanga, al occidente, la falla de Oca-Ancón, al norte, y la falla de Boconó, en el lado oriental.

Las rocas más antiguas del Macizo de Santander comprenden unidades metamórficas como el Neis de Bucaramanga (Ward *et al.*, 1973), denominado también *complejo Bucaramanga* (Clavijo, 1994). El Neis de Bucaramanga consiste de paragneises migmatíticos de alto grado considerados de edad Proterozoica, con un pico de metamorfismo de edad 1057 ± 28 Ma (U/Pb-SHRIMP en circón), relacionado con la orogenia grenvilliana (Goldsmith *et al.*, 1971; Restrepo Pace *et al.*, 1997; García y Ríos, 1999; Cordani *et al.*, 2005; Ordóñez Cardona *et al.*, 2006).

Edades publicadas por Van der Lelij (2013) y obtenidas durante el desarrollo del proyecto Magmatismo Jurásico del Macizo de Santander en unidades cartografiadas como el Neis de Bucaramanga y el Ortoneis por el método U-Pb LA-ICP-MS (*laser ablation inductively-coupled plasma mass spectrometry* —ablación láser inductivamente acoplada con un espectrómetro de masas con fuente de plasma—) en circones, arrojaron edades de metamorfismo y cristalización del Ordovícico.

El Neis de Bucaramanga subyace a la Formación Silgará, constituida por esquistos, filitas, metalodolitas, metaareniscas y escasos mármoles, y hace parte del basamento del Macizo de Santander (Ward *et al.*, 1973; García y Ríos, 1999; Ríos *et al.*, 2003; Mantilla *et al.*, 2013; Mantilla *et al.*, 2016). Presenta edades de metamorfismo del Ordovícico Inferior-Medio relacionadas con la orogenia caledoniana (Ríos *et al.*, 2003; Ordóñez Cardona *et al.*, 2006; Clavijo *et al.*, 2008; Mantilla *et al.*, 2013).

Algunas edades U-Pb en circón muestran magmatismo posterior y anterior al metamorfismo, representado por metavulcanitas y plutones que intruyen el basamento metamórfico, con edades U/Pb en circón del Silúrico, Devónico Inferior, Carbonífero y límite Triásico-Jurásico.

Los plutones triásico-jurásicos del Macizo de Santander se consideraron emplazados en rocas metamorficas del Terreno Chibcha, de acuerdo con Restrepo y Toussaint (1988) y Restrepo *et al.*, (2011), o del terreno Santander, según Etayo *et al.* (1985). Estos plutones están emplazados en rocas metamorficas ordovícicas relacionadas con la orogenia famatiniana, y probablemente no tienen relación con el arco continental más joven, Jurásico temprano a Medio, del Valle Superior del Magdalena, la serranía de San Lucas y la Sierra Nevada de Santa Marta, emplazado en basamento metamórfico grenvilliano, y donde no se han reportado rocas metamorficas relacionadas con la orogenia famatiniana.

Durante el límite Triásico-Jurásico se desarrolló un notable magmatismo de arco continental que produjo el emplazamiento de grandes batolitos, *stocks* graníticos y cuerpos riolíticos subvolcánicos localizados hacia la margen occidental del Macizo de Santander, en el basamento metamórfico paleozoico.

Unidades sedimentarias cretácicas reposan discordantes sobre el basamento metamórfico y los plutones. Con posterioridad a la sedimentación cretácica se dio escaso magmatismo durante el Mioceno, que emplazó pequeños cuerpos de pórfidos con mineralización de oro (Leal, 2011; Mantilla *et al.*, 2013).

2.1. Características macroscópicas

Arias y Vargas (1978) describen la composición principal del Batolito de Rionegro como cuarzomonzonita, con un predominio de biotita y variaciones locales a granito, granodiorita y, en menor proporción, a tonalita. De acuerdo con Ward *et al.* (1973), la litología principal es leucocrática de color rosado a gris claro, con un índice de color de 15 a 20%, y presenta texturas equigranulares a subporfiríticas con tamaño de grano medio. Estos autores indican variaciones litológicas, cerca de los bordes en contactos con la Formación Silgará, a un granito de color blanco a rosado.

A nivel macroscópico, según Daconte y Salinas (1980), las rocas intrusivas del Batolito de Ocaña exhiben una textura que varía de grano fino a grueso, con predominio del grano medio y escasas zonas pegmatíticas. Son rocas claras compuestas por feldespato rosado, cuarzo, plagioclasa y, en menor proporción, algún ferromagnesiano (biotita, clorita). La composición varía de granito a cuarzomonzonita.

El Monzogranito de Rionegro está compuesto por cristales subhedrales de plagioclasa, cristales de cuarzo anhedrales y feldespato que puede variar en su contenido a cristales anhedrales de tonalidad rosada. El mineral máfico que predomina es la biotita en láminas de color negro y, en menor proporción, cristales de hornblenda.

Macroscópicamente, las granodioritas corresponden a rocas faneríticas de color gris a gris verdoso, con tamaño de grano medio a ligeramente inequigranular y textura subporfirítica. Están compuestas por cuarzo, plagioclasa y feldespato potásico como minerales principales y biotita sectorizada. Se encuentran intruyendo la Formación Silgará; hacia el sur subyacen la Formación Girón y la Formación El Diamante (Arias y Vargas, 1978). Diques de cuarzomonzonita son abundantes en el norte del Monzogranito de Rionegro, al este de Bucaramanga. Sin embargo, diques y masas pequeñas están distribuidos en toda el área de afloramiento. En el Monzogranito de Rionegro son comunes los diques de composición félsica (riolitas, dacitas y aplitas) y máfica (andesitas,

Figura 2. Aspecto macroscópico de rocas del Monzogranito de Rionegro. A) Enclave máfico en monzogranito. B) Saprolito de roca cortado por un dique félsico, GZ-6842. C) Monzogranito, IGM-900894. D) Granodiorita, IGM-900949

microdioritas), con espesores decimétricos a centimétricos y con distribución irregular (figura 2). Asimismo, se presentan enclaves de composición básica diorítica, con bordes irregulares, netos a difusos, de tamaños que varían entre 5 y 20 cm, compuestos por cristales finogranulares de biotita y plagioclasa.

En algunos sectores el cuerpo ígneo se encuentra meteorizado, y expone un saprolito de color crema, blanco a blanco amarillento, con textura granular gruesa, en el que se conservan cristales frescos de cuarzo y láminas lixiviadas de biotita.

Hacia el sector centro-occidental del plutón, en la vía que comunica los municipios de El Playón y San Alberto, en el cauce del río Cáchira y en la vereda Pueblo Nuevo se observan intrusiones locales del Monzogranito de Rionegro en un cuerpo de composición diorítica (figura 3), a manera de brechas intrusivas con abundancia de cristales de feldespato potásico y texturas pegmatíticas.

2.3. Características microscópicas

La descripción petrográfica del cuerpo principal, cuerpos menores asociados y diques se hace a partir del análisis de quince muestras de roca tomadas en este estudio. Además, se realizó la compilación y el análisis de 159 secciones delgadas existentes de estudios cartográficos anteriores (anexo 1).

Litológicamente predominan los monzogranitos, seguidos de sienogranitos, granodioritas, cuarzosienitas, tonalitas, cuarzomonzonitas, monzonitas y cuarzodioritas (figura 4). No hay una clara distribución espacial de los diferentes tipos de rocas en la unidad; por el contrario, se presentan dispersas a lo largo del cuerpo.

De acuerdo con Ward *et al.* (1973), el Batolito de Rionegro presenta textura general hipidiomorfa dada por una mineralogía principal de cuarzo (25 a 35%), oligoclasa subhedral (25 a 45%), microclina y micropertitas (20 a 40%) y biotita (1 a 10%). Como minerales accesorios se presentan circón, titanita, allanita, apatito y óxidos de hierro; como minerales de alteración tiene clorita, epidota y sericita.

Las granodioritas presentan una textura hipidiomorfa y están compuestas por plagioclasa, cuarzo, feldespato y biotita (Ward *et al.*, 1973). Como minerales accesorios presentan titanita, apatito, allanita, magnetita y escaso circón y sericita. Clorita, productos arcillosos, calcita y epidota están presentes como minerales secundarios de alteración.

Figura 3. Intrusiones del Monzogranito de Rionegro en cuerpos de diorita en el borde occidental del plutón. A) TCR-387. B) Río Cáchira, estación TCR-387

Figura 4. Composición modal del Monzogranito de Rionegro utilizando los diagramas de Streckeisen (1976, 1978). A) Distribución de rocas del Monzogranito de Rionegro en los campos de las rocas ígneas intrusivas, separando las muestras por color y símbolo según la clasificación. B) Composición modal de diques

De acuerdo con Daconte y Salinas (1980), las rocas del Batolito de Ocaña tienen texturas pertítica, hipidiomorfa a alotriomorfa y poiquilítica, con evidencias de cataclasis. Su composición incluye feldespato potásico (30 a 40%) en cristales anhedrales con textura pertítica, a veces alterados a caolinita. La plagioclasa (30 a 40%) varía de Ab₇₀ a An₃₀, con maclas de albita y periclina. Algunos cristales presentan zonación. El cuarzo (20 a 30%) se observa en cristales anhedrales con extinción débilmente ondulatoria y con inclusiones de plagioclasa y moscovita, a veces recristalizado. Los minerales accesorios son biotita, moscovita, magnetita y titanita. La moscovita es abundante en los contactos con la Formación Silgará.

El Monzogranito de Rionegro presenta una textura general alotriomorfa granular a hipidiomorfa, y comúnmente desarrolla texturas de intercrecimiento que varían entre mirmequíticas, micrográficas y simplectíticas (figura 5). De manera sectorizada se presentan texturas porfiríticas y granoblásticas a ligeramente orientadas; estas últimas evidencian sobreimposición de un metamorfismo dinámico asociado con el sistema de fallas de Bucaramanga y fallas menores.

Los monzogranitos se constituyen de cuarzo entre 20 y 54,3%, plagioclasa entre 8,5y 47,9% y feldespato potásico, que varía entre 22,2 y 65%. El mineral máfico que más abunda es la biotita, que fluctúa entre 0,5 y 10%, seguido de hornblenda en contenidos traza a 3,1 %; como minerales accesorios exhibe opacos (desde contenidos traza a 2%), moscovita (menor de 1%), titanita (hasta un 2%), circón (hasta el 0,5%) y apatito (0,5%).

Los sienogranitos y cuarzo-sienogranitos presentan cantidades de cuarzo entre 15y 45,1 %, plagioclasa entre el 6,9 y 22,9%, y contenidos de feldespato potásico entre el 41 y el 70%. Al igual que en los monzogranitos, el mineral máfico que predomina es la biotita, entre 0,5 y 7%; como minerales accesorios, estas rocas tienen moscovita en cantidades menores del 1 %; en particular, en la roca IGM-10981 se encuentra granate en contenidos traza, opacos entre 0,1 y 2%, apatito en cantidades menores de 0,2%, circón entre el 0,2 y el 0,7%, titanita entre 0,2 y 0,5%, y allanita en un 0,5%.

Las monzonitas se componen de cuarzo entre un 0,7 y 8%, plagioclasa en un 35 a 40,5%, y feldespato potásico entre 30 y 53,5%. Como minerales máficos aparecen trazas de biotita y hornblenda; los minerales opacos alcanzan el 1%. Presentan apatito y circón en cantidades trazas y titanita hasta en un 3%.

Las granodioritas tienen contenidos modales de cuarzo entre 4,5 y 36,5%, plagioclasa entre el 29 y 62,5% y feldespato potásico entre 9,7 y 25%. Se reporta la biotita como mineral máfico más común entre un 1 y 14,3%. Por el contrario, la hornblenda es escasa y alcanza el 1%,

Figura 5. Texturas principales del Monzogranito de Rionegro (en nícoles cruzados). A) Pertitas en granodiorita, IGM-900985. B) Mirmequítica y pertítica en sienogranito, IGM-900950. C) Hipidiomorfa en granodiorita, IGM-901028. D) Hipidiomorfa en tonalita, IGM-31180

excepto en la roca IGM-90999, que tiene un contenido alto (29%) y es clasificada como granodiorita con hornblenda. Estas rocas pueden presentar contenidos traza de moscovita, los opacos alcanzan en ellas hasta el 1%; otros minerales accesorios, como el apatito y el circón, están en un 2% cada uno, y la titanita hasta en un 4,5%.

Pocas rocas se clasifican como tonalitas, y las que lo hacen presentan cantidades de cuarzo entre el 21 y el 37,2%, plagioclasa entre el 41 y el 54,5%, y proporciones bajas de feldespato potásico, entre 0,8 y 4,5%. La biotita aparece entre el 7,3 y 23%, mientras que las cantidades de hornblenda oscilan del 9 al 12%. Los minerales accesorios están en un 1% y corresponden a opacos, apatitos y circón, mientras que la titanita está entre un 0,2 y 2%.

Las dioritas tienen una composición mineralógica de cuarzo entre 1,1 y 10%, plagioclasa entre el 23,8 y 68%, y escaso feldespato potásico (1%). Algunas rocas presentan cantidades de piroxeno (clinopiroxeno entre 11% y 15%, y ortopiroxeno en 23,6%), hornblenda entre 12 y 35%, y biotita entre el 9 y el 13%. Una roca de composición gabroica (IGM-31146) es clasificada como gabronorita piroxeno-hornbléndica, contiene clinopiroxeno augita en cantidades de 23,6%, hornblenda en un 26,4%, plagioclasa en 36,9% y cantidades menores de cuarzo (1,1%) y feldespato (0,6%) (figura 6). El Monzogranito de Rionegro se caracteriza petrográficamente por contener cristales de cuarzo de formas xenomorfas, incoloros, con bordes irregulares y de aspecto limpio, con color de interferencia blanco del primer orden. Tienen extinción ondulatoria, inclusiones microcristalinas a manera de líneas e inclusiones de plagioclasa y feldespato, aparecen en tamaños de 0,4 a 1,5 mm.

En granodioritas, monzogranitos, sienogranitos y tonalitas, la plagioclasa es de tipo andesina, y varía entre $An_{34} y An_{36}$; solo en una roca clasificada como monzogranito (IGM-900997), la plagioclasa es de tipo oligoclasa

Figura 6. Litología inusual asociada con el Monzogranito de Rionegro. A) Gabronorita hornbléndica, IGM-31146. B) Diorita hornbléndica, IGM-31183

 (An_{26}) . En general, se presenta en cristales subidiomorfos tabulares con caras rectas a irregulares, por estar intercrecidos con cristales de feldespato y cuarzo. La plagioclasa se encuentra alterada moderadamente a sericita y saussurita, muestran maclas tipo albita y Carlsbad, zonaciones normales en las que los núcleos de los cristales se encuentran más alterados, en tamaños que varían de 0,7 a 2,5 mm; además, muestra inclusiones de hornblenda, biotita, circón, cuarzo, apatito, feldespato, titanita y opacos.

El feldespato potásico es principalmente ortosa, que en ocasiones pasa a microclina. Se presenta en cristales xenomorfos, incoloros, moderadamente alterados a caolín, con maclas incompletas en forma de parrilla y texturas pertíticas dada en parches y filoncillos de plagioclasa, además de textura poiquilítica dada por inclusiones de biotita, circón, opacos. Se presenta en tamaños que varían de 0,3 a 2,8 mm.

El mineral máfico que más abunda es la biotita, presente en láminas subidiomorfas tabulares de tamaños que fluctúan entre 0,8 y 2,6 mm, de color castaño, pleocroicas X: verde amarillento, Y: pardo, y con birrefringencia del segundo orden, que exhibe colores de castaño a verde fuerte. Los cristales muestran extinción moteada, una dirección de clivaje en la que se hospedan agregados de titanita y magnetita residual. Son frecuentes las inclusiones de circón, apatito, opacos y titanita. Algunas láminas están alteradas moderadamente a clorita en agregados laminares de color verde claro y colores de interferencia púrpura a azul del segundo orden, y a epidota en agregados granulares verde amarillento de relieve alto y birrefringencia fuerte. La hornblenda es escasa, se presenta en cristales subidiomórficos prismáticos, de colores verde claro, verde oscuro y verde amarillento. Tiene pleocroísmo y un relieve moderado, birrefringencia amarilla pálida de primer orden. Tiene dos direcciones de exfoliación a 54° y ángulo de extinción de 12°, cristales en tamaños de 0,5 a 2 mm. Algunos cristales exhiben maclas polisintéticas. Presenta inclusiones de apatito y cuarzo, con opacos asociados y una leve alteración a epidota.

En las granodioritas aparecen esporádicamente núcleos de clinopiroxeno en hornblendas. El clinopiroxeno está en cristales xenomorfos, incoloros a amarillo pálido, birrefringencia fuerte de segundo orden con color de interferencia fucsia y alto relieve. Tiene un tamaño promedio de 0,5 mm y ángulo de extinción de 45°.

Como mineral accesorio se presenta la moscovita en cantidades menores del 1 %, en láminas subhedrales, incoloras, con birrefringencia alta y colores de interferencia azul a roja del segundo orden. Se encuentra asociada a láminas de biotita en tamaños de 0,3 a 0,5 mm.

Los minerales opacos son subidiomorfos, isotrópicos, con un tamaño promedio de 0,3 mm, intersticiales, y se presentan como inclusiones en plagioclasa, cuarzo y ortosa. En luz reflejada se observan cristales correspondientes a pirita de color amarillo pálido, microfracturados, con superficies lisas; tienen inclusiones finas de calcopirita de color amarillo más intenso. Otros opacos corresponden a magnetita en cristales de color gris, con reflectancia baja; presentan texturas porosas.

La titanita se presenta en cristales intersticiales xenomorfos de color pardo, pleocroicos en tono castaño claro a medio. El color del mineral enmascara el color de interferencia del tercer orden. Aparece en tamaño de 0,2 mm asociada con los opacos.

Se presentan contenidos traza de allanita en cristales subidiomorfos de 0,5 a 1,3 mm, de color ocre, alto relieve, ligeramente pleocroicos y de color de interferencia castaño oscuro, que se encuentran asociados a epidota y clorita, y tienen inclusiones de opacos.

El circón se presenta en cristales incoloros con bordes ligeramente oscurecidos, subidiomorfos prismáticos alargados; algunos muestran microfracturas, con birrefringencia del fucsia al verde del tercer orden. Los cristales tienen tamaños de 0,05 a 0,2 mm y están asociados con opacos y biotitas.

El apatito se presenta como cristales de tamaños que varían entre 0,05 y 0,2 mm, subhexagonales, prismáticos e incoloros, y como inclusiones en biotita, hornblenda, cuarzo y plagioclasa.

El Monzogranito de Rionegro presenta rocas plutónicas afectadas por fases deformativas posteriores a su cristalización, asociadas a régimen dinámico frágil y que han sido clasificadas estructuralmente como cataclasitas. Las cataclasitas se caracterizan por presentar porfiroclastos de cuarzo, plagioclasa y feldespato con tamaños entre 0,5 y 5,5 mm en una matriz cuarzofeldespática finogranular.

Otras rocas han sido clasificadas como granofels cuarzofeldespáticos y se asocian con xenolitos que posiblemente son del Monzogranito de Cáchira (figura 7). Los granofels presentan una textura general granoblástica y texturas mirmequíticas, pertíticas y micrográficas. Mineralógicamente presentan feldespato potásico, cuarzo, plagioclasa, hornblenda y biotita, y como minerales accesorios presentan circón, opacos, titanita y moscovita.

Rocas de dique. Corresponden a riolitas, monzogranitos andesitas, dacitas, microdioritas y cuarzolatitas (tabla 1).

En general, las rocas de dique presentan textura holocristalina porfídica, y como texturas particulares, microcristalina, micrográfica e intersectal dada por microlitos de plagioclasa entrecruzados con cuarzo, hornblenda y opacos. Localmente tienen textura glomeroporfídica.

Figura 7. Aspecto microscópico de xenolitos dentro del Monzogranito de Rionegro. A) Textura granoblástica en granofels de cuarzo, feldespato y hornblenda, IGM-31178. B) Textura brechoide cataclástica (M: matriz), IGM-70839

IGM	w	Ν	Qtz	PI	Kfs	Hbl	Bt	Ms	Chl	Ор	Ар	Zrn	Ttn	Ep	Matriz	Fenocristales	Clasificación
11176	1115982	1302479	19,6	60,7					16	1,8				х			Andesita
31145	1095735	1372096	1,8	93,6					1,7	2,9	Tr		Tr				Andesita
31182	1083973	1354129	0,4	8,3											91,3		Andesita porfídica
11191	1109712	1307529	17,1	39,1	28		3,6					Tr	1,2	11			Andesita porfídica
72061	1100082	1341159		70		30			5								Basalto andesítico
74979	1093383	1396279	16	38	43		Tr			1							Cuarzolatita porfirítica
11175	1116182	1302679	39,5	34,9	16,3		3,5	4,5		1,4				х			Dacita
900998	1087836	1343412		47		35	10			4	1	Tr	3	х			Diorita
900975	1086454	1393647	2,0	56,3		34,4			1,3	6	Tr		Tr				Microdiorita
900986	1094480	1337675	5	5					50					40			Microdiorita
900906	1101270	1309253	38,6	30,6	30,8		Tr			Tr							Monzogranito
900953	1107525	1305963	23,8	26,5	41,9		6,1	х	х	1,2	0,5	Tr		х			Monzogranito
900969	1107549	1318415	39,1	24,5	35,8		0,7	Tr		Tr	Tr	Tr					Monzogranito
901010	1099016	1313299	34,5	28,1	35,3		1,1			1	Tr	Tr					Monzogranito
10871	1106762	1316699	31	33,1	35,3		0,6			Tr	Tr	Tr	Tr				Riolita
10978	1091977	1388082	33	28	38					Tr		Tr		1			Riolita
70862	1102317	1336679	43	30,5	24,5		2		х	Tr	Tr	Tr			50		Riolita
900951	1104858	1301287	28,2	20,2	43,3		4,6		х	2,2	1,5	Tr	Tr	х			Riolita porfídica
74705	1094783	1398239	15,9	5,1	18,7		0,3		х						60		Fenorriolita

Tabla 1. Composición modal de rocas de dique

Riolitas, dacitas y cuarzolatitas. Corresponden a los cuerpos de diques más comunes que atraviesan el Monzogranito de Rionegro. Están constituidas por una matriz de entre el 50 y el 75%, y fenocristales entre el 25 y el 37%.

La matriz presenta una textura granular fina xenomorfa, con tamaños de cristal de 0,05 a 0,2 mm. Está constituida por intercrecimientos entre cuarzo de aspecto limpio que contrasta en el relieve, con feldespato (microclina y ortosa), y en menor proporción, con plagioclasa. Intersticialmente se encuentran láminas de biotita y opacos. Se presentan abundantes texturas micrográficas y mirmequíticas; también es común la textura de reabsorción de la matriz en fenocristales de cuarzo y plagioclasa (figura 8).

Los fenocristales se componen de cuarzo en contenidos de 15,9%, en cuarzolatitas, a 23% en riolitas y dacitas. Este mineral se manifiesta como cristales xenomorfos a subidiomorfos bipiramidales con caras cristalinas rectas, incoloros, de aspecto limpio, con extinción recta, algunos, microfracturados. Presentan texturas de reabsorción de la matriz y exhiben cristales de cuarzo con formas de bahía. Generan texturas micrográficas con el feldespato, con tamaños de 0,4 a 2 mm.

La plagioclasa está en cantidades de hasta 5,1 % en cuarzolatitas, y hasta 37% en riolitas. Corresponde a Andesina (An_{34}) en cristales subidiomorfos, tabulares, incoloros con color de interferencia gris del primer or-

den. Presentan fuerte alteración a sericita, saussurita y epidota hacia el centro de los cristales. Exhiben zonación de tipo normal, pocos cristales con maclas tipo Carlsbad. Hacia los bordes de los cristales se desarrollan texturas mirmequíticas como entrecrecimientos alargados con cuarzo. Tienen inclusiones de opacos, cuarzo, apatitos y biotita con tamaños de 0,6 a 7 mm.

El feldespato se presenta en contenidos de 16,3 y 43,3%, tanto en fenocristales como en la matriz. Aparece en cristales xenomorfos, incoloros, frescos, y desarrolla maclas tipo Carlsbad y exsoluciones de plagioclasa, como pertitas en forma de hilillos, a mesopertitas. Algunos cristales están pasando a microclina con maclas incompletas tipo parrilla, o se presentan cristales zonados de tamaños entre 0,3 y 2,7 mm. Este mineral puede tener inclusiones de cuarzo y biotita.

La biotita se presenta en cantidades de hasta 4,6% en láminas subidiomorfas de color pardo, con pleocroísmo X: verde pálido, Y: pardo fuerte, y colores de interferencia azul a amarillo del segundo orden con extinción moteada, algunas alteradas a clorita de color verde oliva y epidotizadas. Presentan una dirección de clivaje paralelo al eje más largo del cristal, donde se hospedan agregados finos de titanita y opacos. Tiene inclusiones de circón y apatitos en tamaños de 0,5 a 1,2 mm.

Los minerales accesorios están en contenidos menores a 2,2 %, siendo los minerales opacos los de mayor abundancia. Se presentan en cristales xenomorfos isotrópicos de tamaños de grano fino (0,01 mm) dispersos en la matriz; otros, de tamaños de 0,3 mm, con bordes rodeados por titanita, se encuentran junto a biotita. El circón está en cristales idiomorfos prismáticos alargados y cortos, incoloros, de relieve alto, con birrefringencia fuerte del tercer orden, con colores de interferencia que van de fucsia a azul, y extinción paralela. Cristales microfracturados con tamaños de 0,1 mm se presentan en la matriz junto a opacos y como inclusiones en biotitas.

Cristales de apatito se encuentran en tamaños que varían de 0,05 a 0,1 mm haciendo parte de la matriz y como inclusiones en biotitas. Son incoloros subidiomorfos con color de interferencia gris del primer orden, relieve alto y extinción recta. La titanita aparece en agregados xenomorfos finos de color pardo, rodeando los opacos y las biotitas.

Se presenta epidota como producto de alteración de plagioclasa y biotita en cristales xenomorfos de tamaños entre 0,05 y 0,2 mm, de color verde pálido, colores de interferencia entre amarillo y fucsia, del tercer orden. La allanita se manifiesta en cristales subidiomorfos tabulares de color pardo rojizo, fuertemente pleocroicos X: pardo rojizo, Y: pardo pálido, color de interferencia verde del tercer orden, y extinción recta. Su tamaño promedio es de 0,3 mm y presenta inclusiones de opacos y microfracturas.

Andesitas y microdioritas. Están compuestas por microcristales y microlitos de plagioclasa subidiomorfa, hornblenda en cristales subidiomorfos y cuarzo en cristales xenomorfos. En menor proporción, estos minerales aparecen en microfenocristales (figura 9). Presentan una matriz que varía entre el 50 y el 91,3% del total de la roca.

Los microcristales se componen de plagioclasa en un 5 y 93,6%, alterado a sericita-saussurita, que enmascaran las propiedades ópticas del mineral. Tienen tamaños menores de 0,5 mm y están en disposición entrecruzada con anfíbol y cuarzo intergranular.

Figura 8. Diques de composición ácida en el Monzogranito de Rionegro. A) Riolita portídica, IGM-900951. B) Dacita, IGM-11175

Figura 9. Diques básicos que atraviesan el Monzogranito de Rionegro. A) Microdiorita con alteración propilítica, IGM-900986. B) Microdiorita, IGM-900975

3. Química mineral

Los análisis de química mineral se llevaron a cabo en la microsonda electrónica de la Universidad Nacional de Colombia, sede Bogotá. El equipo usado es una microsonda JEOL JXA 8230, cuyas condiciones de operación fueron las siguientes: 1 a 10 µm de diámetro del haz, tiempo en el pico de 20 ms, intensidad de 20 nA y voltaje de aceleración de 15 kV. Los conteos del instrumento son convertidos a porcentajes de óxidos mediante comparaciones con conteos de estándares naturales y sintéticos. Los datos se han tratado mediante la corrección ZAF (Z: número atómico; A: absorción de masas; F: fluorescencia) utilizando el programa de JEOL. La adquisición de los datos consistió en obtener imágenes de electrones retrodispersados de los cristales seleccionados para el análisis y en realizar los análisis puntuales.

Se realizaron análisis de química mineral del Monzogranito de Rionegro en las rocas 900952 (MIA-648B)-granodiorita y 900969 (GR-6736)-monzogranito. En la muestra 900952 (MIA-648B) se analizaron cristales de plagioclasa, feldespato, biotita y pirita, mientras que en la roca 900969 (GR-6736) se midieron composiciones de plagioclasa, feldespato, biotita, ilmenita y magnetita.

3.1. Feldespato potásico

En las imágenes de electrones retrodispersados, los feldespatos de ambas muestras exhiben texturas pertíticas en formas de lamelas, mientras que los cristales de plagioclasa muestran superficies moderadamente alteradas a finas láminas de mayor luminiscencia (figura 10).

Al graficar los resultados de los análisis de feldespato (tabla 2), en el diagrama de Smith y Brown (1988) estos resultan ser ortosa (Or) en cantidades que varían entre 90,03 y 94,22% mol, que se clasificaría en el campo de la ortosa pertítica (figura 11) y en albita (Ab) entre 5,72 y 9,96%.

Figura 10. Imágenes de electrones secundarios retrodispersados (BSE) correspondientes a feldespato y plagioclasa. A) Feldespato potásico y plagioclasa en el campo de análisis C2 en la muestra GR-6736. B) Feldespato potásico en el campo de análisis C2 en la muestra MIA-648B. C) Plagioclasa en el campo C7 en la muestra MIA-648B

Figura 11. Análisis de microsonda electrónica correspondiente a las plagioclasas y los feldespatos del Monzogranito de Rionegro, graficados en el diagrama de Smith y Brown (1988)

Tabla 2. Análisis de microsonda electrónica correspondiente a l	las ortoclasas del Monzogranito de Rionegro
---	---

Punto analizado	GR-6736-C2-Kfs-1	GR-6736-C2-Kfs-2	GR-6736-C2-Kfs-3	s-3 GR-6736-C2-Kfs-4 MIA-648B-C2-Kfs-2		MIA-648B-C2-Kfs-3
SiO ₂	65,67	65,17	65,37	65,35	64,72	64,61
TiO ₂	0,01	0,02	0	0,01	0	0
Al ₂ O ₃	18,43	18,49	18,67	18,59	18,33	18,36
FeO	0,04	0,06	0,03	0,08	0,09	0,10
MgO	0	0	0	0	0	0
CaO	0	0,01	0,01	0	0	0
Na ₂ O	1,11	0,63	1,03	0,66	0,66	1,06
K ₂ O	15,20	15,76	15,30	15,80	16,00	15,17
Total (% masa)	100,46	100,13	100,41	100,48	99,79	99,29
Si	12,026	12,001	11,985	11,994	11,988	11,989
AI	3,977	4,012	4,034	4,021	4,002	4,015
Fe	0,002	0,003	0	0,001	0	0
Ti	0,004	0,006	0,003	0,008	0,009	0,011
Mg	0	0	0	0	0	0
Na	0,393	0,225	0,367	0,234	0,236	0,380
Ca	0,001	0,002	0,002	0	0	0
К	3,551	3,702	3,578	3,698	3,780	3,591
Total (cat)	19,953	19,951	19,969	19,956	20,015	19,984
0	32	32	32	32	32	32
Z	16,01	16,02	16,02	16,02	15,99	16,00
Х	3,95	3,93	3,95	3,94	4,03	3,98
Or	90,03	94,22	90,65	94,05	94,12	90,44
Ab	9,96	5,72	9,29	5,95	5,88	9,56
An	0,01	0,05	0,06	0	0	0
Total	100	100	100	100	100	100

3.2. Plagioclasa

Se hicieron análisis puntuales (tabla 3) de los cristales de plagioclasa que evidenciaron una composición entre

albita (Ab 89,6-90,8, An 7,14-12,8, Or 1,21-1,27), oligoclasa (Ab 84,6, An 12,8, Or 2,53) y andesina (Ab 71,1-66,7, An 26,8-31,4, Or 2,0-1,75 (figura 11).

Tabla 5. Analisis de microsofida electronica correspondiente a plagiociasas dei monzografillo de monegi	Tabla 3.	Análisis d	le microsonda	electrónica	correspondiente a	a plagioclasas	del Monzogranito	de Rionegro
---	----------	------------	---------------	-------------	-------------------	----------------	------------------	-------------

Punto analizado	GR-6736-C2-PI-1	GR-6736-C2-PI-2	GR-6736-C2-PI-3	MIA-648B-C7-PI-1	MIA-648B-C7-PI-2
SiO ₂	65,63	64,73	65,99	61,37	59,55
TiO2	0,01	0,00	0,00	0,02	0,00
AI2O3	21,06	21,53	20,57	23,72	24,54
FeO	0,04	0,05	0,06	0,19	0,23
MgO	0	0	0	0	0,01
CaO	2,03	2,83	1,77	5,65	6,77
Na ₂ O	11,01	10,32	11,24	8,28	7,95
K ₂ O	0,23	0,47	0,24	0,36	0,32
Total (% masa)	100,00	99,92	99,88	99,59	99,36
Si	11,569	11,450	11,644	10,961	10,715
AI	4,376	4,489	4,277	4,993	5,204
Ti	0,002	0	0	0,003	0
Fe	0,004	0,005	0,006	0,019	0,023
Mg	0	0	0,001	0	0,001
Na	3,762	3,539	3,846	2,867	2,772
Ca	0,383	0,536	0,335	1,081	1,306
К	0,051	0,106	0,054	0,082	0,073
Total (cat)	20,147	20,125	20,164	20,005	20,094
0	32	32	32	32	32
Z	15,95	15,94	15,92	15,96	15,92
Х	4,20	4,19	4,24	4,05	4,17
Ab	89,65	84,64	90,81	71,14	66,79
An	9,14	12,83	7,92	26,81	31,46
Or	1,21	2,53	1,27	2,05	1,75
Total	100	100	100	100	100

3.3. Micas

En las imágenes BSE, las biotitas exhiben microfracturas que cortan el clivaje, inclusiones de opacos y áreas con tonalidades diferentes que indican cambios composicionales (ejemplo: punto Bt4 MIA-648B-C3), lo que pone en evidencia variaciones en los contenidos de Si y Fe (figura 12).

En la roca MIA-648B-C3, las micas tienen concentraciones de SiO₂ (%) entre 36,20 y 37,76; FeO entre 16,59 y 17,92; Al₂O₃ entre 13,43 y 13,9, y MgO entre 12,46 y 13,72. La roca GR-6736-C3 tiene mayor canti-

dad de SiO₂ (%), entre 37,89 y 38,74; Al₂O₃ entre 13,59 y 14,15, y MgO entre 14,18 y 15,57, y presenta valores menores de FeO: 14,38 a 14,83. En el diagrama de Rieder(1998) se observa una dispersión entre estas dos rocas (figura 13, tabla 4). Las micas de la muestra MIA-648B-C3 clasifican en el campo de biotita, mientras que las micas de la muestra GR-6736-C3 se distribuyen hacia el límite biotita-flogopita. Ambos conjuntos de micas se agrupan en suites de magmas calcoalcalinos orogénicos (Abdel Rahman, 1994).

Figura 12. Imágenes de electrones secundarios retrodispersados (BSE) correspondientes a biotita e imágenes equivalentes obtenidas en microscopio petrográfico. A) Imagen BSE de biotita, muestra MIA-648B-C3. B) Puntos analizados de biotita en la roca MIA-648B, campo 3. Imagen obtenida en microscopio petrográfico con nícoles paralelos. C) Imagen BSE de biotita, muestra GR-6736-C3. D) Puntos analizados de biotita en la roca GR-6736, campo 3. Imagen obtenida en microscopio petrográfico con nícoles paralelos.

Punto analizado	MIA-648B- C3-Bt-1	MIA-648B- C3-Bt-2	MIA-648B- C3-Bt-3	MIA-648B- C3-Bt-4	MIA-648B- C3-Bt-5	MIA-648B- C3-Bt-6	GR-6736- C3-Bt-1	GR-6736- C3-Bt-2	GR-6736- C3-Bt-4	GR-6736- C3-Bt-6	GR-6736- C3-Bt-7	
SiO ₂	36,21	36,97	36,94	37,76	36,26	36,61	38,74	37,90	37,96	37,93	37,94	
TiO ₂	3,14	3,08	3,12	2,80	3,20	3,00	1,82	2,21	1,99	2,42	2,17	
Al ₂ O ₃	13,75	13,88	13,88	13,47	13,82	13,98	13,85	13,85	13,60	14,16	14,03	
FeO	17,74	17,56	17,93	16,59	17,44	17,38	14,38	14,73	14,66	14,83	14,73	
MgO	12,47	12,61	12,52	13,72	12,56	12,64	15,58	14,70	15,06	14,19	14,69	
MnO	0,74	0,72	0,71	0,67	0,67	0,79	0,65	0,80	0,73	0,80	0,70	
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,00	0,00	0,00	
Na ₂ O	0,13	0,15	0,13	0,16	0,16	0,17	0,13	0,25	0,26	0,27	0,21	
K ₂ O	9,23	9,41	9,38	9,82	9,35	9,43	9,60	9,64	9,57	9,40	9,19	
Total	93,40	94,35	94,62	94,99	93,47	94,00	94,75	94,09	93,82	93,98	93,67	
Fórmula basada en 22 O												
Si	5,629	5,674	5,665	5,735	5,627	5,646	5,808	5,753	5,774	5,755	5,763	
AIIV	2,371	2,326	2,335	2,265	2,373	2,354	2,192	2,247	2,226	2,245	2,237	
AIVI	0,148	0,185	0,175	0,145	0,155	0,186	0,255	0,231	0,212	0,286	0,274	
Ti	0,367	0,355	0,360	0,320	0,373	0,347	0,205	0,253	0,227	0,276	0,248	
Mg	2,890	2,885	2,862	3,107	2,906	2,905	3,482	3,326	3,416	3,209	3,328	
Fe ²⁺	2,307	2,253	2,299	2,107	2,263	2,242	1,803	1,870	1,865	1,882	1,871	
Mn	0,097	0,094	0,092	0,086	0,089	0,103	0,082	0,103	0,094	0,102	0,090	
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,003	0,000	0,000	0,000	
Na	0,040	0,043	0,039	0,046	0,048	0,050	0,037	0,075	0,077	0,079	0,063	
К	1,830	1,842	1,836	1,902	1,851	1,856	1,835	1,867	1,857	1,819	1,781	
Total	15,680	15,658	15,663	15,713	15,685	15,689	15,700	15,726	15,747	15,653	15,655	
Fe/(Fe+Mg)	0,444	0,439	0,445	0,404	0,438	0,436	0,341	0,360	0,353	0,370	0,360	

Tabla 4. Composición química de micas en las rocas 900952 (GR-6736) y 900969 (MIA-648B)

Figura 13. Diagramas de clasificación correspondientes a micas del Monzogranito de Rionegro. A) Diagrama Rieder et al. (1998). B) Diagrama Abdel Rahman (1994)

3.4. Opacos

El mineral opaco más abundante en las rocas MIA-648B y GR-6736 es la magnetita (tabla 5, figura 14.), con valores altos en Fe₂O₃ entre 53,46 y 54,18%, y FeO entre 48,12 y 48,76%, y concentraciones menores de MnO entre 0,02 y 0,10%, TiO₂ que alcanza hasta el 0,10% y Al_2O_3 hasta un 0,06%. Las magnetitas son de color gris, luminiscentes, y presentan superficies homogéneas de aspecto liso.

La muestra GR-6736 tiene ilmenita, que se presenta con superficies porosas e irregulares, tiene altos contenidos de TiO₂ (entre 45,92 y 47,46%), FeO entre 30,79 y 31,70%, Fe₂O₃ entre 11,41 y 14,16% y MnO entre 10,34 y 10,85%. Presenta bajos contenidos de MgO (entre 0,02 y 0,04%) tabla 6.

La roca MIA-648B presenta pirita en cristales de forma anhedral diseminados en la roca. La pirita se encuentra asociada a bordes de magnetita e inclusiones finas de calcopirita. En la tabla 7 se muestran los elementos analizados en estos minerales. El azufre (S) y el hierro (Fe) tienen concentraciones mayores en las piritas (entre 53,13 y 53,18%, y entre 45,93 y 46,06%, respectivamente), mientras que la calcopirita tiene mayor concentración de cobre (Cu), en 31,78%, y valores más bajos de hierro (Fe) (32,47%) y azufre (S) (34,22%).

Tabla 5.	Composición	química de	e magnetita en	las rocas 900952	(GR-6736) y	900969 (MIA-648B
----------	-------------	------------	----------------	------------------	-------------	------------------

Punto analizado	GR-6736-C1-Mt-1	GR-6736-C4-Mt-1	GR-6736-C4-Mt-2	GR-6736-C4-Mt-3	MIA-648B-C5-Mt-1	MIA-648B-C5-Mt-2					
SiO ₂	0,00	0,02	0,00	0,00	0,00	0,00					
TiO ₂	0,02	0,03	0,03	0,10	0,00	0,00					
Al ₂ O ₃	0,03	0,06	0,01	0,01	0,00	0,02					
Cr ₂ O ₃	0,01	0,03	0,04	0,01	0,01	0,00					
Fe ₂ O ₃	54,18	53,49	53,77	53,46	53,77	53,61					
FeO	48,76	48,12	48,40	48,16	48,31	48,15					
MnO	0,03	0,07	0,02	0,05	0,07	0,10					
MgO	0,00	0,01	0,00	0,00	0,01	0,00					
ZnO	0,00	0,00	0,00	0,00	0,00	0,00					
CaO	0,00	0,00	0,00	0,00	0,00	0,00					
V ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00					
NiO	0,00	0,00	0,00	0,00	0,00	0,00					
Total	103,02	101,83	102,27	101,79	102,18	101,89					
Fórmula basada en 32 O											
Si	0,000	0,007	0,001	0,000	0,000	0,000					
Ti	0,004	0,007	0,007	0,021	0,000	0,000					
AI	0,009	0,020	0,002	0,005	0,001	0,007					
Cr	0,003	0,007	0,009	0,002	0,003	0,001					
V	0,000	0,000	0,000	0,000	0,000	0,000					
Fe ³⁺	11,990	11,973	11,986	11,975	11,998	11,996					
Fe ²⁺	11,988	11,967	11,989	11,985	11,977	11,971					
Mg	0,000	0,003	0,000	0,000	0,003	0,000					
Mn	0,006	0,016	0,006	0,012	0,019	0,025					
Zn	0,000	0,000	0,000	0,000	0,000	0,000					
Ca	0,000	0,000	0,000	0,000	0,000	0,000					
Ni	0,000	0,000	0,000	0,000	0,000	0,000					
Total	24,000	24,000	24,000	24,000	24,000	24,000					
Mg/(Mg+Fe ²⁺)	0,000	0,000	0,000	0,000	0,000	0,000					
Cr/(Cr+Al)	0,251	0,264	0,836	0,265	0,787	0,091					
Fe ²⁺ /(Fe ²⁺ Mg)	1,000	1,000	1,000	1,000	1,000	1,000					

Figura 14. Imágenes de electrones secundarios retrodispersados (BSE) e imágenes de magnetita obtenidas en microscopio petrográfico. A) Imagen BSE del campo C5 de la roca MIA-648B. B) Puntos de análisis de magnetita en el C5 en MIA-648B. Imagen petrográfica de luz reflejada. C) EDS en C1 de la roca GR-6736, que arroja valores de magnetita. D) Minerales opacos en campo de análisis C1 en GR-6736. Imagen obtenida en microscopio petrográfico, nícoles cruzados

270 Servicio Geológico Colombiano

Tabla 6.	Composición	química	de ilmenita	en la ro	ca 900952 ((GB-6736)
Tublu V.	Composicion	quinnou	uc innorma	un la lo	00 00002 j	an 0700)

Punto Analizado	GR-6736-C1-IIm-2	GR-6736-C1-IIm-3	GR-6736-C1-IIm-4
TiO ₂	45,9,	47,46	46,85
SiO ₂			
Fe ₂ O ₃	14,16	11,41	1,3
Cr ₂ O ₃	0,00		0,01
Al ₂ O ₃			0,0,
V ₂ O ₃			
FeO	30,79	31,70	31,33
MnO	10,34	10,85	10,60
MgO	0,0,	0,00	0,04
CaO	0,00	0,00	0,00
Total	101,4	101,43	101,08
	Cationes calculad	los a partir de 6 O	
Ti	1,733	1,785	1,768
Si	0,000	0,000	0,000
Fe ³⁺	0,535	0,429	0,46
Cr	0,000	0,000	0,000
AI	0,000	0,000	0,001
V	0,000	0,000	0,000
Fe ²⁺	1,9	1,326	1,315
Mg	0,00	0,000	0,003
Mn	0,439	0,460	0,451
Са	0,000	0,000	0,000

Figura 15. Imágenes de electrones secundarios retrodispersados (BSE) correspondientes a pirita y calcopirita. Pirita (Py) con inclusiones de calcopirita (Cpy) rodeada de magnetita (Mt), roca MIA-648B

Punto Analizado	MIA-648B-C5-CPy-1	MIA-648B-C5-Py-2	MIA-648B-C5-Py-4
Zn	0,05	0,00	0,01
As	0,02	0,02	
S	34,22	53,13	53,18
Fe	32,47	46,06	45,93
Со	0,07	0,08	0,07
Ni			
Sb			0,01
Cu	31,78		
Total	98,61	99,29	99,20
Zn	0,0385	0,0017	0,0084
As	0,0097	0,0126	
S	49,6225	66,7298	66,8198
Fe	27,0243	33,2046	33,1232
Со	0,0555	0,0514	0,0464
Ni			
Sb			0,0023
Cu	23,2494		
Total	99,9614	99,9984	99,9917

Tabla 7. Composición química de calcopirita y pirita en la roca 900969 (MIA-648B)

4. Litogeoquímica

Se realizaron once análisis geoquímicos de rocas intrusivas correspondientes a las litologías monzogranítica y granodiorítica, y diez análisis de rocas de diques ácidos y básicos, cuyos resultados se muestran en las tablas 8 y 9. Los valores de óxidos mayores se presentan en porcentaje en peso (wt%), mientras que los elementos traza se presentan en partes por millón (ppm). Se utilizaron las técnicas de fluorescencia de rayos X para cuantificar óxidos mayores y los elementos traza Mo, V, Nb, Ta, W, Zr y Hf mediante un equipo marca Panalytical AXIOS Mineral para análisis elemental, configurado con software especializado para materiales geológicos. La cuantificación de los óxidos mayores se realizó en muestra fundida con metaborato y tetraborato de litio, y la cuantificación de elementos menores se realizó en muestra prensada.

Para el ploteo e interpretación de los óxidos mayores se realizó la corrección de los valores de volátiles (pérdidas por ignición-LOI). Para el análisis de elementos traza de interés geoquímico en rocas se usó un espectrómetro de masas con plasma inductivamente acoplado, ICP-MS, Perkin Elmer Nexion. Para la disolución de la muestra se realizó un ataque por pasos utilizando ácidos inorgánicos fuertes (HF, HNO_3 , $HClO_4$ y HCl). El proceso se realizó en sistema abierto, empleando distintas rampas de temperatura y tiempos de calentamiento. La mayoría de los diagramas geoquímicos se generaron con el uso del GCDKit version 4.0 (Janoušek *et al.*, 2006).

Van der Lelij (2013) presenta una caracterización litogeoquímica de algunos cuerpos ígneos del Macizo de Santander y de los Andes de Mérida, en Venezuela. Entre ellos hay un análisis del cuerpo Batolito de Ocaña (10VDL54) y otro del Batolito de Rionegro (10VDL59). Estos dos análisis, junto con un grupo de rocas colectadas en este estudio, se retoman con el fin de identificar sus firmas geoquímicas y examinar si existe relación entre estos dos cuerpos, como se plantea a partir de las similitudes petrográficas.

IGM	SiO	TiO	Al _s O _s	Fe _s O _s	MqO	CaO	Na ₂ O	K_O	P.O.	MnO	FeO	LOI
	2		2 3	2 3	Rocas	graníticas		2	2 3			
900997	51,52	2,06	16,80	9,57	4,59	7,48	3,94	1,43	0,441	0,146	4,93	1,81
900999	58,77	1,36	16,28	5,76	3,46	6,43	3,97	2,66	0,255	0,093	3,28	0,87
900954	60,99	0,91	18,51	5,07	1,71	4,28	3,71	3,38	0,325	0,100		0,67
900949	62,83	0,82	17,65	4,74	1,48	4,16	4,09	2,75	0,244	0,114	2,44	0,74
10VD659*	64,1	0,7	17,6	4,2	1,3	3,8	4,0	3,0	0,2	0,101		0,7
900952	64,59	0,78	17,05	4,15	1,19	3,50	4,24	3,29	0,211	0,113		0,62
900950	66,73	0,56	16,49	3,73	1,13	3,44	3,93	3,03	0,176	0,090		0,37
900985	68,93	0,47	16,01	2,88	1,60	1,28	7,16	0,26	0,159	0,081	1,47	1,16
900973	71,62	0,34	13,81	2,08	0,71	2,55	3,83	3,36	0,092	0,070	0,91	1,42
900990	71,65	0,32	14,34	2,44	0,68	2,58	3,42	3,28	0,101	0,087	1,00	0,91
900971	72,67	0,32	13,49	1,93	0,54	1,29	2,93	5,15	0,112	0,059	0,90	1,41
900974	76,09	0,14	13,20	0,90	0,17	0,81	3,31	4,78	0,037	0,049	0,22	0,47
10VDL54*	76,9	0,1	12,9	0,7	0,1	0,3	3,5	4,8	0,0	0,040		0,5
					Rocas	de dique						
900998	50,51	1,79	17,32	9,18	5,63	8,62	3,59	1,33	0,33	0,13	5,54	1,39
900975	51,77	1,57	16,62	9,12	4,95	8,00	3,98	1,02	0,55	0,15	4,28	2,09
900986	52,46	0,98	16,61	9,76	5,45	8,25	2,29	0,36	0,21	0,23	3,76	3,17
900906	71,10	0,11	16,76	0,71	0,06	0,23	4,58	5,16		0,02		0,35
900951	74,96	0,23	13,44	1,34	0,28	1,30	3,30	4,48	0,05	0,04		0,39
MIA-646A	76,42	0,10	13,11	0,62	< 0,10	0,87	2,86	5,64	0,04	0,03		0,30
900969	76,79	0,14	12,85	0,78	< 0,10	0,54	3,06	5,27	< 0,024	0,03	0,21	0,48
900953	76,90	0,13	12,75	0,73	< 0,10	0,80	2,57	5,14	< 0,024	0,04		0,69
901011	77,42	0,06	12,71	0,71	< 0,10	0,72	3,29	4,68	< 0,024	0,044	< 0,13	0,31
901010	77,47	0,07	12,87	0,67	< 0,10	0,62	3,65	4,35	< 0,024	0,02	< 0,13	0,21

Tabla 8. Datos de óxidos mayores del Monzogranito de Rionegro

Fuente: *Van Der Lelij (2013) y este trabajo

4.1. Óxidos mayores

Las rocas graníticas tienen un carácter intermedio a acido con rangos de SiO₂ entre 61,61 %, en una granodiorita (IGM 900954), y 77,34% en un granito alcalino (10VDL54). En general, las rocas presentan valores de Na₂O entre 2,94 y 4,24% sin mayores cambios con el aumento de SiO₂. Únicamente la muestra 900985 tiene un valor anormalmente alto: 7,16%; el K₂O varía entre 1,43 y 5,18%, y aumenta con el contenido de SiO₂ con un valor extremadamente bajo en la muestra 900985: 0,26% (figura 16).

CaO, Fe₂O₃, MgO, MnO, Al₂O₃, TiO₂, Zr y Ba disminuyen con el aumento de SiO₂, como se muestra en la tabla 8 y la figura 16. El CaO varía entre 0,34%, en las rocas más ácidas, y 7,48% en las intermedias; el MgO varía entre 0,08 y 1,72%; el Al₂O₃ se presenta entre 13,01 y 18,70%; hay valores menores de TiO₂ (entre 0,11 y 0,92%), y Fe₂O₃ entre 0,69 y 5,12%, siendo mayor en las rocas granodioríticas.

Las rocas IGM 900997 e IGM 900999 muestran una composición mineralógica y geoquímica que difiere de la constitución promedio de la facies granodiorítica del Monzogranito de Rionegro. Ambas rocas se localizan en el sector occidental del plutón donde se evidencian intrusiones del Monzogranito de Rionegro en un cuerpo cuarzomonzodiorítico. Las diferencias en contenidos modales y en el comportamiento químico sugieren que estas rocas representan a la unidad de cuarzomonzodiorita adyacente. Las muestras corresponden a rocas básicas con contenidos de SiO₂ de 50,06 y 57,43%, respectivamente, Na₂O de 3,8% en ambas rocas y bajos contenidos de K₂O, de 1,39 y 2,6%. El MgO está en contenidos de 4,46 a 3,38%, TiO₂ de 2,08 a 1,37%, Al₂O₃ de 16,3a 15,9%; por otra parte, tienen valores de CaO altos: de 7,26 a 6,28%; asimismo, el Fe₂O₃ es alto, pues se presenta en contenidos de 9,29 a 5,62%.

Las rocas de diques básicos tienen cantidades de SiO₂ entre 48,58 y 52,27%, clasificadas petrográficamente como microdioritas (IGM 900998, 900975 y 900986), con cantidades de Na₂O entre 2,28 y 3,90%, K₂O entre 0,36 y 1,28%, y MgO entre 4,85 y 5,43%. Los diques de composición ácida (monzogranitos, riolitas) tienen valores de SiO₂ entre 72,02 y 77,70%, Na₂O entre 2,59 y 4,63%, K₂O entre 4,36 y 5,66%, y valores bajos de MgO: 0,28%.

Figura 16. Diagramas de variación de Harker correspondientes a rocas graníticas del Monzogranito de Rionegro

En el diagrama de TAS (figura 17) las rocas se localizan en las series de cuarzomonzodiorita a granodiorita en las facies granodioríticas, y en el campo de granitos en la facies clasificada petrográficamente como monzogranitos. Las rocas IGM 900997 e IGM 900999 muestran una composición de monzodioritas y cuarzomonzodiorita concordante con la clasificación petrográfica. Los diques ácidos se localizan en el campo de riolitas, y los diques básicos hacia los campos de basaltos y basaltos andesíticos.

El Monzogranito de Rionegro muestra dispersión en cuanto a los contenidos de K_2O vs. Si O_2 (figura 18).Las rocas granodioríticas presentan menor contenido de sílice y se apartan de las rocas monzograníticas; sin embargo, todas las rocas tienen afinidad en las series calcoalcalina alta en K. La roca IGM 900985, clasificada como monzogranito, muestra una baja concentración de K_2O (0,26% wt), que posiblemente corresponde a un error analítico.

Las rocas de dique se diferencian entre las muestras básicas con bajos contenidos de sílice y se dispersan en-

tre las series calcoalcalinas altas en K, calcoalcalinas y toleíticas. Por su parte, los diques de sienogranitos, monzogranitos y riolitas se agrupan en las series calcoalcalinas altas en K.

Figura 17. A) Diagramas TAS (Middlemost, 1985) correspondientes a rocas graníticas. B) TAS (Middlemost, 1994) correspondiente a rocas de dique

Figura 18. Diagrama de Peccerillo y Taylor (1976) correspondiente a rocas graníticas (A) y rocas de dique (B) Los símbolos deben interpretarse igual que en la figura 17

Varios cuerpos ígneos del Macizo de Santander muestran un comportamiento metaluminoso a peraluminoso, con mayor afinidad hacia el campo peraluminoso. Van der Lelij (2013) sugiere que esta firma en las rocas posiblemente refleje el tipo de fuente del cual se derivó el magma de estos cuerpos intrusivos (magmas derivados de fuentes sedimentarias o de fuentes ígneas). Las variaciones de Na₂O con respecto a K₂O muestran el tipo de granito asociado (tipo S o tipo I). Las rocas del Monzogranito de Rionegro exhiben una tendencia hacia el campo peraluminoso (figura 19) con contenidos molares de A/CNK entre 1,009 y 1,115, excepto en la roca IGM 900973, que tiene A/CNK < 1 (0,948) y las dos rocas asociadas a la unidad de cuarzomonzodiorita.

Los diques básicos (IGM 900986, 900998 y 900975) se ubican en el campo metaluminoso con proporciones molares de A/CNK entre 0,74 y 0,86, mientras que las rocas de diques ácidos se ubican en el campo peraluminoso con relaciones molares de A/CNK entre 1,05 y 1,23 (figura 20).

Figura 19. Diagramas de clasificación correspondientes a rocas graníticas del Monzogranito de Rionegro. A) Diagrama de Shand (1943). B) Diagrama de Debon y Le Fort (1983). La interpretación de los símbolos puede consultarse en la figura 17

Figura 20. Diagramas de clasificación correspondientes a rocas diques del Monzogranito de Rionegro. A) Diagrama de Shand (1943). B) Diagrama de Debon y Le Fort (1983). La interpretación de los símbolos puede consultarse en la figura 17

4.2. Elementos traza y tierras raras

Los contenidos de elementos traza y tierras raras del Monzogranito de Rionegro se presentan en la tabla 9, y los de rocas de diques en la tabla 10.

Hay una clara diferenciación entre las facies granodiorita y monzogranito respecto a la relación de $(La/Yb)_{N}$: valores entre 12,29 y 25,11 para las rocas clasificadas como granodioritas (IGM 900954, 900949, 900952, 900950 y 10VDL59), mientras que en los monzogranitos estas relaciones son menores, entre 7,57 y 11,9 (IGM 900971, 900973, 900974, 900985 y 900990). Las rocas que corresponden a la unidad cuarzomonzodiorita (IGM 900997 y 900999), en la cual intruye el Monzogranito de Rionegro, exhiben relaciones (La/Yb)_N entre 5,25 y 5,38. Por su parte, la roca reinterpretada 10VDL54 (Van der Lelij, 2013) del Batolito de Ocaña, muestra una relación (La/Yb)_N de 3,46.

En las rocas de diques no se observa una diferenciación en lo que respecta al tipo de roca (ácido o básico) y la relación (La/Yb)_N. Los monzogranitos y riolitas tienen valores entre 4,29 y 27,07, mientras que los diques microdioríticos y andesíticos muestran valores entre 5,96 y 8,99. En los diagramas normalizados a condrito (Nakamura, 1974 y McDonough y Sun, 1995) (figura 21), las rocas del Monzogranito de Rionegro exhiben un enriquecimiento general en LREE (desde La a Sm) con distinción entre los trenes de las granodiorítas y los monzogranitos (figura 22).

Las granodioritas (10VDL59, 900949, 900954, 900952 y 900950) presentan valores de hasta quinientas veces el valor del condrito y valores de Eu/Eu* entre 0,66 y 1,091.

Aunque desde las LREE hasta las HREE hay variaciones graduales en el contenido de las tierras raras, con entrecruzamientos en los trenes, se evidencian dos patrones con respecto al valor de La_N . Las rocas 10VDL59, 900949 y 900954 tienen valores altos de La_N (entre 508,94 y 549,78) y se localizan hacia los bordes del cuerpo, mientras que las rocas 900952 y 900950 presentan valores de La_N de 409,54 y 411,66 y se localizan en el interior de la unidad, con una diferencia de edad de cristalización marcada.

Figura 21. Diagrama REE correspondiente a rocas granodioríticas normalizado con respecto a la composición del condrito (Nakamura, 1974) La interpretación de los símbolos puede consultarse en la figura 17

IGM	900997	900999	900954	900949	10VDL59	900952	900950	900985	900973	900990	900971	900974	10VDL54
Li	12	5,1	45	8,3		18	22	17	4,3	12	10	6,9	
Be	2,1	2,3	3,2	2,2	2,9	2,6	2,0	1,1	1,9	2,0	2,7	3,1	4,4
Sc	29	23	20	13	8,3	17	9,5	6,4	5,4	6,0	6,9	5,1	5,9
V	201	118	67	56	57	38	42	22	25	25	20	10	2,0
Cr	64	56	12	4,2	5,0	8,0	7,8	3,5	3,8	2,5	4,3	1,4	6,0
Mn	1161	734	**	**		**	**	626	541	673	451	380	
Co	33	26	19	20	6,1	15	17	16	13	20	16	13	0,5
Ni	42	32	12	9,3	5,6	6,0	6,0	6,6	13	3,0	17	1,7	3,0
Cu	38	29	23	13	6,8	10	10	6,8	30	5,2	7,8	4,6	3,7
Zn	100	58	93	96	77,0	84	65	53	40	56	43	21	17,0
Ga	22	17	26	27	23,7	22	20	15	15	16	16	15	16,5
As	2,1	1,4	3,8	4,6	2,5	3,9	3,4	1,1	1,6	1,2	1,6	1,4	2,0
Rb	24	29	168	104	66,1	113	93	10	98	97	206	220	174,0
Sr	521	455	564	493	448,2	404	383	188	227	269	173	86	25,5
Y	31	18			43,6			24	19	19	21	18	32,8
Cd	0,17	0,13	0,092	0,082		0,095	<0,08	<0,08	0,086	0,082	0,15	<0,08	
In	0,080	0,049	0,074	0,050		0,057	0,035	0,020	0,015	0,017	0,015	0,018	
Cs	0,32	0,26	4,0	1,3	1,1	1,1	1,7	0,09	0,34	0,42	2,5	1,6	0,9
Ba	420	335	2329	2693	1986,3	1979	2523	55	1074	1150	848	518	216,9
La	24	13	121	127	130,3	98	97	25	35	32	29	21	20,9
Ce	55	25	180	238	220,1	199	173	51	65	61	59	46	40,8
Pr	7,4	3,5	21	31	22,6	24	20	5,9	7,3	6,7	6,6	5,6	4,7
Nd	28	14	70	120	84,1	93	65	19	24	21	21	19	18,5
Sm	6,5	3,2	9,6	18		14	9,3	3,9	4,3	4,1	4,2	4,2	4,3
Eu	2,0	1,2	3,0	3,9	2,4	3,1	2,6	1,00	1,2	1,3	1,1	0,67	0,4
Gd	6,1	3,1	7,5	13	9,9	11	7,5	4,5	4,2	4,1	3,9	3,8	3,8
Tb	1,0	0,54	1,3	2,8	1,3	2,1	1,2	0,73	0,60	0,58	0,62	0,57	0,8
Dy	5,8	3,1	5,2	13	8,4	9,7	5,3	4,2	3,2	3,0	3,3	3,1	5,0
Ho	1,2	0,63	1,0	2,6	1,7	1,9	1,0	0,89	0,67	0,63	0,72	0,60	1,2
Er	3,4	1,9	3,6	7,8	4,5	5,8	3,3	2,6	2,1	1,9	2,2	1,8	3,4
Tm	0,47	0,26	0,49	1,10	0,7	0,75	0,40	0,34	0,30	0,27	0,33	0,27	0,6
Yb	3,1	1,7	4,0	7,0	5,0	5,0	2,6	2,1	2,1	1,8	2,2	1,9	4,1
Lu	0,45	0,26	0,67	0,93	0,7	0,73	0,40	0,29	0,31	0,27	0,33	0,29	0,6
TI	0,044	0,029	0,87	0,58		0,61	0,50	0,048	0,53	0,52	1,3	1,2	
Pb	6,4	6,3	13	11	7,9	12	10	4,1	9,5	9,9	39	20	23,6
Bi	<0,05	<0,05	0,16	<0,05	0,1	<0,05	<0,05	<0,05	<0,05	<0,05	0,23	0,50	0,1
Th	2,0	3,7	7,2	13	12,1	15	13	9,1	10	8,4	16	15	14,5
U	0,50	1,3	2,2	0,94	1,4	2,1	1,2	1,4	1,4	2,3	4,6	3,8	3,8
Zr	276	147	488	491	463,8	452	328	196	147	161	145	70	60,2
Nb	18	14	16	20	15,1	20	15	13	14	13	17	20	21,1
W	11	14	28	48	0,9	33	39	38	44	72	70	58	0,6

Tabla 9. Concentraciones de elementos traza y tierras raras del Monzogranito de Rionegro

IGM	900998	900975	900986	900906	900951	MIA-646A	900969	900953	901011	901010
Li	25	8,2	7,88	0,94	16	18	7,6	7,9	2,9	1,3
Be	1,5	2,1	2,65	2,0	1,6	1,3	2,1	3,8	4,2	3,8
Sc	25	2,1	5,84	4,3	28	24	6,1	5,4	3,6	6,6
V	180	11	6,27	7,6	198	184	10	9,5	6,1	3,5
Cr	138	6,5	2,43	1,6	99	103	3,5	5,4	2,4	0,76
Mn	1793	287	339,10	200	1048	1153		225	171	183
Co	28	12	14	22	34	26	16	10	11	9,0
Ni	111	3,7	1,9	1,635	63	45	3,8	3,7	1,1	1,2
Cu	11	4,1	3,3	2,3	44	29	5,2	5,7	4,6	4,8
Zn	134	15	18	15	91	87	27	109	11	6,9
Ga	23	15	15	14	20	19	17	16	16	15
As	2,1	0,91	0,53	1,2	1,5	2,0	1,8	1,4	0,74	1,2
Rb	15	158	176	237	20	20	131	273	195	237
Sr	887	213	66	85	501	436	173	67	19	36
Y	21		11		21	28		21	12	
Cd	0,17	< 0,08	< 0,08	< 0,08	0,15	0,15	< 0,08	0,20	< 0,08	0,19
In	0,076	0,010	0,025	0,011	0,064	0,071	0,012	0,0057	0,012	0,050
Cs	0,16	1,7	2,0	1,2	0,31	0,26	0,68	2,8	2,1	3,3
Ва	149	2300	242	457	389	392	2051	231	40	142
La	19	27	15	23	18	34	34	27	11	12
Ce	43	39	23	45	39	74	68	48	22	22
Pr	5,9	3,3	2,8	5,3	5,0	9,8	8,0	8,0	2,9	2,7
Nd	23	7,7	8,7	18	19	39	28	27	11	7,7
Sm	5,4	1,0	1,4	4,1	4,5	7,9	5,3	6,6	2,0	1,5
Eu	1,6	1,5	0,38	0,7	1,6	2,3	1,8	0,68	0,32	0,17
Gd	5,3	1,1	1,4	3,052	4,3	7,4	4,0	5,5	1,8	1,2
Tb	0,81	0,16	0,20	0,71	0,70	1,1	0,80	0,77	0,28	0,23
Dy	4,2	0,65	1,2	3,9	4,0	5,6	3,8	3,9	1,5	1,3
Ho	0,84	0,15	0,27	0,79	0,81	1,1	0,78	0,74	0,33	0,35
Er	2,3	0,54	0,99	2,5	2,3	3,2	2,3	2,3	1,1	1,3
Tm	0,28	0,08	0,17	0,34	0,31	0,42	0,31	0,32	0,18	0,24
Yb	1,7	0,67	1,4	2,2	2,1	2,6	2,1	2,2	1,4	1,8
Lu	0,22	0,14	0,25	0,34	0,30	0,37	0,32	0,34	0,24	0,33
TI	0,13	0,88	0,86	0,9	0,028	0,13	0,67	1,4	0,92	1,7
Pb	7,4	13	24	25	4,7	5,1	14	28	27	17
Bi	0,15	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,10
Th	0,62	13	14	14	1,8	1,5	15	24	23	25
U	0,47	2,0	3,4	3,1	0,42	1,8	2,0	7,6	3,1	4,6
Zr	151	75	59	64	178	287	123	71	34	69
Nb	6	6	13	6	12	16	15	22	18	22
W	21	39	58	81	9	15	60	48	43	35

 Tabla 10. Concentraciones de elementos traza y tierras raras en rocas de dique

Los monzogranitos (900971, 900985, 900990, 900973, 900974 y 10VDL54) muestran valores de hasta cien veces el condrito y valores de Eu/Eu* entre 0,51 y 0,97, que ponen en evidencia una anomalía negativa de Eu más fuerte que en las rocas granodioríticas, posiblemente como producto de la cristalización de plagioclasa (Winter, 2014).

De acuerdo con los valores de La_N , se distinguen dos patrones; sin embargo, las signaturas entre ellos tienden a ser paralelas hacia los HREE y no se observa diferenciación en la distribución geográfica dentro de la uni-

dad. Las rocas 900973, 900990 y 900971 tienen La_N entre 123,97 y 149,51, mientras que las rocas 900985 y 900974 presentan menores valores de La_N (104,72 y 89,96, respectivamente) y mayor anomalía negativa de Eu (figura 22), que podría estar relacionada con la cristalización fraccionada de plagioclasa. La roca 10VDL54 presenta una anomalía negativa del Eu aún más marcada, y en el comportamiento de los HREE se aparta del resto de las rocas, pues muestra mayores contenidos en un patrón plano.

Figura 22. Diagrama REE correspondiente a rocas de la facies monzograníticas normalizado a condrito (McDonough y Sun, 1995)

Figura 23. Diagrama REE correspondiente a rocas de diques normalizado a condrito. En verde, diques de composición andesítica-microdiorítica, y en azul, diques de composición granítica y riolítica.

Fuente: McDonough y Sun (1995) y este trabajo

En el diagrama de REE, las rocas de diques muestran al menos dos patrones (figura 23, patrones en verde y azul), con valores del condrito de ochenta a más de cien veces mayores en las rocas de la composición básica (andesitas y microdioritas). Con una edad asociada de 1 89,6 ± 1,4 Ma, las rocas se comportan paralelas entre ellas, y decaen progresivamente hacia la HREE, donde se cruza el patrón de las rocas ácidas. La roca 900969 exhibe una anomalía negativa en Eu.

Los diques de monzogranitos y riolitas muestran valores menores de ochenta veces el condrito; hacia las MREE tienen un comportamiento cóncavo, al tiempo que aumenta la concentración de HREE, posiblemente por la ausencia de anfíbol y la presencia de granate residual. La roca 900906 presenta anomalía negativa en Eu asociada a la cristalización de plagioclasa (Winter, 2014).

En los diagramas multielementales (o arañagramas) normalizados con respecto a los NMORB (Sun y McDonough, 1989) se presentan los patrones comparativos de las granodioritas y los monzogranitos (figura 24 A y B) del Monzogranito de Rionegro. En general, ambas facies muestran enriquecimientos en las LILE (Cs, Rb, Ba) y empobrecimientos hacia las HFSE (Ti, P), valores altos de Ba, K y Pb y anomalías negativas de P, Ti y Nb, asociadas con la insolubilidad de estos elementos ante fluidos hidratados que migran por la placa subducente (Best, 2003).

Las rocas monzograníticas muestran mayor dispersión en los elementos más móviles (Cs, Rb, Ba). Se observa que la roca IGM 900985 se aleja del patrón común de estas rocas, pues presenta valores bajos de los LILE y no exhibe un enriquecimiento en K.

Los diques de composición ácida (monzogranitos y riolitas) tienen valores mayores de cien veces el condrito, y anomalía negativa de Ba, salvo la roca 900951, que muestra concentraciones menores de Cs y Rb. Hay fuertes anomalías negativas de Nb, La, Ce, Sr y Ti y concentraciones mayores de Th, U, K y Pb (figura 25).

Por su parte, los diques de andesitas y microdioritas (en verde) tienen valores menores de cien veces el condrito, muestran ligeros empobrecimientos en Th, Nb, La, Ce y un tren continuo decreciente hacia las HREE (figura 25).

Figura 24. Diagramas multielementales (o arañagramas) normalizados con respecto a los NMORB (Sun y McDonough, 1989) correspondientes a rocas del Monzogranito de Rionegro. A) Rocas granodioríticas; en gris, patrón comparativo de las rocas monzograníticas. B) Rocas monzograníticas y tren comparativo, en gris, de las rocas granodioríticas

Figura 25. Diagrama NMORB correspondiente a rocas de dique del Monzogranito de Rionegro

4.3. Discriminación de ambiente tectónico

En los diagramas de Pearce (2008) y Harris *et al.* (1986) (figura 26), las rocas y diques se proyectan en el ambiente de arcos volcánicos. Las rocas graníticas y diques ácidos se concentran en un tren paralelo por encima de la zona MORB-OIB, en el campo asociado a zonas de subducción relacionadas con márgenes continentales. Cerca de la zona MORB-OIB se localizan rocas de diques básicos. La variación de patrones en las facies granodiorítica y monzogranítica y en los diferentes diques sugiere una posible generación de varios pulsos que en conjunto tienen una firma geoquímica predominantemente calcoalcalina alta en K. En los diagramas de Whalen *et al.* (1987) (figura 27A) y Chappell y White (1974) (figura 27B) las rocas se agrupan en los campos de magmas de tipo I. En el diagrama de Frost *et al.* (2001) (figura 27C) las muestras se localizan en el límite entre los grupos de magmas magnesianos y ferrosos; sin embargo, hay mayor afinidad del Monzogranito de Rionegro con los magmas de tipo magnesiano. Este tipo de magmas presentan una composición general calcoalcalina entre el rango de rocas tonalitas-granodioritas-granitos, entre las series metaluminosa y peraluminosa, están asociados a arcos y ambientes de poscolisión y se relacionan con un origen derivado de la fusión parcial de la corteza continental bajo condiciones oxidantes (Frost y Frost, 2008).

Figura 26. Discriminación de ambiente geotectónico correspondiente al Monzogranito de Rionegro. Símbolos como en la figura 17. A) Diagrama de discriminación tectónica de Pearce (2008). B) Diagrama de Harris et al. (1986)

Figura 27. Diagramas discriminantes del tipo de granito correspondiente al Monzogranito de Rionegro. A) Diagrama de Whalen *et al.* (1987). B) Diagrama de Chappell y White (1974) (granitos tipo I, S, A). C) Diagrama de Frost *et al.* (2001) de discriminación de granitoides tipo I y S. D) Diagrama de Frost y Frost (2008)

5. Edad

En el presente trabajo se realizaron nueve dataciones isotópicas U-Pb en circón del Monzogranito de Rionegro y diques asociados (tabla 11), en conjunto con los laboratorios de estudios isotópicos del Centro de Geociencias de la Universidad Nacional Autónoma de México (UNAM) y el Laboratorio de Ablación Láser del Servicio Geológico Colombiano, en Bogotá. La concentración de minerales pesados, separación de la fracción no magnética y selección de los circones se realizó en el Laboratorio Químico del Servicio Geológico Colombiano, sede Medellín, donde además se realizó el montaje de las probetas en la resina epóxica y el pulido de cristales de las muestras enviadas al Laboratorio de Ablación Láser del Servicio Geológico Colombiano.

En los trabajos de cartografía de las planchas $86 ext{ y 109}$ se correlacionan dos cuerpos de granodioritas asociadas al Monzogranito de Rionegro (Arias y Vargas, 1978; Ward *et al.*, 1973); sin embargo, Van der Lelij (2013) reporta edades U-Pb en circón en estas dos unidades: una edad de 443,4 ± 3,2 Ma para el cuerpo de granodiorita expuesta en la plancha 86-Ábrego, y una edad de 196 ± 1,1 Ma para el cuerpo de granodiorita cartografiado en la plancha 109, y muestra que se trata de cuerpos independientes sin relación alguna, por lo que en este trabajo los análisis petrográficos, químicos y geocronológicos de las facies granodioríticas se limitan a la unidad de la plancha 109, en cercanías del municipio de Rionegro. Goldsmith *et al.* (1971) reporta dos dataciones por el método K-Ar, de 177 ± 6 Ma y 172 ± 6 Ma en rocas clasificadas como granodioritas porfiríticas localizadas unos 13 km hacia el noreste del municipio de Rionegro, en cercanías del municipio de Santa Cruz.

Por su parte, Daconte y Salinas (1980) asignan al Batolito de Rionegro un rango de edad Jurásico-Triásico, por correlación con otras rocas ígneas del Macizo de Santander en las que se identificó un evento térmico entre $198 \pm 8 y 160 \pm 30$ Ma.

Al sur del municipio de Ocaña, Van der Lelij (2013) obtuvo una edad U-Pb de 195,8 \pm 1,5 Ma en circón en un granito alcalino. Cerca del lugar de esta datación, Ordóñez Carmona (2001) obtuvo una edad isocrónica Rb-Sr de 268 \pm 26 Ma, con una razón inicial de ⁸⁷Sr/⁸⁶Sr de 0,7007 \pm 0,003, que, según el autor, no tiene validez geológica, porque la razón inicial tan baja de ⁸⁷Sr/⁸⁶Sr sugiere que la roca puede ser más joven que 268 Ma. Este autor también presentó los resultados de análisis isotópicos de los sistemas Nd y Sr de varias muestras del Batolito de Ocaña (tabla 12), con razones isotópicas iniciales calculadas para una edad de 268 Ma.

En el presente estudio se recalcularon las razones iniciales y los valores de ɛNd de las mismas muestras (tabla 13), tomando como base la edad de 196 Ma presentada por Van der Lelij (2013), que fue obtenida en una muestra ubicada al sureste de las muestras analizadas por Ordóñez Carmona (2001).

IGM	N. campo	w	Ν	Localización	PL	Clasificación	Laboratorio				
Facies monzogranítica											
900973	GR-6743	1083832	1397462	Ocaña-Ábrego	86	Monzogranito	UNAM				
	10VDL54*	1085710	1394475	Ocaña	86	Granito alcalino					
Facies granodiorítica											
900985	GZ-6848A	1094479	1337675	Vía Primavera-Cáchira	97	Granodiorita	SGC				
Saprolito	JGB-462	1105322	1287011	Rionegro, Qda. La Pajuda	109	Cuarzomonzonita	UNAM				
	10VDL59*	1102855	1297665	Rionegro	109	Tonalita					
900952	MIA-648B	1104858	1301287	Rionegro, vereda Valparaíso	109	Granodiorita	SGC				
	Diques										
900951	MIA-648A	1104858	1301286	Rionegro, vereda Valparaíso	109	Riolita porfídica	SGC				
901011	MIA-650B	1099016	1313298	Rionegro, vía Las Rocas	109	Sienogranito	UNAM				
Saprolito	MIA-657A	1077093	1408339	Ocaña-Río de Oro	76	Microdiorita	SGC				
900998	LMC-082	1087835	1343412	Rionegro, vereda Pueblo Nuevo	97	Dique diorita	SGC				
				Unidad diorita							
900999	LMC-084	1088409	1339422	Rionegro, vereda Pueblo Nuevo	97	Granodiorita con Hbl	SGC				

Tabla 11. Muestras del Monzogranito de Rionegro con análisis de geocronología

* Van Der Lelij (2013)

Muestra	143Nd/144Nd	147Sm/144Nd	ECHUR(o)	ECHUR(T)	TDM(Ma)	T (Ma)	87Sr/86Sr	87Rb/86Sr	RiSr		
Batolito de Ocaña											
BOC-1	0,512341	0,1291	-5,79	-3,48	1255	268	0,73750	9,6723	0,70062		
BOC-2	0,512318	0,1264	-6,24	-3,84	1256	268	0,72874	7,4091	0,70049		
BOC-3	0,512274	0,1222	-7,10	-4,55	1271	268	0,73118	7,8942	0,70108		
BOC-4	0,512292	0,1186	-6,75	-4,08	1196	268	0,72917	7,4416	0,70080		

Tabla 12. Resultados isotópicos Rb-Sr y Sm-Nd de las rocas del Batolito de Ocaña

Fuente: Carmona (2001) y este trabajo

Tabla 13. Valores de ECHUR (T) y RiSr correspondientes a muestras de la tabla anterior recalculados a 196 Ma

Muestra	143Nd/144Nd	147Sm/144Nd	ECHUR(o)	ECHUR(T)	TDM(Ma)	T (Ma)	87Sr/86Sr	87Rb/86Sr	RiSr		
Bat. de Ocaña											
BOC-1	0,512341	0,1291	-5,79	-4,10	1255	196	0,73750	9,6723	0,71054		
BOC-2	0,512318	0,1264	-6,24	-4,49	1256	196	0,72874	7,4091	0,70809		
BOC-3	0,512274	0,1222	-7,10	-5,24	1271	196	0,73118	7,8942	0,70918		
BOC-4	0,512292	0,1186	-6,75	-4,80	1196	196	0,72917	7,4416	0,70843		

Los valores de ɛNd a 196 Ma varían levemente con relación a los calculados con 268 Ma, haciéndose un poco más negativos, mientras que las razones iniciales de ⁸⁷Sr/⁸⁶Sr se incrementan significativamente, mostrando valores altos de esta razón, entre 0,70843 y 0,71054 a 196 Ma. Estas características isotópicas de Nd y Sr sugieren gran aporte de material cortical en los magmas a partir de los cuales cristalizaron las rocas de Batolito de Ocaña. Los valores recalculados de la razón inicial de Sr a 196 Ma confirman la interpretación realizada por Ordóñez Carmona (2001) de que las rocas podrían tener una edad menor de 268 Ma.

Las mediciones isotópicas y de elementos traza elaboradas en el Laboratorio de Estudios Isotópicos del Centro de Geociencias de la UNAM se lograron por medio de un espectrómetro de masa con plasma inductivamente acoplado (LA-ICPMS), siguiendo los procedimientos de Pérez *et al.* (2010). En el Laboratorio de Ablación Láser del Servicio Geológico Colombiano los análisis fueron realizados en un láser Photon Machines eximero de 193 nm y un espectrómetro ICP-MS Element 2. Los patrones de referencia utilizados fueron Plesovice, 91500 y M. Dromedry, y los resultados de ambos laboratorios se calcularon al 2 sigma absoluto (anexo 2).

Para la datación de las muestras, en primera instancia se realizó el análisis estadístico de los datos obtenidos teniendo en cuenta la relación $[(^{207}Pb/^{235}U)-(^{206}P-b/^{238}U)) / (^{207}Pb/^{235}U)]*100$, con el fin de calcular valores concordantes en edades menores de 800 Ma. De esta manera se establecieron como parámetro de corte (*cutoff*) los cristales que en la mayoría de las muestras presentan discordancia mayor del 10% e incertidumbre mayor del 5%. Los gráficos de concordia y edad promedio se elaboraron en el software Isoplot/Ex vers. 4.15 (Ludwig, 2008).

Bajo luz trasmitida, los circones presentan en general formas euhedrales a subeuhedrales. Predominan los cristales bipiramidales alargados, y algunos son prismáticos cortos, tienen tonalidades amarillo a incoloro y son poco frecuentes los que contienen inclusiones. Los tamaños de los cristales varían entre 80 y 120 µm, pero la mayoría son de alrededor de 100 µm. Bajo CL (figura 28), los circones exhiben buena luminiscencia; son comunes los zonamientos oscilatorios asociados con crecimientos magmáticos (Corfu et al., 2003), como se presenta en el punto 22 de la muestra MIA-657 A. Algunas zonaciones son interrumpidas por crecimientos más recientes. Algunos cristales muestran xenocristales o núcleos heredados de formas redondeadas y menos luminiscentes rodeados por zonamientos (punto 2 de la muestra GZ-6848 A).

La muestra 900973 (GR-6743) es una roca de monzogranito colectada sobre la vía que conduce de Ábrego a Ocaña. Se tomaron 35 circones, de los cuales en el procesamiento de los datos fueron descartados tres análisis de circones con discordancias mayores del 10% y errores mayores del 5%, así que finalmente se trabajó con 32 análisis. El contenido de U está entre 62,8 y 630 ppm y de Th entre 64,8 y 1.240 ppm; la relación Th/U varía entre 0,61 y 1,94. El diagrama de concordia (figura 29), muestra una concentración de análisis concordantes cerca de los 200 Ma, un circón discordante con una edad de 212,7 Ma y otro con una edad 230,9 Ma, posiblemente heredado. El diagrama de la media ponderada arroja una edad de 195,9 \pm 1,6 Ma con un MSWD = 4, considerada como la edad representativa de cristalización de la roca (figura 29).

La muestra 900985 (GZ-6848A) corresponde a una granodiorita tomada en el sector de la vereda La Primavera, sobre la vía hacia el municipio de Cáchira. Se analizaron 38 circones, de los cuales fueron retirados siete análisis por presentar valores de discordancia mayores del 10% y errores mayores del 5%, así que finalmente se interpretaron 31 circones. Cinco de ellos reportan edades del Ordovícico (451 Ma), Neoproterozoico (877,9 y 993,40 Ma) y Mesoproterozoico (1.035,21 y 1.143,33 Ma), con relaciones menores de Th/U entre 0,04 y 0,2

La mayoría de los circones son concordantes, se concentran en el rango de edades de 190 a 210 Ma (figura 30) y muestran una relación de Th/U mayor que los granos heredados (entre 0,55 a 2,8). En el diagrama del cálculo de la media por la desviación estándar, la edad promedio de cristalización es de 196,6 ± 2,1 Ma, con un MSWD de 2,7 (figura 30).

Figura 28. Imágenes de catodoluminiscencia (CL) correspondientes a diferentes muestras de circones de rocas del Monzogranito de Rionegro y diques Se muestra la estructura concéntrica de los circones, la forma prismática y los puntos de ablación.

Figura 29. Edad de la Muestra 900973 (GR-6743). A) Diagrama de concordia correspondiente a la muestra B) Edad promedio ponderada. C) Gráfico de relación Th/U vs. edad

Figura 30. Edad de la muestra 900985 (GZ-6848A). A) Diagrama de concordia. B) Gráfico de concordia correspondiente a la muestra GZ-6848A. C) Edad promedio ponderada de la muestra GZ-6848A. D) Gráfico de relación Th/U vs. edad correspondiente a la muestra GZ-6848A
La muestra JGB-462 corresponde a un saprolito de cuarzomonzonita colectado sobre la vía Bucaramanga-Rionegro, cerca de la escuela San Cayetano. Fueron seleccionados 35 circones, de los cuales ocho fueron retirados durante el procesamiento de los datos por presentar discordancias mayores del 10% y errores que superaban el 5%. Los 27 circones restantes se concentraron de manera concordante en la curva de Wetherill, en un rango de edad de entre 187 y 205 Ma (figura 31). Tienen concentraciones de U entre 53 y 1.021, y Th entre 66 y 858; presentan relaciones Th/U entre 0,62 y 3,1. El diagrama del cálculo de la media muestra una edad promedio de cristalización de 197,2 \pm 1,5 Ma, con un MSWD de 3.

Para constituir la muestra MIA-648B, colectada en la vereda Valparaíso, municipio de Rionegro, fueron seleccionados 64 circones, de los cuales 50 tienen valores de discordancia menor del 15% y errores menores del 5,6%. Las edades arrojadas por los circones varían entre 197 y 320 Ma; la edad promedio ponderada que arroja la muestra 900952 (MIA-648B), clasificada como granodiorita, es de 214,5 ± 2,7 Ma (n = 44), con MSWD de 1,15, que se considera de cristalización de esta roca, aunque el gráfico de densidad de probabilidad forma dos picos; el primero de ellos corresponde a una edad promedio de 207,3 ± 1,6 Ma (n = 23), con un MSWD de 0,67, que podría corresponder a la edad ponderada final de cristalización de la roca; el segundo pico arroja una edad ponderada de 221,8 ± 2,0 (n = 23), con MSWD de 1,19, que podría tomarse como la edad promedio ponderada de inicio de cristalización de los núcleos de circón. Seis circones reportan edades del Triásico Medio a Inferior, que corresponden a núcleos heredados (238 a 249 Ma), dos (n = 2) del Pérmico (267 y 288 Ma) y uno (n = 1) del Carbonífero (320 Ma). Solo un análisis presenta relación Th/U < 0,1 y arrojó una edad de 223,8 Ma, mientras que la relación Th/U de los datos que definen la edad están entre 0,7 y 2,2 (figura 32).

Figura 31. Edad de la muestra JGB-462. A) Diagrama de concordia. B) Diagrama del cálculo de la edad promedio ponderada correspondiente a la muestra JGB-462. C) Gráfico de relación Th/U vs. edad correspondiente a la muestra JGB-462

Figura 32. Edad de la muestra MIA-648B (granodiorita). A) Gráfico de concordia. B) Gráfico Tera-Wasserburg correspondiente a la muestra MIA-648B (granodiorita). C) Edad promedio ponderada correspondiente a la muestra MIA-648B (granodiorita). D) Histograma de densidad de probabilidad correspondiente a la muestra MIA-648B (granodiorita). E) Gráfico de relación Th/U vs. edad

Observando las edades individuales obtenidas por U-Pb en circón de todas las rocas y el saprolito, queda en evidencia que las edades más antiguas corresponden a la facies granodiorita (900985, 900973, JGB-462 y 900952), mientras que la facies monzogranito (900973) tiene una edad ligeramente más joven.

La muestra 900951 (MIA-648A) corresponde a una roca de dique clasificada como riolita porfídica, que se encuentra atravesando la granodiorita (900952-MIA-648B). Se separaron 47 cristales de circón, de los cuales nueve presentaban errores mayores del 5% y discordancias mayores del 10%. Los circones restantes muestran relaciones Th/U entre 0,82 a 2,48, y se concentran en el rango de edad entre 180 y 210 Ma (figura 33). Un circón arroja una edad mesoproterozoica de 1.021,67 Ma, con una relación Th/U de 0,48, y es interpretado como un cristal heredado. La edad media ponderada es de 194,5 \pm 1,2 Ma, y se considera como edad de cristalización de esta roca, con MSWD de 0,95.

La roca 901011 (MIA-650B) corresponde a un dique de sienogranito tomado cerca de la escuela Las Rocas, en el municipio de Rionegro. Se separaron 35 circones, de los cuales seis fueron retirados por presentar discordancias y errores mayores del 10% y 5%, respectivamente. Los resultados isotópicos arrojaron datos que muestran circones heredados (n = 3) concordantes a ligeramente discordantes, con edades neoproterozoicas de 924, 934 y 1.005 Ma (figura 34) y relaciones Th/U entre 1,10 y 1,60; una edad mesoproterozoica de 1.485 Ma se registró en un circón discordante, con una relación Th/U de 1,33 y cantidades de U y Th muy altas (1.390 y 1.850 ppm).

Figura 33. Edad de la la muestra 900951 (MIA-648A). A) Diagrama de concordia que detalla la edad. B) Gráfico de concordia. C) Edad promedio ponderada D) Gráfico de relación Th/U vs. edad

Asimismo, se observa una concentración de datos en el rango de 167 a 209 Ma, que se divide en dos poblaciones de circones: los más jóvenes (n = 5), con edades de 167,1,172,6,174,5,177,6 y 177,7 Ma, y edades agrupadas (n = 19) entre 182,2 y 196,2 Ma. Un circón presenta una edad de 209 Ma. La edad media ponderada de cristalización de la roca es de 184,1 \pm 2,3 Ma, con MSWD de 3,6.

En el saprolito de dique microdiorítico MIA-657A, tomado sobre la vía que de Rio de Oro conduce a Ocaña, se separaron 43 cristales de circón y se retiraron dos circones del procesamiento de datos por presentar discordancias mayores del 10%. Los cristales, agrupados en un rango de edades situado entre 173,99 y 205,94 Ma, se comportan entre concordantes y discordantes, y tienen relaciones Th/U entre 0,78 y 4,35. Varios circones muestran concentraciones mayores de 1.000 ppm de U. La edad ponderada es de 186,7 \pm 1,9 Ma, y el MSWD, de 5 (figura 35).

Figura 34. Edad de la muestra de dique 901011 (MIA-650B). A) Diagrama de concordia completo. B) Histograma de densidad de probabilidad C) Gráfico de concordia detallado. D) Edad promedio ponderada. E) Gráfico de relación Th/U vs. edad

Figura 35. Edad de la muestra de dique MIA-657^a. A) Diagrama de concordia. B) Diagrama del cálculo de la edad promedio ponderada. C) Gráfico de relación Th/U vs. edad

La roca 900998 (LMC-082) corresponde a un dique de diorita tomada en la vereda Pueblo Nuevo, municipio de Rionegro. Se separaron 45 circones. Discordancias mayores del 10% y errores mayores del 5% se reportaron en 18 circones, que fueron retirados del procesamiento de los datos. Las relaciones Th/U varían entre 0,72 y 2,78. De los circones restantes, nueve son discordantes; los demás se agrupan de manera concordante a ligeramente discordante en el rango de edad de 184,33 a 200,5 Ma. En el diagrama de la edad media ponderada se presenta una edad de 189,9 \pm 1,6 Ma (figura 36).

La muestra 900999 (LMC-084) se colectó cerca de la roca LMC-082 anteriormente descrita, en el sector centro-occidental del Monzogranito de Rionegro. Por sus características petrográficas y geoquímicas difiere de las rocas granodioríticas del plutón y es considerada como parte de la unidad cuarzomonzodiorita, teniendo en cuenta las observaciones de campo (figura 3); esta relación es corroborada por la edad U-Pb obtenida, como se muestra en la figura 37.

Se separaron cincuenta cristales de circón, y se retiraron del procesamiento e interpretación aquellos datos con discordancias mayores del 15% y errores mayores del 5% (n = 9). Los circones restantes muestran una relación Th/U entre 0,88 y 3,77, tienen un comportamiento concordante a ligeramente discordante en un rango de edad de 190 a 211 Ma. Diez circones fueron catalogados como discordantes. Un circón tiene una edad concordante de 231,89 Ma. El gráfico de la media ponderada arroja una edad de 200,8 ± 1,9 Ma, que se interpreta como la edad de cristalización.

Los datos de geocronología U-Pb en circón correspondientes al Monzogranito de Rionegro se resumen en la tabla 14.

Figura 36. Edad de la muestra de dique LMC-082. A) Diagrama de concordia. B) Diagrama del cálculo de la edad promedio ponderada. C) Gráfico de relación Th/U vs. edad

Figura 37. Edad de la la roca LMC-084. A) Diagrama de concordia y circones típicos de esta muestra. Las líneas punteadas corresponden a edades discordantes eliminadas. B) Diagrama del cálculo de la edad promedio ponderada. C) Gráfico de relación Th/U vs. edad

IGM	N. campo	Edad (Ma)	Edad heredada
900973	GR-6743	195,9 ± 1,6	
	10VDL54*	195,8 ± 1,5	
900985	GZ-6848A	196,6 ± 2,1	451-877,9-993,40-1035,21-1143,33 Ma
Saprolito	JGB-462	197,2 ± 1,5	
	10VDL59*	196 ± 1,1	
900952	MIA-648B	214,5 ± 2,7	238-249, 267, 288, 320
900951	MIA-648A	194,5 ± 1,2	1021,67 Ma
901011	MIA-650B	184,1 ± 2,3	924-934-1005-1485 Ma
Saprolito	MIA-657A	186,7 ± 1,9	
900998	LMC-082	189,9 ± 1,6	
900999	LMC-084	200,8 ± 1,9	

Tabla 14. Dataciones U-Pb en circón del Monzogranito de Rionegro

Fuente: este trabajo, * Van des Lelij (2013)

5.1. Geoquímica de elementos traza en circones

El análisis de ICP-MS de los circones enviados al Laboratorio de Geocronología de la UNAM determinó la abundancia de los elementos traza en cada circón (anexo 3 y figura 38). Los valores de REE se normalizaron a condrito (McDonough y Sun, 1995) y se calcularon las relaciones Pm* y Tm* de cada uno de ellos.

En general, los valores de Th y Pb en ppm de los circones de las muestras GR-6743, JGB 462 y MIA-650B están en los rangos característicos de granitos tipo I, que según Wang *et al.* (2012) se caracterizan por presentan bajas concentraciones de Pb y altas relaciones Th/Pb. Los circones 040 y 036 de la roca GR-6743 se sitúan en el borde del campo de granitos tipo A, correspondientes a circones con edades de 212,7 y 203,1 Ma, mayores que la media ponderada de esta roca.

Asimismo, los circones 010 y 05 de la muestra MIA-650B se dispersan del conjunto de datos con menores valores de Th. Estos circones corresponden a cristales con edades heredadas de 924 y 1485 Ma, respectivamente.

Hay concentraciones menores en las REE desde La, Pr, Nd, Pm* y Sm, excepto en el Ce, que describe una anomalía positiva, de acuerdo con Nardi *et al.* (2013), y que se debe a la incorporación de Ce⁴⁺ en sustitución de Zr⁴⁺ en la estructura cristalina del circón, ligeras anomalías negativas de Eu y enriquecimientos hacia las REE pesadas.

Figura 38. Diagramas de clasificación de granitos y diagramas multielementales a partir de la química del circón. A, B, C) Tipo de magma según los valores de Th y Pb (diagrama de Wang *et al.*, 2012), en circones de las muestras GR-6743, JGB-462 y MIA-650B, respectivamente, del Monzogranito de Rionegro. D, E, F) Patrones de los elementos de las tierras raras REE normalizados según el condrito de McDonough y Sun (1995) en circones de las muestras GR-6743, JGB-462 y MIA-650B, respectivamente

6. Correlaciones

El Monzogranito de Rionegro hace parte del magmatismo triásico-jurásico que se emplazó en el basamento metamorfo del Macizo de Santander y cuya correlación se extiende tanto a los cuerpos subvolcánicos porfídicos como a cuerpos plutónicos de composición granítica, entre los que se encuentra el Monzogranito de La Corcova (Goldsmith *et al.*, 1971; Rodríguez *et al.*, 2016), la tonalita y Granodiorita de Páramo Rico (Ward *et al.*, 1973), el Batolito de Mogotes (Ward *et al.*, 1973, Correa *et al.*, 2016), el Granito de Pescadero (Ward *et al.*, 1973, Zapata *et al.*, 2016) y pequeños plutones subvolcánicos, como las Riolitas de El Uvo (Zapata *et al.*, 2018), la Riolita de San Joaquín (Rodríguez *et al.*, 2018) y la Riolita del Alto Los Cacaos (Correa *et al.*, 2018).

7. Localidad tipo

La sección tipo del Monzogranito de Rionegro se encuentra en la vía que conduce del municipio de La Esperanza hacia La Vega, en la plancha 97. Se proponen como secciones alternas las expuestas en las vías caserío La Ceiba-El Filo y vereda El Mambo-Misijuay, en la plancha 109.

8. Génesis

El Monzogranito de Rionegro presenta mineralogía característica de granitoides tipo I, como son la presencia de feldespato potásico de color rosado, biotita parda, hornblenda con núcleos de clinopiroxeno y presencia de magnetita e ilmenita; además, presenta gabarros (xenolitos) de rocas ígneas intermedias con presencia de hornblenda. La química de rocas lo clasifica en el campo de los granitos tipo I, peraluminosos, y la geoquímica de elementos traza en circones lo sitúa en el campo de los granitos tipo I.

Las características macroscópicas y microscópicas del Monzogranito de Rionegro, como texturas equigranulares e inequigranulares, son indicativas de un emplazamiento epizonal del cuerpo, en un basamento metamórfico.

Los monzogranitos están constituidos por ortosa pasando a microclina pertítica, característica en rocas plutónicas que se forman en ambientes de temperaturas intermedias.

La química mineral obtenida en cristales de biotita, relacionada a una roca de monzogranito de la facies principal del plutón, se asocia a rocas de series calcoalcalinas orogénicas, de acuerdo con el diagrama de Abdel Rahman (1994), resultado que es concordante con la química de óxidos mayores que clasifica las rocas como subalcalinas de la serie calcoalcalina alta en K y peraluminosas.

El Monzogranito de Rionegro presenta al menos tres facies, y predominan los monzogranitos sobre las granodioritas y las cuarzomonzodioritas. Las dataciones U/Pb sugieren que algunas de estas facies representan pulsos y cuerpos de diferente edad, que podrían ser separados de la unidad principal, como es el caso del cuerpo de granodiorita que aflora en los alrededores del municipio de Rionegro, que arrojó una edad de 214 Ma. Presenta diques de monzogranitos, riolitas, andesitas y microdioritas, indicativos de eventos magmáticos posteriores a la cristalización de la masa principal del plutón con edades más jóvenes, cercanas a 1 84 Ma.

El Monzogranito de Rionegro presenta enriquecimiento en tierras raras livianas (LREE) de más de cien veces respecto al valor del condrito, que se va empobreciendo progresivamente hacia las tierras raras pesadas (HREE), comportamiento normal en rocas generadas en ambientes de subducción. Las diferentes litologías del Monzogranito de Rionegro en los diagramas multielementales de elementos traza normalizados al NMORB presentan anomalías negativas de P, Ti y Nb y enriquecimientos en las LILE (Cs, Rb, Ba), algo típico en rocas ígneas generadas en ambientes de arco.

La presencia de circones heredados del Proterozoico en rocas monzograníticas indica aporte de corteza continental a los fundidos que dieron origen al Monzogranito de Rionegro. Además, los valores de ɛNd a 196 Ma y las razones iniciales de ⁸⁷Sr/⁸⁶Sr muestran valores altos, entre 0,70843 y 0,71054, que corresponden a características isotópicas que apoyan el aporte de material cortical a los magmas que dieron origen a las rocas del Monzogranito de Rionegro.

9. Recursos minerales

No se conocen mineralizaciones asociadas al Monzogranito de Rionegro, aunque el desarrollo de saprolito espeso de contextura arenosa permite la extracción local de material que se utiliza en la construcción como arena de pega.

Conclusiones

Este catálogo, que constituye un aporte al conocimiento cartográfico del cuerpo plutónico, presenta nueva infor-

mación del Monzogranito de Rionegro en los aspectos petrográfico, químico, mineral, litogeoquímico y geocronológico.

Se determinó que el cuerpo es un granito formado por varios pulsos magmáticos, que incluye diques más jóvenes y cuerpos de granodioritas más antiguos que la litología granítica principal.

El Monzogranito de Rionegro está constituido por monzogranitos granodioritas, sienogranitos, cuarzosienitas y tonalitas. Se encuentra intruido por diques de riolitas, monzogranitos, andesitas y microdioritas; además, tiene enclaves de andesitas y dioritas.

Es un plutón subalcalino de la serie calcoalcalina alta en K, peraluminoso, con valores de A/NK > 1 y valores de A/CNK > 1, con valores de Al₂O₃ > CaO+Na₂O+K₂O.

En los diagramas multielementales se reconocen varios patrones con edades de cristalización, U/Pb en circón, desde 214,5 ± 2,7 Ma para un cuerpo de granodiorita que aflora al sur del Monzogranito de Rionegro, hasta edades que varía entre 197,2 ± 1,5 y 195,8 ± 1,5 Ma, que representan la masa principal del cuerpo intrusivo en rocas de la facies monzogranítica. Las rocas de dique arrojaron edades entre 184,1 ± 2,3 y 189,9 ± 1,6 Ma, lo que sugiere que se trata de un cuerpo formado por varios pulsos magmáticos generados en un ambiente de arco continental.

La química de rocas y la química de circones clasifican el Monzogranito de Rionegro como un granito tipo I.

La presencia de núcleos de circones heredados del Paleozoico al Mesoproterozoico, en rocas monzograníticas y sienograníticas, son indicativas de la fusión de rocas de la corteza continental que aportaron material a los pulsos magmáticos.

Referencias

- Abdel-Rahman, A. F. M. (1994). Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. *Journal of Petrology*, 35 (2), 525-541. https://doi. org/10.1093/petrology/35.2.525.
- Arias, A. y Morales C., J. (2003). *Mapa geológico generalizado del departamento del Cesar. Memoria explicativa. Escala 1:250.000.* Bogotá: Ingeominas.
- Arias, A. y Vargas, R. (1978). Geología de las planchas 86 Ábrego y 97 Cáchira. Departamento de Santander. Memoria explicativa. Escala 1:100.000. Bogotá: Ingeominas.
- Best, M. G. (2003). *Igneous and metamorphic petrology*. Oxford: Wiley-Blackwell.

- Chappell, B. W. y White, A. J. (2001). Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48 (4), 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x.
- Clavijo, J. (1994). Mapa geológico generalizado de Norte de Santander. Escala 1:250.000. Mapa interno. Bucaramanga: Ingeominas.
- Clavijo, J., Mantilla, F. L. C., Pinto, J., Bernal, L. y Pérez, A. (2008). Evolución geológica de la serranía de San Lucas, norte del valle medio del Magdalena y noroeste de la cordillera Oriental. *Boletín de Geología*, 30 (1), 45-62.
- Cordani, U. G., Cardona, A., Jiménez, D. M., Liu, D. y Nutran, A. P. (2005). Geochronology of Proterozoic basement inliers from the Colombian Andes: Tectonic history of remnants from a fragmented Grenville belt. Londres: Geological Society.
- Corfu, F., Hanchar, J. M., Hoskin, P. W. O. y Kinny, P. (2003). Atlas of Zircon Textures. Zircon. Reviews in Mineralogy and Geochemistry, 53 (1), 469-500. https://doi.org/10.2113/0530469.
- Correa Martínez, A. M., Rodríguez, G., Arango, M. I., Zapata, G. y Bermúdez, J. G. (2016). *Catálogo de unidades litoestratigráficas de Colombia. Batolito de Mogotes*. Medellín: Servicio Geológico Colombiano.
- Correa Martínez, A. M., Rodríguez, G., Arango, M. I., Zapata, G. y Bermúdez, J. G. (2018). *Catálogo de unidades litoestratigráficas de Colombia. Riolitas del alto Los Cacaos*. Medellín: Servicio Geológico Colombiano.
- Daconte, R. y Salinas, R. (1980). Geología de las planchas 66 Miraflores y 76 Ocaña. Departamento Norte de Santander. Memoria Explicativa. Escala 1:100.000. Bucaramanga: Ingeominas.
- Debon, F. y Le Fort, P. (1983). A chemical-mineralogical classification of common plutonic rocks and associations. *Earth and Environmental Science Transactions* of The Royal Society of Edinburgh, 73 (3), 153-149. https://doi.org/10.1017/S0263593300010117.
- Etayo Serna, F., Barrero, D., Lozano, H., Espinosa, A., González, H., Orrego, A., Ballesteros, I., Forero, H., Ramírez, C., Zambrano Ortiz, F., Duque Caro, H., Vargas, R., Núñez, A., Álvarez, J., Ropaín, C., Cardozo, E., Galvis, N., Sarmiento, L., Alberts, J. P., Case, J. E., Singer, D. A., Bowen, R. W., Berger, B.R., Cox, D. P. y Hodges, C. A. (1985). *Mapa de terrenos geológicos de Colombia*. Publicaciones Geológicas Especiales del Ingeominas 14, Bogotá: Ingeominas.

- Frost, B. R. y Frost, C. D. (2008). A geochemical classification for feldspathic igneous rocks. *Journal of Petrology*, 49 (11), 1955-1969. https://doi.org/10.1093/ petrology/egn054.
- Frost, R. B., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. y Frost, C. D. (2001). A geochemical classification for granitic rocks. *Journal of Petrology*, 42 (11), 2033-2048. https://doi.org/10.1093/petrology/42.11.2033.
- Fuquen, J., Ceballos, L., Pedraza, A. y Marín, E. (2010).*Geología de la plancha 98 Durania. Escala 1:100.000.*Bogotá: Ingeominas.
- García, C. y Ríos, C. (1999). *Metamorfismo y metalogénia asociada del Macizo de Santander, cordillera Oriental, Colombia*. Informe final Proyecto de Investigación 1102-05-083-95. Bucaramanga: Colciencias y Universidad Industrial de Santander.
- Goldsmith, R., Marvin, R. F. y Mehnert, H. H. (1971). *Radiometric ages in the Santander Massif, Eastern Cordillera, Colombian Andes.* U. S. Geological Survey Professional Paper 750-D, D44-D49.
- Harris, N. B. W., Pearce, J. A. y Tindle, A. G. (1986). Geochemical characteristics of collision zone magmatism. En M. P. Coward y A. C. Ries (eds.), *Collision tectonics* (pp. 67-81). Special publication 19. London: Geological Society of London. http://dx.doi. org/10.10.11144/GSL.SP.1986.019.01.04.
- Janoušek, V., Farrow, C. M. y Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing geochemical data toolkit (GCDkit). *Journal of Petrology*, 47 (6), 1255-1259. https://doi.org/10.1093/petrology/egl013.
- Leal-Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes: A tectono-magmatic approach (tesis de doctorado). Universitat de Barcelona, España.
- Ludwig, K. (2008). *Isoplot version 4.15: A geochronological toolkit for Microsoft Excel.* Berkeley Geochronology Center, Special Publication (4).
- Mantilla Figueroa, L. C., Bissig, T., Valencia. V. y Hart, C. (2013). The magmatic history of the Vetas-California mining district, Santander Massif Eastern Cordillera, Colombia. *Journal of South American Earth Sciences*, 45, 235-249. https://doi.org/10.1016/j. jsames.2013.03.006.
- McDonough, W. F. y Sun, S. S. (1995). The composition of the Earth. *Chemical Geology*, 120 (3), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4.

- Middlemost, E. A. K. (1985). *Magmas and magmatic rocks*. London: Longman.
- Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. *Earth-Science Reviews*, 37 (3-4), 215-224. https://doi.org/10.1016/0012-8252(94)90029-9.
- Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. *Geochimical et Cosmochimical Acta*, 38 (5), 757-775. https://doi.org/10.1016/0016-7037(74)90149-5.
- Nardi, L. V. S., Formoso, M. L. L., Müller, I. F., Fontana, E., Jarvis, K. y Lamarão, C. (2013). Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: Uses for provenance and mineral exploration purposes. *Chemical Geology*, 335, 1-7. https://doi.org/10.1016/j.chemgeo.2012.10.043.
- Ordóñez Cardona, O., Restrepo Álvarez, J. J. y Pimentel, M. M. (2006). Geochronological and isotopical review of pre-Devonian crustal basement of the Colombian Andes. *Journal of South American Earth Sciences*, 21 (4), 372-382. https://doi.org/10.1016/j. jsames.2006.07.005.
- Ordóñez Carmona, O. (2001). Caracterização isotópica Rb-Sr e Sm-Nd dos principais eventos magmáticos nos Andes colombianos (tesis de doctorado). Universidade de Brasilia.
- Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. *Lithos*, 100 (1-4), 14-48. https://doi.org/10.1016/j. lithos.2007.06.016.
- Peccerillo, A. y Taylor, S. R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. *Contributions to Mineralogy and Petrology*, 58 (1), 63-81. https://doi. org/10.1007/BF00384745.
- Pérez Arvizu, O., Ortega Obregón, C., Solari, L. y Gómez Tuena, A. (2010). Aplicaciones del sistema LA-ICPMS del Centro de Geociencias de la UNAM. Simposio de Metrología 2010, Querétaro, México.
- Restrepo, J. J. y Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. *Episodes*, 11 (3), 189-193.
- Restrepo, J. J., Ordóñez Carmona, O., Armstrong, R. y Pimentel, M. (2011). Triassic metamorphism in the northern part of the Tahamí Terrane of the Central Cordillera of Colombia. *Journal of South Amer*-

ican Earth Sciences, 32 (4), 497-507. https://doi. org/10.1016/j.jsames.2011.04.009.

- Restrepo-Pace, P., Ruiz, J., Gehrels, G. y Cosca, M. (1997). Geochronology and Nd isotopic data of the Grenville-age rocks in the Colombian Andes: New constraints for Late Proterozoic-Early Paleozoic paleocontinental reconstructions of the Americas. *Earth and Planetary Science Letters*, 150 (3-4), 427-441. https://doi.org/10.1016/S0012-821X(97)00091-5.
- Rieder, M., Cavazzini, G., D'Yakonov, Y., Frank Kamenetskii, V., Gottardi, G., Guggenheim, S., Koval, P. W., Müller, G., Neiva, A. M. R., Radoslovich, E. W., Robert, J.-L., Sassi, F. P., Takeda, H., Weiss, Z. y Wones, D. R. (1998). Nomenclature of the micas. *Clays and Clay Minerals*, 46 (5): 586-595. https://doi.org/10.1346/CCMN.1998.0460513.
- Ríos, C., García, C. y Takusa, A. (2003). Tectono-metamorphic evolution of the Silgara Formation metamorphic rocks in the Southwestern Santander Massif, Colombian Andes. *Journal of South American Earth Sciences*, 16 (2), 133-154. https://doi. org/10.1016/S0895-9811(03)00025-7.
- Rodríguez, G., Arango, M. I., Correa Martínez, A. M. y Zapata, G. (2018). *Catálogo de unidades litoestratigráficas de Colombia. Riolita de San Joaquín.* Medellín: Servicio Geológico Colombiano.
- Rodríguez, G., Correa Martínez, A. M., Zapata, G. y Arango, M. I. (2016). *Catálogo de unidades litoestratigráficas de Colombia. Monzogranito de La Corcova*. Medellín: Servicio Geológico Colombiano.
- Royero, J. M. y Clavijo, J. (2001). Mapa geológico generalizado del departamento de Santander. Escala 1:300.000. Memoria explicativa. Bogotá: Ingeominas.
- Shand, S. J. (1943). Eruptive rocks: Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. New York: John Wiley & Sons.
- Smith, J. V. y Brown, W. L. (1988). Feldspar minerals. I. Crystal structures, physical, chemical and microtextural properties (2.^a ed.). Berlin: Springer-Verlag.
- Streckeisen, A. (1976). Classification and nomenclature of plutonic rocks: recommendations of the IUGS subcommission on the systematics of Igneous Rocks. *Geologische Rundschau*, 63 (2), 773-786. https:// doi.org/10.1007/BF01820841.

- Streckeisen, A. (1978). Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks; recommendation and suggestions. *Neues Jahrbuch für Mineralogie*, 134, 1-14.
- Sun, S. S. y Mcdonough, W. S. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Special Publications 42. London: Geological Society.
- Van der Lelij, R. (2013). Reconstructing North-Western Gondwana with implications for the evolution of the Iapetus and Rheic Oceans: A geochronological, thermochronological and geochemical study (tesis de doctorado). Université de Genève.
- Wang, Q., Zhu, D. C., Zhao, Z. D., Guan, Q., Zhang, X. Q., Sui, Q. L., Chu Hu, Z. y Mo, X. X. (2012). Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. *Journal of Asian Earth Sciences*, 53, 59-66. https://doi.org/10.1016/j. jseaes.2011.07.027.
- Ward, D. E, Goldsmith, R., Jimeno, A., Cruz, J., Restrepo, H. y Gómez, E. (1973). Mapa geológico de Colombia, cuadrángulo H-12 Bucaramanga, planchas 109 Rionegro-120 Bucaramanga, cuadrángulo H-13, Pamplona, planchas 110 Pamplona-121 Cerrito. Departamento de Santander. Memoria Explicativa. Escala 1:100.000, Bogotá: Ingeominas.
- Whalen, J. B., Currie, K. L. y Chappell, B. W. (1987). A-type granites: Geochemical characteristics, discrimination and petrogenesis. *Contributions to Mineralogy and Petrology*, 95 (4), 407-419. https://doi. org/10.1007/BF00402202.
- Winter, J. D. (2014). *Principles of igneous and metamorphic petrology* (2.^a ed.). Harlow: Pearson.
- Zapata, G., Arango, M. I., Rodríguez, G. y Correa Martínez, A. M. (2018). Catálogo de unidades litoestratigráficas de Colombia. Riolitas El Uvo. Medellín: Servicio Geológico Colombiano.
- Zapata, G., Correa M, A. M., Rodríguez, G. y Arango, M. I. (2016). Catálogo de unidades litoestratigráficas de Colombia. Granito de Pescadero. Medellín: Servicio Geológico Colombiano.

ANEXOS

Anexo 1. Contenido modal del Monzogranito de Rionegro

IGM	N. campo	Е	Ν	Qtz	PI	Fsp	Bt	Hbl	Срх	Орх	Tr/Act	Ms	Chl	Ор	Ар	Zrn	Ttn	Ep	Matriz	Textura	Clasificación
70801	EA-717	1103352	1328059	37	16	46	1						x	x	x		х			Holocristalina	Granito félsico
70807	EA-736	1096402	1323699	32	20	47	0.5					0.5	×	x				x		Holocristalina	Granito félsico
70808	EA-738	1095482	1323399	34	20	45	0.5					0.5		۔۔ د 1				×		alotriomorfa Holocristalina	Granito félsico
70911	EA 754	1006342	1220740	10	15	ee.	- 1					0,0			Tr			~		alotriomorfa Holocristalina,	Granita fálaica
70011	EA-734	1090342	1320749	10	15	05														alotriomorfa Holocristalina	
10888	HCH 1	1098572	1311069	33,2	49,1	15,5	2,2										Tr			hipidiomorfa inequigranular	Brecha (monzogranito)
10941	H CH 53	1105372	1340599	11,1	46,6	22,2							2,2	Tr				3,1	14,8	Cataclástica	Brecha cataclástica (cuarzomonzodiorita)
10942	H CH 54	1104972	1340259	15,6	46,3	30,5	2,2											2,2	3,2	Cataclástica	Brecha cataclástica (cuarzomonzonita)
10936	H CH 48	1091702	1337019	9,2	41,5	4,6	2,5	2								Tr	Tr		40,2	Cataclástica	Cataclasita
70839	LJM-411	1091622	1334399	23,8	29,7	4,5							0,5		Tr	Tr		1,9	39,6	Cataclástica	Cataclasita
72056	HM-253	1094822	1340059	37	40	15	х						х	х		Tr	2	х		Cataclástica	Cataclasita de granodiorita
70840	LJM-411A	1091623	1334400	16,2	28,6	11,9						0,5		Tr		Tr			42,8	Cataclástica	Cataclasita/brecha cataclástica
70884	LJM-452	1091582	1337199	19,2	63,4	7,4							7,8		х		х	1,6		Hipidiomorfa granular	Cuarzodiorita
72054	HM-246	1094632	1342919	23	55	5		15	Tr				x	0,5	Tr	Tr	1	0,5		Hipidiomorfa	Cuarzodiorita
74443	OP-432	1093043	1373559	20	54	< 1		18					x	3	x	x	2	3		Holocristalina, hipidiomorfa	Cuarzodiorita
72051	HM-235	1092722	1340789	15	60	8							15				2	3		Hipidiomorfa	Cuarzodiorita
74108	HM-1100	1089122	1334939	15	30	5		44					Tr	Tr	×	1	2	3		Holocristalina	Cuarzodiorita
000007	LMC-081	1088010	1344459	5	45	0	11	20	3					3	0.5	Tr	-			Alotriomorfa,	hornblenda
					+0	5		20							0,0					equigranular Holocristalina	
70837	HM-163	1103872	1326279	15	33	38	4					х	5	х				4		alotriomorfa, con efectos cataclásticos	Cuarzomonzonita
70841	LJM-412	1091622	1334859	23	43	30							5	х	x	х	х	x		Holocristalina alotriomorfa	Cuarzomonzonita
70859	LJM-428	1100392	1337879	14	52	32	1					x	x	x	x		x	x		Holocristalina,	Cuarzomonzonita
70863	LJM-432	1103242	1337039	32	37	25	6							x	x					Holocristalina	Cuarzomonzonita
70892	LJM-461	1094732	1337789	17,9	40,5	35		3,1					x	х				х		Hipidiomorfa granular	Cuarzomonzonita
70897	LJM-466	1093682	1337569	14,5	34,5	43	5	1					3	1	Tr	Tr		x		Hipidiomorfa	Cuarzomonzonita
900950	MIA-647	1103873	1300073	12,4	40,7	31,5	12,7						x	0,5	1	Tr	1,2	x		Holocristalina subidiomorfa inequigranular	Cuarzomonzonita
70824	HM-141	1096412	1321359	19	35	45						×		1	×			×		Holocristalina alotriomorfa.con	Cuarzomonzonita con
																				deformación	efectos cataclásticos
11196	JA 84	1113692	1307579	16	13	70	Tr					1	x							inequigranular	Cuarzosienita
72053	HM-243	1096672	1340859		40			20	15		х		10	10			1	1		fanerítica	Diorita
900998	LMC-082	1087836	1343412		47		10	35						4	1	Tr	3	x		Alotriomorfa equigranular	Diorita
71244	EA-765	1088372	1339369		44		Tr		11		43			1			Tr	x		Hipidiomorfa granular	Diorita anfibólica
72032	HM-185A	1094443	1345819	10	30			25					10	3	2		8	10		Hipiomorfica granular	Diorita hornbléndica,
31183	EV 10	1082603	1357309	2,1	23,2		Tr	70									1,1	3,3		Holocristalina hipidiomorfa	Diorita hornbléndica
74446	OP-460	1095093	1368029	8	80		9						¥	1	x	¥	x	2		Holocristalina hipidiomorfa.con	Diorita néisica
																				orientación	
74463	OP-559	1089403	1350199	5	68		13	12					x	x			х	x		Holocristalina	Diorita
70861	LJM-430	1102272	1337119	х	х	х						x	x	x	x	x	х	x		Esquistosa	cuarzomicáceo
31147		1093712	1373551	7,6	0,7			59					2,6	6,9				23		inequigranular	Gabro propilitizado
31146		1093636	1373369	1,1	36,9	0,6				23,6	26,4			10,3	Tr		1,1			Subidiomorfa inequigranular	Gabronorita px- hornbléndica
70842	LJM-413	1092542	1337239	15	52	25							3	x			х	6		Holocristalina alotriomorfa	Granodiorita
70813	HM-101	1100312	1327599	36	20	43	< 1						х	< 1	х			x		Holocristalina alotriomorfa	Granito
70820	HM-128	1092102	1323979	16	19	65	Tr						x	Tr		x		x		Holocristalina	Granito
70823	HM-139	1096382	1322199	32	21	45	x					x	x	1		x	x	x		Holocristalina	Granito
70838	HM-164	1104582	1327129	16	22	60	2						x		x					Holocristalina	Granito
70865	LJM-434	1104392	1338179	26	24	50	×						×	x	x			×		Holocristalina	Granito
70872	L.IM-441	1105112	1340559	25	17.5	44.5						75	1			0.1				alotriomorfa Alotriomorfa	Granito
71252	FΔ-792	1080742	1335050	42 5	. <i>.</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	49.5	2					.,0	' 2	1		0,1				Granofírica	Granito
72020	HM_160	1003652	1349670	15	29	55	4						2	1	Tr		Tr	Tr		Holocristaliaa	Granito
12029	1 1111-109	1053033	104019	10	20	JU							2	1			11			Hipidiomorfa,	Graffild
72052	HM-240	1096262	1341649	10	20	60							3			Tr	4	4		micrográfica, mirmeguítica	Granito

IGM	N. campo	Е	Ν	Qtz	PI	Fsp	Bt	Hbl	Срх	Орх	Tr/Act	Ms	Chl	Ор	Ар	Zrn	Ttn	Ep	Matriz	Textura	Clasificación
74440	OP-428	1092203	1374959	24	23	51	x					x	x	x		x		x		Holocristalina alotriomorfa	Granito
74864	LJM-1356	1076733	1396729	39	20	40	x							х				x		hipidiomorfa	Granito
70895	LJM-464	1104802	1338299	25,3	10	60			-				Tr	1	Tr			Tr		Alotriomorfa	Granito (alasquita)
70925	JR-843	1105252	1336499	23,5	19,5	49,5							3	0,3	х					Alotriomorfa	Granito (alasquita)
71249	EA-774	1089792	1335379	20	8	70										Tr	Tr	2		Alotriomorfa, pertítica gráfica	Granito (alasquita)
71250	EA-777	1088702	1333309	27	10	60	Tr					1	1	1			Tr	Tr		Alotriomorfa, pertítica	Granito (alasquita)
72047	HM-223A	1103692	1327989	25	19	55							1					Tr		Hipidiomorfa	Granito (alasquita)
72048	HM-223B	1103432	1327319	30	20	50												3		Hipiomorfica con deformación	Granito cataclástico (alasquita)
72045	HM-221	1102652	1327759	15		50					1			6				30		Cristaloblástica	Granito con venas de enidota
72044	HM-220	1090972	1329549	30	10	60								Tr						Hipidiomorfa	Granito gráfico
70866	LJM-435	1104712	1338479	33	6	61	x						x	x	х		x	x		Micrográfica	Granito micrográfico
70893	LJM-462	1105952	1340269	15	10	70	1					Tr		2				Tr		Perfirítica con matriz	Granito porfirítico
10937	H CH 49	1095102	1337699	34,8	39,9	15,2	9,5							Tr			0,5			Holocristalina	Granodiorita
70806	EA-731	1095122	1330109	20	56	23	1					v	×	~	×		- / -			Holocristalina	Granodiorita
70975	L IM-443	1007732	1337830	20	43	21.2	·					X	2.5	0.1	~		0.2	1		alotriomorfa Hipidiomorfa, en parte	Granodiorita
70073	1 104 445	1006400	1997770	4 5	40 60 E	21,2							2,5	0,1			0,2			brechoide	Granodiorita
70878	LJM-446	1095512	1337719	4,5	29	12							7				12	5.6		Hipidiomorfa granular	Granodiorita
70891	L IM-460	1005052	1337509	11	54	30							2	1	Tr		1,2	2		Hinidiomorfa	Granodiorita
70979	AG-2262A	1097722	1337839	31	42.5	18		Tr				Tr	7.4	1						Hipidiomorfa	Granodiorita
72034	HM-192	1005133	1347059	28.5	19.5	18.4	2.5						.,.			~	1	0.8		Porfirítica con matriz	Granodiorita
72034	HM 102	1005902	1947190	10.7	40,0	20	2,5						11	4		1	Tr	0,0		fanerítica Porfirítica con matriz	Granodiorita
72035	HWI-193	1095803	134/189	19,7	47,4	20	10	5.0						0		T-	11	0,9		fanerítica	Granodiorita
72055	HWI-252	1095572	1340069	5,6	53,8	20	10	5,0					x	- 2		т т				Holocristalina	Granodiorita
/4869	LJM-1403	1077503	1399199	20,1	54,4	16,1	9,4							Ir	Ir	Ir				alotriomorfa Holocristalina	Granodiorita
120046	OP-908A	1106973	1391619	19	51	11	19						x	х	x		х			alotriomorfa	Granodiorita
900949	MIA-646B	1102880	1297649	21,9	46,6	15,6	14,3							1,1			0,5			inequigranular	Granodiorita
900952	MIA-648B	1104858	1301287	21,1	36,9	19,4	11,7	1,5						1,2	1,6	2,1	4,5	Tr		Alotriomorfa	Granodiorita
900999	LMC-084	1088410	1339422	14	40	15		29						Tr	Tr	Tr	2	x		inequigranular,	Granodiorita con hornblenda
70876	LJM-444	1097152	1337629	22,5	46	20,5								х				12		Hipidiomorfa granular	Granodiorita porfirítica
900954	MIA-649B	1107525	1305963	27	47,5	9,7	13,2					x	x	1,1	1	0,5		x		Holocristalina	Granodiorita
																					Granodiorita?
74926	LJM-1404	1080473	1388019	27	55	18							х		х	х	х	х		Cataclástica	partes en milonita-neis
900985	GZ-6848A	1094480	1337675	19,5	56,3	10,4	12,1										1,7			Hipidiomorfa granular	Granodiorita
10943	H CH 55	1101712	1338600	34.6	25.6	37.1	23					0.2		0.2						Granoblástica	Granofels
			1000000	04,0	20,0	07,1	2,0					0,2		0,2							facies anfibolita
31179	EV 777	1088242	1340739	47,9	19,2	24,9	2,3					2,6		Tr	Tr			3,1		Granoblástica	(metamonzogranito)
																				Granonematoblástica	Granofels de
31178	EV 778	1088442	1340559	20	35	18		23						1	Tr	Tr	3	x		ligeramente porfiroblástica	y hornblenda facies
900973	GB-6743	1083832	1397463	36.5	38.9	21.6	2.3							0.6	Tr	Tr	Tr			Alotriomorfa	Límite granodiorita-
31160	BV 2	1089732	1335869	39.5	26	32	2						×	Tr	Tr			0.5		Hipidiomorfa	Metamonzogranito
70889	L.IM-458	1103142	1337699	.34	39.5	21		3.1					Tr	1	Tr	Tr	Tr	1		Brechoide con	Microbrecha
70800	L IM 450	1009252	1227200	20.5	00,0	20		0,1					4.7							cohesión primaria Brechoide con	Microbrecha
70000	LIM 143	1008202	1220100	20,0	22,5	49						1 V	4,7					~		porfiroclastos Holocristalina	Microgranito
10020	FINI-143	1096302	1320109	04.7	20	43	×					X			т.	т.	т.			alotriomorfa	Managaranita
10070	LICILO	100002	10100/9	00.7	30,6	29,0								0,7						Holocristalina	Managaranita
10889	HCH 2	1098642	1310819	20,7	39,6	32,2	0,8							0,7						inequigranular Holocristalina	Monzogranito
10893	HCH 5	1099342	1310319	22,6	27,5	42,5	5,8							1,6						hipidiomorfa Holocristalina	Monzogranito
10938	H CH 50	1099932	1337959	53,3	18,1	26,7	0,6							1,3						inequigranular	Monzogranito
10974		1083776	1397131	29,5	31,7	37,4	0,7							0,7	Tr	Tr	Tr			Alotriomorfa	Monzogranito
10975		1084708	1395616	37	30,2	32,8	Tr					Tr		Tr		Tr	-			Alotriomorfa	Monzogranito
10976		1086477	1393163	41,1	31,8	24	3,1					Tr		Tr	Tr	Tr	Tr			Alotriomorfa	Monzogranito
10977		1087250	1392618	31,8	32,6	35,6	Ir					Ir T.	-	Ir T.		т.	ír			Alotriomorta	Morsesse
109/9		1006022	1372020	48,8 2F 4	20,3	30,1	U,8					Ir Tr		ır Tr		ır ۳-				Alotricmorfa	Monzogranito
11170	14.00	1116000	1202400	00,4	33,1	31,5	11					11		۱۲ 	<i>T</i> -	۱۲ 				Alotriomorfa	Monzografilio
111/2	JA 00	1110392	1002409	31	20	34	10						*	II.	11	1 f		*		inequigranular	worizografiito

IGM	N. campo	E	Ν	Qtz	PI	Fsp	Bt	Hbl	Срх	Орх	Tr/Act	Ms	Chl	Ор	Ар	Zrn	Ttn	Ep	Matriz	Textura	Clasificación
11197	JA 85	1113992	1307669	31	26	36,5	6,5					х	х	Tr	Tr	Tr	х	х		Alotriomorfa inequigranular	Monzogranito
70653	AG-2167A	1139473	1333679	30	35	35	2					2				Tr				Hipidiomorfa	Monzogranito
70656	AG-2174	1141472	1330738	25	30	37	4						2				1	1		Hipidiomorfa	Monzogranito
70707	AG-2176A	1150862	1320268	35	35	25	< 1					5	х	Tr	Tr		< 1	х		Holocristalina alotriomorfa	Monzogranito
70798	EA-707	1104412	1328939	27	40	21	5					5	x	x	x		x	x		Holocristalina alotriomorfa, micrográfica	Monzogranito
70800	EA-714	1101902	1327639	38	34	21	4						x	2	x	x				Holocristalina	Monzogranito
70802	EA-719	1103372	1328379	26	37	27	8							1	x	x		x		Holocristalina	Monzogranito
70805	EA-729	1096022	1329249	25	27	45	3						x	x	x	x		x		Holocristalina	Monzogranito
70810	EA-751	1094572	1323599	43	22	35	0.5					0.5		<1						Holocristalina	Monzogranito
70812	HM-100	1100782	1327719	32	32	35	×							x	x		×			Holocristalina	Monzogranito
70814	HM-108	1097402	1328479	32	33	34						×	~	~		Tr				Holocristalina	Monzogranito
70915	HM-111	1007102	1329710	22	43	33	2					^	~	~	~		~	~		alotriomorfa Holocristalina	Monzogranito
70013		1005402	1226710	07	40		-					1		1		~	^ Tr			alotriomorfa Holocristalina	Monzogranito
70817	HIM-114	1095402	1320199	21	37	33						1		-		×	Ir	x		alotriomorfa Holocristalina	Monzogranito
70818	HM-115	1096302	1326829	34	25	37	1						x	Tr						alotriomorfa Holocristalina	Monzogranito
70819	HM-116	1097682	1327659	22	37	40	1						x	1	x	х	x	x		alotriomorfa	Monzogranito
70822	HM-136	1095522	1322989	35	24	39	1					x		1		x		x		alotriomorfa	Monzogranito
70828	HM-146	1101152	1320839	36	31	30	2,5						x	х		х	x			alotriomorfa	Monzogranito
70829	HM-150	1090932	1327329	21	19	59	1						х	х			х			Holocristalina alotriomorfa	Monzogranito
70830	HM-152	1091712	1328739	32	31	37	< 1					x		Tr		?		x		Holocristalina alotriomorfa	Monzogranito
70831	HM-153	1096002	1329299	25	36	32	5						х	1				х		Holocristalina alotriomorfa	Monzogranito
70832	HM-154	1095722	1329549	22	32	44						2		х						Holocristalina alotriomorfa	Monzogranito
70833	HM-155	1095432	1329839	34	30	35	1						x	Tr	x	x		x		Holocristalina	Monzogranito
70834	HM-4159	1101932	1327099	29	25	44	х					1	x	х	x		х	х		Holocristalina	Monzogranito
70855	LJM-425	1105532	1340279	41	26	31							x	x	x	x	x	x		Holocristalina	Monzogranito
70856	LJM-426	1098772	1337669	31	42	24							x	x	x	x	x	x		Holocristalina	Monzogranito
70858	LJM-427	1099852	1337779	44	31	24							x	x	x			x		Holocristalina	Monzogranito
70860	I.IM-429	1101802	1338039	36	35	24	x					x		x	×			×		Holocristalina	Monzogranito
70864	L IM-433	1103722	1328469	27	34	35	3					~		~ 				~		alotriomorfa Holocristalina	Monzogranito
	20101 400		1020400											^	~					alotriomorfa Holocristalina	Monzografito
70867	LJM-436	1105002	1338679	28	30	41	1				x?		х	х	х	х		x		alotriomorfa con efectos cataclásticos	Monzogranito
70868	LJM-437	1104782	1339729	16	40	44							х	х				х		Hipidiomorfa	Monzogranito
70874	LJM-442	1098802	1337949	38,5	29,5	24,5		Tr					5		Tr		1	2,1		Hipidiomorfa poiquilítica con antipertitas	Monzogranito
70894	LJM-463	1105242	1338659	31	29,7	36,2							2,4	х	х			х		Hipidiomorfa	Monzogranito
70896	LJM-465	1093682	1337199	26,7	32	32		1						Tr			Tr	Tr		Hipidiomorfa	Monzogranito
70921	JR-839	1105082	1338179	29,3	29	36,5							0,5							Alotriomorfa	Monzogranito
70922	JR-840	1105192	1337879	33,5	41	23,2	1,7	Tr					х	х				0,6		Holocristalina	Monzogranito
70924	JR-842	1105252	1336859	22	39	32	0,9						3,1	0,7	Tr			2,4		Alotriomorfa	Monzogranito
70927	JR-845	1105902	1338489	31,5	25	38,5						0,2	3,8					0,6		Hipidiomorfa con protoclasis	Monzogranito
70928	JR-846	1106242	1338389	35	25,5	36	0,5						3,3	0,5	Tr					Porfirítica con matriz fanerítica	Monzogranito
70929	JR-847	1106212	1338379	27,5	29	42							х	0,5				1		Alotriomorfa de grano fino	Monzogranito
70966	AG-2253B	1105172	1340689	30,5	25,5	38							5	1		Tr				Hipidiomorfa	Monzogranito
70969	AG-2255	1104472	1338479	30,5	27,5	34	6						2	1						Hipidiomorfa	Monzogranito
72039	HM-206	1099952	1321999	40,5	32,5	24						Tr	2	0,2		Tr		0,2		Fanerítica, mirmequítica y pertítica	Monzogranito
72041	HM-214	1102412	1328779	20	20	35	10						2	1	Tr	Tr	2	5		Holocristalina pertítica y poiquilítica	Monzogranito
72059	HM-262	1098152	1340339	43	32	22,5							2,3			х				Hipidiomorfa	Monzogranito
72062	HM-272B	1100083	1341160	32	23	41							1	1				х		Hipidiomorfa pertítica	Monzogranito
72063	HM-287	1102422	1343409	42,5	23	32,5							1	1						Hipidiomorfa	Monzogranito
74341	LJM 1001	1103423	1357969	20	40	30	2	3					Tr	1	1	Tr	1			Hipidiomorfa	Monzogranito
74344	LJM 1010	1103103	1356279	30	25	35	1,5	1,5					2,5					1		Hipidiomorfa	Monzogranito
74429		1099961	1363609	20,1	36,2	40,5	2,2					0,8		0,2						Hipidiomorfa	Monzogranito
74459	OP-539	1095263	1353079	38	26	35	1						x	х		x				alotriomorfa	Monzogranito
900953	MIA-649A	1107525	1305963	23,8	26,5	41,9	6,1					x	x	1,2	0,5	Tr		x		Subidiomorfa equigranular	Monzogranito

IGM	N. campo	Е	N	Qtz	PI	Fsp	Bt	Hbl	Срх	Орх	Tr/Act	Ms	Chl	Ор	Ap	Zrn	Ttn	Ep	Matriz	Textura	Clasificación
900969	GR-6736	1107549	1318415	39,1	24,5	35,8	0,7					Tr		Tr	Tr	Tr				Alotriomorfa	Monzogranito
900971	GR-6740	1105544	1340405	32,7	30,8	34,3	1,3							0,6		Tr				Alotriomorfa	Monzogranito
900974	GR-6744	1084623	1395986	30,8	25,3	38,3	4,9							0,7	Tr	Tr				Subidiomorfa inequigranular	Monzogranito
70803	EA-723	1100352	1326799	36	32	29						1		1						Holocristalina alotriomorfa	Monzogranito aplítico
70799	EA-712	1103762	1328759	40	25	32							x	x	x		x	2		Holocristalina alotriomorfa, con efectos cataclásticos	Monzogranito con efectos cataclásticos
70654	AG-2167B	1139472	1333678	40	25	31	4													Hipidiomorfa	Monzogranito porfirítico
11198	JA 86	1114102	1307559	23,5	25,5	45	6					x	x	Tr	Tr	Tr	х	x		Alotriomorfa inequigranular	Monzogranito límite con sienogranito
70923	JR-841	1105252	1337279	5,3	40,5	40	x	-					1,5	0,5	Tr		-	5,1		Hipidiomorfa con deformación cataclástica	Monzonita
72042	HM-215	1102012	1328729	8	35	30		10						х		х	5	10		Hipiomorfa	Monzonita
70926	JR-844	1105582	1338329	0,7	35,5	53,5							3,8	0,3				5,4		Alotriomorfa	Monzonita brechada
70816	HM-112	1094922	1326399	1	53	45	1					x	x	x	x	x				Holocristalina alotriomorfa con efectos cataclásticos	Monzonita con cataclasis
70873	LJM-441A	1105113	1340560	9									80				1			Holocristalina	Roca cloritizada
70809	EA-739	1094572	1326629	54		29	x									< 1		16		Holocristalina alotriomorfa	Granito
10939	H CH 51	1103672	1338299	34,2	21,2	41,4	3,2							Tr						Holocristalina inequigranular	Sienogranito
10981		1096790	1368704	31,3	22,9	45	0,8					Tr		Tr		Tr				Alotriomorfa	Sienogranito
11177	JA 65	1114922	1300209	23,5	22,5	46	7						x	1	Tr	Tr		x		Hipidiomorfa inequigranular	Sienogranito
11461	EA 280	1107222	1314129	30,6	21,3	46,3	0,8							1		Tr				Alotriomorfa	Sienogranito
72040	HM-211	1097772	1322639	37	19,6	41						2	х	0,1	0,2	0,2	0,2			Hipidiomorfa	Sienogranito
72043	HM-219	1091882	1329999	20	22	54	4						х	х		х	х	х		Alotriomorfa, gráfica, pertítica	Sienogranito
72060	HM-267	1100542	1340539	30	20	46	2,5					1	х	0,5				х		Hipidiomorfa, pertítica	Sienogranito
74425		1101736	1362608	45,1	6,9	47,1	0,9							Tr						Hipidiomorfa	Sienogranito
901011	MIA-650B	1099016	1313299	26,5	21	45,4	4,8					Tr		1,6		0,7				Alotriomorfa inequigranular	Sienogranito
901028	TCR-388	1089344	1335770	28	14	53,5	2						x	1,5			0,5	x		Hipidiomorfa gráfica, pertítica	Sienogranito
10874	EA 171	1105102	1317149	37,2	54,5	0,8	7,3						x	Tr	0,2	Tr	Tr	x		Subidiomorfa	Tonalita
31180	EV 2	1081873	1354259	24	52		10	12						Tr	Tr		2	x		Hipidiomorfa	Tonalita
74932	LJM-1419	1081573	1388019	21	41	4,5	23	9						0,5	0,3	0,5	0,2	x		Hipidiomorfa	Tonalita

Símbolos de minerales: Qtz: cuarzo; PI: plagioclasa; Fsp: feldespato; Bt: biotita; HbI: hornblenda; Cpx: clinopiroxeno, Opx: ortopiroxeno; Tr: tremolita, Act: actinolita; Ms: moscovita; ChI: clorita; Op: opacos; Ap: apatito; Zrn: circón, Ttn: titanita; Ep: epidota. E: este; N: norte

Anexo 2. Análisis isotópicos U-Pb en circón

GR-6743, análisis isotópicos U-Pb en circón

Zr	U (ppm)1	Th (ppm)1	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	± 2s abs	²⁰⁷ Pb/ ²³⁵ U	± 2s abs	²⁰⁶ Pb/ ²³⁸ U	± 2s abs	Correlación de errores	²⁰⁸ Pb/ ²³² Th	± 2s abs	Disc%	Error	²⁰⁶ Pb/ ²³⁸ U	± 2s	²⁰⁷ Pb/ ²³⁵ U	± 2s	²⁰⁷ Pb/ ²⁰⁶ Pb	± 2s	Mejor edad (Ma)	± 2s
Zr-017	156,9	177	1,1	0,0976	0,007	0,403	0,02	0,0306	0,0007	0,083	0,013	0,0006	43,382	8,33%	194,2	4,5	343	17	1.560	130	1.560	130
Zr-028	243	327	1,3	0,0922	0,008	0,442	0,04	0,0346	0,0011	0,293	0,013	0,0016	40,863	9,66%	219,4	6,7	371	29	1.450	140	1.450	140
Zr-012	267	625	2,3	0,059	0,021	0,24	0,11	0,0303	0,0012	0,536	0,01	0,0013	13,288	3,84%	192,5	7,4	222	69	540	310	192,5	7,4
Zr-031	268,9	420	1,6	0,0543	0,004	0,22	0,01	0,0293	0,0008	0,114	0,009	0,0004	7,264	2,68%	186,4	5	201	11	400	150	186,4	5
Zr-043	207,8	299,4	1,4	0,0536	0,004	0,216	0,02	0,0298	0,0007	0,11	0,009	0,0004	4,444	2,27%	189,2	4,3	198	13	350	150	189,2	4,3
Zr-011	123,5	122,7	1	0,0489	0,004	0,206	0,02	0,0301	0,0008	0,078	0,009	0,0005	-1,111	2,67%	191,1	5,1	189	14	140	180	191,1	5,1
Zr-039	302	437	1,4	0,054	0,005	0,224	0,02	0,0302	0,0007	0,14	0,009	0,0007	6,390	2,29%	191,9	4,4	205	18	340	170	191,9	4,4
Zr-038	630	956	1,5	0,0501	0,003	0,206	0,01	0,0304	0,0005	0,29	0,009	0,0004	-1,634	1,56%	192,8	3	189,7	8,5	200	120	192,8	3
Zr-020	499	856	1,7	0,0509	0,002	0,2133	0,01	0,0304	0,0006	0,023	0,009	0,0004	1,478	1,81%	193,3	3,5	196,2	6,8	220	100	193,3	3,5
Zr-013	349,4	259	0,7	0,0517	0,003	0,217	0,01	0,0305	0,0005	0,087	0,01	0,0004	2,814	1,76%	193,4	3,4	199	11	240	140	193,4	3,4
Zr-016	358	552	1,5	0,0505	0,003	0,212	0,01	0,0305	0,0006	0,062	0,01	0,0004	1,627	1,76%	193,5	3,4	196,7	9,3	220	120	193,5	3,4
Zr-029	437	498	1,1	0,0522	0,004	0,226	0,02	0,0305	0,001	0,215	0,01	0,0006	6,425	3,10%	193,7	6	207	13	320	120	193,7	6
Zr-018	202	261	1,3	0,0515	0,004	0,214	0,02	0,0305	0,0008	0,222	0,009	0,0005	2,172	2,43%	193,7	4,7	198	12	230	160	193,7	4,7
Zr-021	582	1.000	1,7	0,0513	0,003	0,21	0,01	0,0305	0,0008	0,33	0,009	0,0005	1,173	2,53%	193,7	4,9	196	11	230	140	193,7	4,9
Zr-041	158,6	142,6	0,9	0,0539	0,005	0,228	0,02	0,0306	0,0007	0,051	0,009	0,0005	5,728	2,27%	194,2	4,4	206	19	310	220	194,2	4,4
Zr-033	350,5	1240	3,5	0,0499	0,004	0,214	0,01	0,0307	0,0006	0,026	0,01	0,0006	0,612	1,90%	194,8	3,7	196	12	180	150	194,8	3,7
Zr-034	282,5	206,2	0,7	0,051	0,004	0,213	0,01	0,0307	0,0006	0,021	0,01	0,0005	0,964	1,95%	195,1	3,8	197	11	200	150	195,1	3,8
Zr-032	444	865	1,9	0,0535	0,004	0,221	0,01	0,0308	0,0005	0,394	0,01	0,0004	3,317	1,69%	195,3	3,3	202	10	310	140	195,3	3,3
Zr-044	261,2	284,4	1,1	0,0497	0,003	0,212	0,01	0,0308	0,0007	0,128	0,009	0,0004	-0,360	2,20%	195,4	4,3	194,7	9,6	160	130	195,4	4,3
Zr-025	380,1	485	1,3	0,0514	0,003	0,217	0,01	0,0308	0,0006	0,23	0,01	0,0004	1,111	1,94%	195,8	3,8	198	11	240	140	195,8	3,8
Zr-023	124,4	169,6	1,4	0,0492	0,005	0,21	0,02	0,0308	0,0007	0,07	0,01	0,0005	-1,451	2,25%	195,8	4,4	193	15	160	180	195,8	4,4
Zr-014	554	780	1,4	0,0518	0,003	0,219	0,01	0,0311	0,0006	0,174	0,01	0,0004	2,522	2,03%	197,1	4	202,2	8,6	250	120	197,1	4
Zr-015	62,8	104	1,7	0,0524	0,006	0,225	0,02	0,0312	0,0011	0,018	0,01	0,0006	2,206	3,56%	199,5	7,1	204	20	200	220	199,5	7,1
Zr-010	491	708	1,4	0,0513	0,003	0,223	0,01	0,0315	0,0006	0,245	0,01	0,0005	2,157	1,85%	199,6	3,7	204	8,9	240	120	199,6	3,7
Zr-037	305	466	1,5	0,0525	0,003	0,227	0,01	0,0317	0,0007	0,121	0,01	0,0005	2,947	2,29%	200,9	4,6	207	11	300	140	200,9	4,6
Zr-042	235	318	1,4	0,0509	0,006	0,22	0,03	0,0317	0,0015	0,021	0,01	0,0013	0,000	4,58%	201	9,2	201	22	210	220	201	9,2
Zr-022	138,1	140,1	1	0,0493	0,004	0,216	0,02	0,0319	0,0009	0,052	0,01	0,0006	-2,690	2,62%	202,3	5,3	197	14	120	170	202,3	5,3
Zr-019	155	184	1,2	0,0516	0,004	0,221	0,02	0,0319	0,0008	0,101	0,01	0,0005	-0,746	2,52%	202,5	5,1	201	14	210	170	202,5	5,1
Zr-036	104,3	71,1	0,7	0,0515	0,005	0,233	0,02	0,032	0,001	0,194	0,012	0,0008	3,744	2,95%	203,1	6	211	18	220	210	203,1	6
Zr-026	183,5	355	1,9	0,0536	0,005	0,229	0,02	0,0321	0,0007	0,081	0,01	0,0005	2,679	2,11%	203,4	4,3	209	15	290	180	203,4	4,3
Zr-035	195,5	257,1	1,3	0,0517	0,003	0,229	0,01	0,0322	0,0008	0,258	0,01	0,0005	2,810	2,50%	204,1	5,1	210	11	260	130	204,1	5,1
Zr-024	154,7	147	1	0,0507	0,004	0,224	0,02	0,0323	0,0009	0,131	0,011	0,0007	0,631	2,69%	204,7	5,5	206	12	220	170	204,7	5,5
Zr-027	130,6	176	1,3	0,0486	0,004	0,212	0,02	0,0324	0,001	0,013	0,01	0,0006	-5,773	2,92%	205,2	6	194	14	120	180	205,2	6
Zr-040	105,2	64,8	0,6	0,0563	0,005	0,263	0,02	0,0336	0,0009	0,01	0,012	0,0008	9,873	2,73%	212,7	5,8	236	19	410	190	212,7	5,8
Zr-030	77	122	1,6	0,051	0,005	0,252	0,03	0,0365	0,0013	0,049	0,015	0,0009	-2,622	3,42%	230,9	7,9	225	20	150	200	230,9	7,9

Zr	Relación final 207Pb/235U	Error interno relación final ²⁰⁷ Pb/ ²³⁵ U a 2	Relación final 206Pb/238U	Error interno relación final ²⁰⁶ Pb/ ²³⁵ U a 2 D E	Ajuste error de correlación (datos	Error de correlación ²⁰⁶ Pb/ ²³⁸ U vs. ²⁰⁷ Pb/ ²³⁵ U	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	% disc	Edad corregida 206Pb/238U (Ma)	± Error edad corregida (Ma)	Error	Aproximación ²³⁸ U (ppm)	Th/U
Zr-4	0,415	0,022	0,032	0,00053	0,10722	0,107	352	83,579	191,743	7,319	3,817	335,8	1,552
Zr-22	0,369	0,03	0,03241	0,00081	0,1	-0,023	318	61,289	197,161	8,299	4,209	121,6	0,939
Zr-28	0,229	0,019	0,02893	0,00076	0,1	-0,018	217	19,282	181,921	7,299	4,012	244	1,914
Zr-6	0,243	0,018	0,03095	0,00048	0,029091	0,029	219	12,483	194,696	6,610	3,395	315	0,733
Zr-7	0,229	0,014	0,02964	0,0006	0,25141	0,251	209	11,919	186,742	6,664	3,569	415	1,313
Zr-26	0,233	0,015	0,03008	0,00048	0,040081	0,040	211	11,186	189,772	6,392	3,368	191,6	1,279
Zr-30	0,2383	0,006	0,03107	0,00033	0,28881	0,289	217,3	10,822	196,079	6,075	3,098	1.581	2,549
Zr-33	0,206	0,013	0,02918	0,00044	0,1	-0,010	191	3,090	185,275	6,036	3,258	259	1,425
Zr-1	0,1942	0,0077	0,02951	0,00046	0,14735	0,147	180,7	-3,884	188,002	6,118	3,254	988	1,180
Zr-23	0,203	0,0071	0,02966	0,00027	0,18995	0,190	187,8	-0,423	188,597	5,710	3,028	582	1,120
Zr-27	0,217	0,013	0,02996	0,00046	0,042252	0,042	197	3,715	189,944	6,289	3,311	218,7	1,582
Zr-20	0,2181	0,0091	0,03035	0,00037	0,40463	0,405	199,7	3,863	192,273	6,101	3,173	635	2,819
Zr-18	0,207	0,015	0,03025	0,00048	0,078746	0,079	190	-1,215	192,336	6,355	3,304	173,3	0,910
Zr-9	0,205	0,016	0,03055	0,0006	0,18016	0,180	195	0,524	193,984	6,658	3,432	147	1,388
Zr-13	0,2157	0,0096	0,03064	0,00037	0,11466	0,115	198,3	2,105	194,212	6,110	3,146	705	2,369
Zr-32	0,2132	0,0095	0,03066	0,00038	0,070827	0,071	195,5	0,436	194,652	6,161	3,165	493	1,929
Zr-21	0,232	0,014	0,03092	0,00048	0,29584	0,296	210	7,507	195,337	6,453	3,303	207	1,111
Zr-19	0,198	0,015	0,03095	0,00048	0,1	-0,017	183	-7,341	197,498	6,469	3,275	168,2	1,435
Zr-16	0,232	0,016	0,03136	0,0006	0,19326	0,193	214	8,073	198,015	6,712	3,389	114,8	1,890
Zr-14	0,208	0,0096	0,03114	0,00046	0,080814	0,081	192,4	-2,942	198,233	6,391	3,224	360	1,767
Zr-38	0,2182	0,0076	0,03125	0,00033	0,1747	0,175	200,8	1,243	198,336	6,105	3,078	850	1,247
Zr-37	0,216	0,0078	0,03124	0,00031	0,1054	0,105	199,3	0,419	198,469	6,034	3,040	715	0,636
Zr-15	0,2361	0,0077	0,0315	0,00056	0,40221	0,402	214,3	7,950	198,518	6,677	3,364	1.290	2,457
Zr-12	0,2177	0,0092	0,03134	0,00034	0,1238	0,124	199,9	0,552	198,802	6,113	3,075	428	1,150
Zr-36	0,239	0,01	0,03155	0,00046	0,3109	0,311	217,7	9,313	199,153	6,504	3,266	651	0,556
Zr-11	0,2112	0,0072	0,03147	0,00044	0,22741	0,227	196	-1,922	199,842	6,399	3,202	1.630	1,196
Zr-24	0,2267	0,0072	0,03161	0,00033	0,21961	0,220	206,7	3,298	200,100	6,184	3,091	693	1,486
Zr-3	0,2165	0,0079	0,03165	0,00035	0,41338	0,413	198	-1,369	200,749	6,228	3,102	878	0,772
Zr-35	0,2283	0,0086	0,03182	0,00035	0,15201	0,152	209,1	3,725	201,591	6,243	3,097	746	1,165
Zr-17	0,205	0,014	0,03162	0,0005	0,022745	0,023	187	-7,244	201,605	6,596	3,272	163,6	1,346
Zr-34	0,225	0,016	0,03199	0,00053	0,16757	0,168	205	1,106	202,758	6,704	3,307	200	1,370
Zr-10	0,2141	0,0087	0,03193	0,00048	0,061266	0,061	196,3	-3,305	203,009	6,585	3,244	443	0,837
Zr-29	0,222	0,012	0,0325	0,00045	0,12248	0,122	206	-0,226	206,467	6,609	3,201	318	1,189
Zr-25	0,58	0,022	0,0726	0,0012	0,53091	0,531	462	2,432	451,029	14,998	3,325	396,8	0,110
Zr-31	1,455	0,03	0,1465	0,0021	0,56489	0,565	910	3,650	877,951	28,822	3,283	421,9	0,293
Zr-2	1,768	0,037	0,1677	0,0017	0,5154	0,515	1.036	4,288	993,407	31,254	3,146	531	0,046
Zr-8	1,879	0,042	0,175	0,0019	0,23974	0,240	1.073	3,650	1.035,214	32,979	3,186	278	0,190
Zr-5	2,05	0,043	0,194	0,0018	0,33612	0,336	1.133	-0,904	1.143,332	36,040	3,152	290	0,282

GZ-6848A, análisis isotópicos U-Pb en circón

JGB-642, análisis isotópicos U-Pb en circón

Zr	U (ppm)1	Th (ppm)1	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	± 2s abs	²⁰⁷ Pb/ ²³⁵ U	± 2s abs	²⁰⁶ Pb/ ²³⁸ U	± 2s abs	Correlación de errores	²⁰⁸ Pb/ ²³² Th	± 2s abs	Disc %	Error	²⁰⁶ Pb/ ²³⁸ U	± 2s	²⁰⁷ Pb/ ²³⁵ U	± 2s	²⁰⁷ Pb/ ²⁰⁶ Pb	± 2s	Mejor edad (Ma)	± 2s
Zr-058	110	186	1,69	0,0970	0,0130	0,4480	0,0610	0,0330	0,0010	0,43	0,0128	0,0008	43,82	16,55	209,0	5,9	372,0	42,0	1.450,0	240	1.450,0	240,0
Zr-067	102	136	1,33	0,0813	0,0063	0,3530	0,0320	0,0308	0,0011	0,51	0,0121	0,0008	36,90	3,43	195,6	6,7	310,0	23,0	1.240,0	110	195,6	6,7
Zr-047	71	75	1,06	0,0683	0,0089	0,2870	0,0380	0,0316	0,0013	0,12	0,0120	0,0009	22,21	3,94	200,7	7,9	258,0	29,0	970,0	140	200,7	7,9
Zr-040	33	44	1,33	0,0650	0,0098	0,2840	0,0380	0,0308	0,0017	0,18	0,0112	0,0009	21,29	5,10	196,0	10,0	249,0	30,0	840,0	130	196,0	10,0
Zr-057	207	170	0,82	0,0620	0,0044	0,2510	0,0180	0,0291	0,0006	0,34	0,0100	0,0005	18,32	2,06	184,6	3,8	226,0	14,0	690,0	77	184,6	3,8
Zr-069	222	449	2,02	0,0471	0,0034	0,2010	0,0140	0,0309	0,0006	0,09	0,0100	0,0004	-6,11	1,94	196,3	3,8	185,0	11,0	323,0	78	196,3	3,8
Zr-068	115	147	1,28	0,0466	0,0037	0,2150	0,0160	0,0336	0,0008	0,13	0,0101	0,0005	-8,17	2,35	213,1	5,0	197,0	14,0	221,0	68	213,1	5,0
Zr-041	111	113	1,02	0,0430	0,0037	0,1970	0,0170	0,0327	0,0009	0,13	0,0104	0,0005	12,83	2,79	207,6	5,8	184,0	14,0	304,0	95	207,6	5,8
Zr-070	206	351	1,70	0,0519	0,0034	0,2170	0,0120	0,0296	0,0007	0,05	0,0089	0,0004	5,63	2,24	187,8	4,2	199,0	10,0	355,0	68	187,8	4,2
Zr-056	241	397	1,65	0,0494	0,0026	0,2161	0,0095	0,0303	0,0006	0,03	0,0096	0,0004	2,98	1,98	192,2	3,8	198,1	7,9	382,0	56	192,2	3,8
Zr-039	184	587	3,19	0,0508	0,0037	0,2160	0,0160	0,0303	0,0007	0,16	0,0100	0,0004	4,28	2,13	192,4	4,1	201,0	13,0	360,0	77	192,4	4,1
Zr-048	279	436	1,56	0,0500	0,0036	0,2150	0,0140	0,0305	0,0006	0,07	0,0094	0,0004	2,07	1,81	193,9	3,5	198,0	11,0	304,0	64	193,9	3,5
Zr-038	131	266	2,03	0,0477	0,0042	0,2050	0,0160	0,0306	0,0008	0,05	0,0098	0,0004	-3,46	2,52	194,5	4,9	188,0	14,0	346,0	83	194,5	4,9
Zr-065	348	834	2,40	0,0495	0,0024	0,2083	0,0090	0,0307	0,0006	0,10	0,0095	0,0003	-0,88	1,80	194,7	3,5	193,0	7,5	291,0	77	194,7	3,5
Zr-060	273	858	3,14	0,0517	0,0030	0,2210	0,0120	0,0308	0,0006	0,04	0,0092	0,0003	4,73	2,00	195,3	3,9	205,0	10,0	388,0	74	195,3	3,9
Zr-042	413	257	0,62	0,0495	0,0024	0,2110	0,0098	0,0308	0,0005	0,04	0,0097	0,0004	-0,62	1,64	195,3	3,2	194,1	8,0	236,0	52	195,3	3,2
Zr-061	150	235	1,57	0,0517	0,0041	0,2170	0,0160	0,0309	0,0008	0,12	0,0094	0,0004	0,91	2,45	196,2	4,8	198,0	13,0	412,0	88	196,2	4,8
Zr-055	140	258	1,84	0,0509	0,0038	0,2190	0,0160	0,0310	0,0007	0,34	0,0099	0,0004	1,60	2,18	196,8	4,3	200,0	13,0	358,0	69	196,8	4,3
Zr-063	106	114	1,08	0,0480	0,0037	0,2070	0,0150	0,0311	0,0008	0,05	0,0098	0,0005	-3,89	2,43	197,4	4,8	190,0	12,0	381,0	49	197,4	4,8
Zr-044	91	96	1,05	0,0509	0,0046	0,2190	0,0170	0,0311	0,0010	0,18	0,0093	0,0005	2,61	2,98	197,7	5,9	203,0	14,0	414,0	98	197,7	5,9
Zr-046	107	121	1,13	0,0528	0,0047	0,2190	0,0180	0,0312	0,0009	0,02	0,0100	0,0005	1,98	2,78	198,0	5,5	202,0	15,0	493,0	94	198,0	5,5
Zr-066	616	809	1,31	0,0503	0,0019	0,2161	0,0063	0,0312	0,0005	0,18	0,0097	0,0003	0,15	1,51	198,3	3,0	198,6	5,2	231,0	48	198,3	3,0
Zr-053	167	331	1,98	0,0489	0,0035	0,2120	0,0130	0,0312	0,0008	0,23	0,0100	0,0004	-1,69	2,47	198,3	4,9	195,0	11,0	267,0	60	198,3	4,9
Zr-050	154	196	1,27	0,0498	0,0032	0,2150	0,0140	0,0313	0,0007	0,11	0,0100	0,0005	-0,76	2,12	198,5	4,2	197,0	12,0	339,0	82	198,5	4,2
Zr-036	127	166	1,31	0,0549	0,0040	0,2370	0,0170	0,0313	0,0009	0,09	0,0101	0,0004	7,53	2,72	198,8	5,4	215,0	14,0	511,0	69	198,8	5,4
Zr-059	1.021	742	0,73	0,0494	0,0017	0,2147	0,0061	0,0314	0,0005	0,04	0,0096	0,0003	-0,91	1,56	199,2	3,1	197,4	5,1	190,0	50	199,2	3,1
Zr-054	345	528	1,53	0,0496	0,0025	0,2131	0,0097	0,0313	0,0008	0,09	0,0101	0,0004	-1,79	2,51	199,3	5,0	195,8	8,1	230,0	55	199,3	5,0
Zr-049	146	225	1,54	0,0508	0,0033	0,2240	0,0130	0,0316	0,0008	0,15	0,0095	0,0004	1,81	2,50	200,3	5,0	204,0	11,0	311,0	57	200,3	5,0
Zr-045	159	230	1,45	0,0506	0,0040	0,2190	0,0160	0,0314	0,0007	0,08	0,0102	0,0004	-0,15	2,15	200,3	4,3	200,0	13,0	386,0	70	200,3	4,3
Zr-037	327	732	2,24	0,0496	0,0031	0,2150	0,0120	0,0316	0,0007	0,07	0,0098	0,0004	-1,62	2,00	200,4	4,0	197,2	9,8	377,0	88	200,4	4,0
Zr-051	156	252	1,62	0,0487	0,0037	0,2160	0,0150	0,0317	0,0007	0,08	0,0098	0,0004	-1,46	2,14	200,9	4,3	198,0	12,0	306,0	64	200,9	4,3
Zr-043	243	270	1,11	0,0529	0,0027	0,2324	0,0099	0,0320	0,0008	0,03	0,0105	0,0004	4,16	2,41	202,9	4,9	211,7	8,1	354,0	65	202,9	4,9
Zr-064	53	66	1,25	0,0539	0,0057	0,2340	0,0230	0,0323	0,0012	0,14	0,0102	0,0006	4,25	3,71	204,9	7,6	214,0	20,0	557,0	97	204,9	7,6
Zr-062	151	211	1,40	0,0518	0,0037	0,2330	0,0150	0,0323	0,0007	0,18	0,0105	0,0005	3,30	2,24	205,0	4,6	212,0	12,0	358,0	69	205,0	4,6
Zr-052	54	96	1,78	0,0491	0,0058	0,2200	0,0290	0,0324	0,0016	0,24	0,0101	0,0006	-3,32	4,72	205,6	9,7	199,0	23,0	478,0	93	205,6	9,7

Error interno Error interno Aiuste erro Error de Edad 207Pb/ Relación Relación final Relación final relación final relación final de correlación correlación % Edad corregida ± Error edad % de Edad corregida 7r Th/U final 207Pb/235U 207Pb/235U a 2 206Pb/ 238U ²⁰⁶Pb/²³⁸U a 2 (datos ⁰⁶Pb/²³⁸U vs disco 206Pb/238U (Ma) corregida (Ma) error? 206Pb/238U (Ma) 235U (Ma) 238U/232Th 207Pb/235U D. E. D.E negativos 1 14 02 0,74 0,17 0.01 0.50 0.50 2.744.00 651.46 365.16 54 59 14.95 1.37 365.16 0.73 10 0,04 1,10 0,10 0,00 0,20 0,20 711,00 206,22 232,18 11,02 4,75 1,09 232,18 0,92 73 0,04 0,00 0,84 2,83 0,80 0,08 0,84 562,00 170,17 208,02 8,75 4,21 0,35 208,02 58 0.50 0.08 0.04 0.00 0.11 0.11 427.00 109.48 203.83 11.50 5.64 1.04 203.83 0.96 16 0.80 0,15 0,04 0,00 0,23 0,23 468.00 92.07 15,48 6.35 1,71 243,66 0.58 243,66 13 0,10 0,00 12,98 0,59 0,11 0,04 0,00 391,00 78,29 219,30 5,92 0,64 219,30 1,57 59 0.47 0.07 0.04 0.00 0.10 -0.04 359.00 71.38 209.48 10.47 5.00 0.62 209.48 1.61 50 0.36 0.07 0.03 0.00 0.10 -0.05 313.00 58.30 197,73 10,64 5.38 1.25 197,73 0.80 32 0,38 0,08 0,03 0,00 0,18 0,18 326,00 57,79 206,61 12,93 6,26 0,66 206,61 1,51 56 0,77 0,39 0,08 0,04 0,00 0,15 0,15 340,00 57,53 215,83 11,40 5,28 1,30 215,83 26 0.31 0.11 0.04 0.00 0.01 0.01 337.00 57.04 214.60 17.53 8.17 0.78 214.60 1.28 31 0.52 0.08 0.04 0.00 0,01 0.01 409.00 56.97 260.56 12,33 4,73 1.31 260.56 0.76 4,74 76 0.41 0.04 0.04 0.00 0.10 -0.02 341.00 50.98 225.86 10.70 3.09 225.86 0.32 64 0.40 0.04 0.04 0.00 0.05 0.05 337.00 48.81 226.46 8.28 3.65 0.80 226.46 1.25 18 0,44 0,08 0,04 0,00 0,10 -0.04 332,00 41.76 234,20 12.17 5,20 1,25 234.20 0,80 27 0,40 0,03 0,04 0,00 0,57 0,57 336,00 38,47 242,65 11,69 4,82 7,77 242,65 0,13 33 0.31 0.05 0.03 0.00 0.10 -0.02 279.00 32.44 210.66 9 24 4.39 0.76 210.66 1.31 51 0.34 0.06 0.04 0.00 0.03 0.03 283.00 30.85 216.28 10.13 4.68 1.41 216.28 0 71 53 0.28 0.04 0.03 0.00 0.10 -0.03 253.00 24.83 202.67 7.82 3.86 0.57 202.67 1.75 36 0.27 0.05 0.03 0.00 0.00 0.00 255.00 23.51 9.26 4.48 0.73 1.36 206.46 206.46 12 0 33 0.05 0.04 0.00 0.18 0.18 269.00 22 40 219.78 a 20 4.19 0.63 219.78 1.59 72 0,31 0,05 0,03 0,00 0,16 0,16 248,00 19,71 207,17 8,49 4,10 0,80 207,17 1,26 15 0.21 0.30 0.03 0.04 0.00 0.21 0.21 265.00 19.67 221.44 8.23 3.72 4.78 221.44 71 0.32 0.03 0.04 0.00 0.26 0.26 278.00 19 14 233 33 10.08 4.32 3.04 233.33 0.33 68 0.53 0,06 0.06 0,00 0,70 0,70 421.00 17,70 357,70 18.45 5,16 51,22 357,70 0.02 29 0,10 8,40 3,88 1,27 0,29 0,04 0,03 0,00 -0.05 254,00 17,46 216,25 216,25 0,78 0.03 0.20 10.16 4.58 85 0.29 0.04 0.00 0.20 259.00 16.69 221.96 4.94 221.96 0.20 60 0.38 0.03 0,04 0.00 0.30 0.30 322.00 16.53 276.32 13.06 4,73 2.80 276.32 0,36 61 0,27 0,04 0,03 0,00 0,03 0,03 241,00 16.48 206,91 8,51 4,11 0,94 206,91 1,07 11 0.09 0.03 0.00 0.04 0.04 248.00 15.77 214.23 6.26 0.63 1.59 0.26 13.42 214.23 24 0 27 0.12 0.04 0.00 0.16 0 16 258.00 15.08 224 19 15.38 6 86 0.55 224 19 1 82 20 0,21 0,11 0,03 0,00 0,12 0,12 174,00 -12,67 199,25 29,70 14,91 0,72 199,25 1,38 7 0,12 0,04 0,09 0,09 217,00 5,32 206,04 17,81 8,64 0,61 206,04 1,64 0,29 0,00 9 0.27 0.08 0.03 0.00 0.04 0.04 212.00 2.90 206.03 13.09 6.35 0.57 206.03 1.76 47 0,20 0,08 0,03 0,00 0,18 0,18 163,00 -18,22 199,32 11.98 6,01 0,53 199,32 1,90 39 0,03 0,14 197,95 5,58 1,57 0,24 0,08 0,00 0,14 224,00 13,16 11,04 0,64 197,95 67 0.57 0.04 0.03 0.00 0.01 0.01 202.00 202.44 8.51 4.21 1.74 0.24 -0.22 202.44 63 0,22 0,06 0,03 0,00 0,07 0,07 198,00 -2,45 202,97 9,45 4,65 0,80 202,97 1,25 78 0,27 0,03 0,03 0,00 0,09 0,09 234,00 14,41 204,52 7,04 3,44 1,30 204,52 0,77 82 4,43 0,24 0,04 0,03 0,00 0,16 0,16 217,00 5,89 204,92 9,08 0,98 204,92 1,02 83 0.25 0.05 0,03 0.00 0.01 0.01 213.00 3.94 204.92 9.13 4.46 0.88 204 92 1,13 70 184,00 0,20 0,06 0,03 0,00 0,08 0,08 -10,40 205,35 10,83 5,27 0,67 205,35 1,49 17 0,05 0,03 0,00 0,01 1,05 0,26 0,01 226,00 9,62 206,16 9,31 4,52 0,95 206,16 84 0.23 0.04 0.03 0.00 0.03 0.03 191.00 -7.38 206.21 8.55 4,15 0.83 206.21 1.21 54 0,26 0,05 0,03 0,00 0,06 0,06 236,00 14,39 206,32 9,25 4,48 0,45 206,32 2,23 75 0,25 0,02 0,03 0,00 0,23 0,23 219,00 5,85 206,90 6,42 3,10 1,80 206,90 0,56 66 0.24 0.02 0.03 0.00 0.31 0.31 211.00 1.90 207.07 6.25 3.02 1.11 207.07 0.90 48 0.24 0.02 0.03 0.00 0.04 0.04 220.00 6.20 207.16 6.39 3.08 1 46 207 16 0.68 41 0,26 0,03 0,03 0,00 0,01 0,01 225,00 8,54 7,08 3,42 0,65 1,54 207,30 207,30 77 0,03 0,00 0,07 0,07 1,16 0,86 0,23 0,02 206,00 -0,70 207,46 7,06 3,40 207,46 80 0,25 0,05 0,03 0.00 0.06 0,06 213,00 2,24 208.34 9.20 4,42 0,96 208.34 1.04 49 0,26 0,03 0,10 -0,04 4,51 1,52 0,06 0,00 225,00 7,79 208,74 9,40 0,66 208,74

MIA-648B, análisis isotópicos U-Pb en circón

22

0,24

0,03

0,03

0,00

0,15

0,15

210,00

0,55

208,85

7,08

3,39

0,44

208,85

2,30

Zr	Relación final 207Pb/235U	Error interno relación final ²⁰⁷ Pb/ ²³⁵ U a 2 D. E.	Relación final 206Pb/ 238U	Error interno relación final ²⁰⁶ Pb/ ²³⁸ U a 2 D. E.	Ajuste error de correlación (datos negativos)	Error de correlación ²⁰⁶ Pb/ ²³⁸ U vs. ²⁰⁷ Pb/ ²³⁵ U	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	% disco	Edad corregida 206Pb/238U (Ma)	± Error edad corregida (Ma)	% de error?	Relación final ²³⁸ U/ ²³² Th	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	Th/U
2	0,23	0,06	0,03	0,00	0,07	0,07	231,00	9,14	211,65	11,48	5,42	0,87	211,65	1,15
45	0,28	0,03	0,03	0,00	0,15	0,15	243,00	14,71	211,83	7,01	3,31	0,57	211,83	1,75
52	0,22	0,02	0,03	0,00	0,06	0,06	195,00	-8,47	213,05	7,03	3,30	1,11	213,05	0,90
25	0,24	0,05	0,03	0,00	0,08	0,08	234,00	9,19	214,31	9,44	4,40	0,68	214,31	1,47
42	0,20	0,02	0,03	0,00	0,11	0,11	185,00	-14,55	216,50	7,72	3,57	1,65	216,50	0,61
28	0,31	0,09	0,03	0,00	0,03	0,03	192,00	-11,71	217,47	11,95	5,49	0,84	217,47	1,19
14	0,26	0,05	0,03	0,00	0,13	0,13	222,00	1,93	217,79	9,80	4,50	0,79	217,79	1,26
81	0,28	0,06	0,03	0,00	0,14	0,14	231,00	5,99	217,94	9,37	4,30	1,43	217,94	0,70
74	0,26	0,02	0,03	0,00	0,05	0,05	222,00	1,84	217,99	6,39	2,93	1,09	217,99	0,92
62	0,24	0,02	0,03	0,00	0,15	0,15	215,00	-1,63	218,56	6,39	2,92	1,03	218,56	0,97
21	0,28	0,03	0,03	0,00	0,17	0,17	249,00	13,41	219,56	7,71	3,51	0,93	219,56	1,08
35	0,25	0,03	0,03	0,00	0,15	0,15	220,00	0,07	219,85	8,36	3,80	0,92	219,85	1,08
23	0,32	0,05	0,04	0,00	0,05	0,05	225,00	1,95	220,70	7,99	3,62	0,56	220,70	1,80
79	0,27	0,03	0,03	0,00	0,05	0,05	232,00	4,88	221,20	7,70	3,48	1,32	221,20	0,76
57	0,24	0,03	0,03	0,00	0,20	0,20	218,00	-1,45	221,21	7,76	3,51	0,62	221,21	1,61
3	0,27	0,02	0,04	0,00	0,27	0,27	241,00	7,67	223,84	8,84	3,95	13,12	223,84	0,08
38	0,29	0,05	0,04	0,00	0,19	0,19	253,00	12,84	224,22	9,12	4,07	1,40	224,22	0,71
44	0,24	0,02	0,04	0,00	0,09	0,09	224,00	-0,18	224,41	6,98	3,11	0,74	224,41	1,35
6	0,26	0,04	0,04	0,00	0,19	0,19	229,00	1,75	225,06	9,08	4,04	0,44	225,06	2,28
46	0,29	0,05	0,04	0,00	0,05	0,05	255,00	13,09	225,48	9,27	4,11	0,61	225,48	1,65
43	0,28	0,04	0,04	0,00	0,06	0,06	249,00	9,77	226,84	9,09	4,01	1,50	226,84	0,67
30	0,27	0,02	0,04	0,00	0,31	0,31	240,00	5,73	226,99	7,59	3,34	1,38	226,99	0,73
65	0,24	0,01	0,04	0,00	0,27	0,27	216,00	-5,06	227,52	6,35	2,79	0,54	227,52	1,84
19	0,28	0,09	0,04	0,00	0,10	-0,06	207,00	-13,03	238,02	13,33	5,60	1,05	238,02	0,95
37	0,29	0,03	0,04	0,00	0,20	0,20	257,00	7,77	238,46	10,71	4,49	2,56	238,46	0,39
34	0,31	0,05	0,04	0,00	0,01	0,01	253,00	3,99	243,30	9,19	3,78	1,21	243,30	0,83
55	0,29	0,05	0,04	0,00	0,15	0,15	260,00	6,33	244,53	9,89	4,05	0,85	244,53	1,18
4	0,35	0,05	0,04	0,00	0,05	0,05	270,00	8,89	247,95	10,30	4,15	2,39	247,95	0,42
69	0,30	0,03	0,04	0,00	0,16	0,16	260,00	4,37	249,12	8,86	3,56	7,85	249,12	0,13
8	0,31	0,05	0,04	0,00	0,19	0,19	274,00	2,37	267,66	10,29	3,85	0,65	267,66	1,55
40	0,37	0,07	0,05	0,00	0,05	0,05	310,00	7,57	288,17	11,67	4,05	3,28	288,17	0,30
5	0,42	0,10	0,05	0,00	0,12	0,12	325,00	1,36	320,64	15,93	4,97	2,29	320,64	0,44

MIA-648A	análieie	ientó	nicos	II-Ph	en	circón
WIIA-040A,	anansis	13010	picos	0-F D	CII	CIICOII

Zr	Relación final 207Pb/235U	Error interno relación final ²⁰⁷ Pb/ ²³⁵ U a 2	- Relación final ²⁰⁶ Pb/ ²³⁸ U	Error interno relación final ²⁰⁶ Pb/ ²³⁵ U a 2 D E	Ajuste error de correlación (datos	Error de correlación ²⁰⁶ Pb/ ²³⁸ U vs. ²⁰⁷ Pb/ ²³⁵ U	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	% disc	Edad corregida 206Pb/238U (Ma)	± Error edad corregida (Ma)	Error	Aproximación 238U (ppm)	Th/U
Zr-36	0,694	0,036	0,03456	0,00056	0,65699	0,657	530	173,0	194,127	7,208	3,71	767	2,55
Zr-45	0,332	0,028	0,02989	0,00062	0,51654	0,517	281	53,8	182,717	6,426	3,52	313	1,98
Zr-19	0,275	0,016	0,03077	0,00044	0,32724	0,327	247	28,9	191,636	5,902	3,08	343	1,19
Zr-46	0,284	0,024	0,03072	0,00066	0,60041	0,600	246	28,8	190,964	6,425	3,36	417	0,62
Zr-6	0,286	0,032	0,03101	0,00067	0,571	0,571	242	25,2	193,361	7,095	3,67	230,7	2,05
Zr-23	0,279	0,018	0.03186	0,00053	0,237	0,237	248	24,8	198,785	6,341	3,19	254	1,51
Zr-10	0,263	0,018	0,03109	0,00047	0,28041	0,280	231	18,7	194,565	6,045	3,11	263	0,99
Zr-1	0,263	0,024	0,03085	0,00061	0,41714	0.417	227	17,4	193.368	6.455	3,34	192	2,44
Zr-9	0,2271	0,0076	0,02982	0,00046	0,40393	0,404	207,4	10,1	188,312	5,812	3,09	707	0,81
Zr-47	0,2161	0,0099	0,02872	0,00037	0,25377	0,254	197,7	8,9	181,520	5,396	2,97	481	1,59
Zr-37	0,2119	0,0062	0,02877	0,00028	0,30878	0.309	195	7,1	182.105	5.195	2,85	850	2,06
Zr-25	0.201	0.011	0.02969	0.0005	0.11835	0.118	185.4	-1.8	188.857	5.975	3.16	250	1.59
Zr-27	0.206	0.014	0.02974	0.00051	0.13769	0.138	189	0.0	188.984	6.050	3.20	200.7	1.12
Zr-42	0.198	0.014	0.02991	0.00053	0.14238	0.142	182	-4.5	190.596	6.115	3.21	157.5	1.53
Zr-32	0.222	0.014	0.03018	0.00055	0.17942	0.179	202	5.8	190.873	6.164	3.23	199.1	1.33
Zr-11	0.206	0.018	0.03008	0.00059	0.23444	0.234	185	-3.1	191.005	6.391	3.35	126.3	0.83
Zr-28	0.215	0.015	0.03018	0.00054	0.086791	0.087	200	4.4	191.586	6.180	3.23	190	1.43
7r-22	0.212	0.01	0.03031	0.00045	0.14431	0.144	193.9	0.8	192.404	5,839	3.03	353	1.36
Zr-14	0.241	0.018	0.03065	0.00053	0.18821	0.188	210	8.9	192.923	6.240	3.23	210	1.60
Zr-33	0.205	0.015	0.03036	0.0006	0.059634	0.060	187	-3.1	192 981	6.430	3.33	336	1.66
Zr-16	0.214	0.014	0.03048	0.00056	0.043066	0.043	196	1.3	193 400	6 297	3.26	190	1.45
Zr-3	0.2106	0.0098	0.03049	0.00037	0.064632	0.065	191.6	-1.0	193.535	5.660	2.92	539	1.91
7r-29	0.2121	0.0099	0.03052	0.00041	0.098861	0.099	195.1	0.7	193 676	5 777	2.98	326	1 77
Zr-44	0.219	0.013	0.03064	0.00057	0.065436	0.065	201	3.6	194 044	6.348	3.27	173	1.24
Zr-30	0.229	0.024	0.03095	0.00079	0.1	-0.001	202	3.3	195 549	7 108	3.63	95.1	1 41
Zr-26	0.211	0.011	0.03081	0.00047	0 18079	0.181	193.2	_1.2	195.643	6.033	3.08	387	1.61
Zr-20	0.22	0.018	0.03098	0.00075	0 19287	0 193	200	1.9	196 297	7 054	3 59	143	1.46
Zr-43	0.221	0.014	0.031	0.00051	0.21576	0,130	200	24	196,301	6 233	3 18	175	1 47
Zr-17	0.211	0.013	0.03093	0.00048	0.099898	0.100	101	_2.8	196.446	6.050	3.08	197.9	1.63
Zr-40	0.215	0.017	0.03102	0.00062	0 19778	0.198	103	_2,0	196,890	6.442	3 27	121	0.88
Zr-4	0.216	0.011	0.03106	0.00047	0.1352	0.135	198.9	0.9	197 166	6.033	3.06	527	2 48
Zr-31	0.239	0.023	0.03126	0.00068	0.052165	0.052	210	6.5	197 168	7 088	3 59	120	0.85
Zr-39	0.219	0.017	0.03111	0.0008	0.14289	0.143	202	2.4	197,100	7,000	3.57	145	1.00
Zr-18	0.219	0.014	0.03127	0.00052	0,14200	0 107	202	1.0	198,092	6 293	3 18	193	1.49
Zr-21	0.236	0.015	0.0314	0.00057	0.05707	0.059	211	6.4	108.240	6.419	3.24	104	1.54
Z1-21	0.2286	0,013	0.03138	0.00046	0.27254	0,030	208.9	5.3	198,436	6.079	3.06	431	1 14
ZI-0	0.200	0.016	0.03119	0,00040	0.20001	0.201	197	5,5	109.495	6 260	3 15	130.2	1.40
7: 15	0,207	0,010	0.03141	0,00052	0.1	0.042	205	-3,0	109,400	6.405	3,13	147	1,40
7: 04	0.241	0,014	0.03141	0,00059	0,1	-0,045	200	0,2	200,950	7.021	3,23	101	1.41
7: 41	0,241	0,015	0,03107	0,00064	0.16464	-0,045	217	0,0	200,032	7,031	3,50	191	1.00
Z1-41	0.019	0,010	0.02000	0,00004	0.14799	0,103	201	_1 7	200,700	6 /17	3 1 4	171.0	0.87
Zr-13	0,218	0,013	0,03222	0,00056	0,14733	0,147	201	-1,7	204,454	5,000	3,14	171,8	0,87
7-7	0.240	0,0073	0.02264	0,00030	0.35119	0.351	200,4	6.1	204,009	0,009	2,07	950	1.04
Z(-/	0.000	0,0099	0.03204	0,00038	0.00070705	0,001	210,0	0,1	200,937	7,000	2,92	009	1,49
ZI-30	0.240	0.010	0.02207	0,0007	0.00550	0.001	210	4,U	200,792	6.425	3,40	174	1.23
7- 0	0.004	0.010	0.02207	0,00056	0.1	0,220	219	0,1	200,302	0,430	3,09	1/4	1.40
Z(-2	1 717	0,013	0.1717	0,00000	0.97005	-0,125	203	-4,1	1.001.070	0,439	3,04	430	0.40
∠r-5	1,/1/	0,058	U,1/1/	0,0046	0,87025	0,870	1011	-1,0	1.021,673	38,044	3,12	1190	0,48

MIA-650B, análisis isotópicos U-Pb en circón

Zr	U (ppm)1	Th (ppm)1	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	± 2s abs	²⁰⁷ Pb/ ²³⁵ U	± 2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Correlación de errores	²⁰⁸ Pb/ ²³² Th	± 2s abs	Disc.%	Error	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	± 2s	Mejor edad (Ma)	± 2s
Zr-025	72	74	1,03	0,0880	0,0260	0,3400	0,1900	0,0294	0,0026	-0,12	0,011	0,0042	37,58	0,09	186,0	16,0	298,0	98,0	1340,0	250,0	186,0	16,0
Zr-030	420	362	0,86	0,0589	0,0033	0,2260	0,0150	0,0279	0,0011	0,20	0,009	0,0005	13,98	0,04	177,2	7,4	206,0	13,0	520,0	120,0	177,2	7,4
Zr-032	323	335	1,04	0,0579	0,0042	0,2270	0,0170	0,0288	0,0009	0,14	0,01	0,0006	11,16	0,03	183,9	5,8	207,0	14,0	470,0	160,0	183,9	5,8
Zr-029	147	208	1,41	0,0554	0,0043	0,2070	0,0210	0,0271	0,0010	0,35	0,009	0,0006	11,13	0,03	172,4	6,0	194,0	17,0	500,0	140,0	172,4	6,0
Zr-003	986	1.210	1,23	0,0570	0,0041	0,2240	0,0160	0,0293	0,0009	0,21	0,009	0,0005	10,43	0,03	186,3	5,7	208,0	13,0	480,0	140,0	186,3	5,7
Zr-019	321	435	1,36	0,0540	0,0290	0,2100	0,1800	0,0295	0,0019	0,02	0,01	0,0034	6	0,06	188,0	12,0	200,0	110,0	290,0	400,0	188,0	12,0
Zr-009	1.050	166	0,16	0,0536	0,0055	0,1940	0,0270	0,0263	0,0010	0,17	0,009	0,0005	8,187	0,04	167,1	6,4	182,0	22,0	360,0	210,0	167,1	6,4
Zr-022	149	156	1,05	0,0563	0,0037	0,2050	0,0150	0,0271	0,0009	0,06	0,009	0,0005	8,191	0,03	172,6	5,7	188,0	13,0	440,0	140,0	172,6	5,7
Zr-017	409	910	2,22	0,0516	0,0028	0,1910	0,0110	0,0274	0,0008	0,15	0,009	0,0004	1,69	0,03	174,5	5,1	177,5	9,2	300,0	120,0	174,5	5,1
Zr-033	357	297	0,83	0,0515	0,0037	0,1970	0,0170	0,0279	0,0010	0,42	0,009	0,0006	2,418	0,03	177,6	6,0	182,0	14,0	240,0	130,0	177,6	6,0
Zr-020	590	1.050	1,78	0,0509	0,0022	0,1934	0,0075	0,0279	0,0007	0,25	0,009	0,0004	0,948	0,03	177,7	4,7	179,4	6,4	240,0	96,0	177,7	4,7
Zr-007	192	277	1,44	0,0515	0,0031	0,2010	0,0110	0,0287	0,0008	0,15	0,009	0,0004	1,938	0,03	182,2	5,0	185,8	9,6	250,0	130,0	182,2	5,0
Zr-004	269	343	1,28	0,0498	0,0016	0,1974	0,0066	0,0288	0,0007	0,07	0,009	0,0004	0	0,03	182,8	4,7	182,8	5,6	179,0	73,0	182,8	4,7
Zr-013	500	105	0,21	0,0518	0,0022	0,2050	0,0100	0,0289	0,0008	0,13	0,01	0,0004	2,909	0,03	183,6	5,2	189,1	8,5	257,0	95,0	183,6	5,2
Zr-002	720	1.610	2,24	0,0494	0,0017	0,1958	0,0072	0,0289	0,0008	0,19	0,009	0,0004	-1,16	0,03	183,6	4,8	181,5	6,1	161,0	78,0	183,6	4,8
Zr-015	429	640	1,49	0,0526	0,0045	0,2050	0,0200	0,0289	0,0011	0,09	0,009	0,0005	2,181	0,04	183,9	6,6	188,0	16,0	250,0	170,0	183,9	6,6
Zr-035	311	385	1,24	0,0506	0,0036	0,2000	0,0140	0,0290	0,0009	0,17	0,01	0,0005	-0,16	0,03	184,3	5,6	184,0	12,0	180,0	150,0	184,3	5,6
Zr-023	264	205	0,78	0,0510	0,0096	0,2040	0,0400	0,0291	0,0013	0,25	0,011	0,0012	-0,49	0,04	184,9	8,1	184,0	32,0	120,0	330,0	184,9	8,1
Zr-028	194	393	2,03	0,0503	0,0040	0,2040	0,0170	0,0291	0,0010	0,40	0,009	0,0005	1,016	0,03	185,1	6,1	187,0	14,0	270,0	150,0	185,1	6,1
Zr-018	274	349	1,27	0,0483	0,0026	0,1970	0,0100	0,0291	0,0008	0,04	0,01	0,0004	-0,43	0,03	185,1	5,2	184,3	9,2	130,0	110,0	185,1	5,2
Zr-016	156	179	1,15	0,0484	0,0023	0,1934	0,0097	0,0292	0,0008	0,16	0,009	0,0004	-2,66	0,03	185,4	5,2	180,6	8,3	120,0	100,0	185,4	5,2
Zr-014	784	880	1,12	0,0487	0,0025	0,1950	0,0110	0,0293	0,0008	0,10	0,009	0,0004	-2,99	0,03	186,1	5,3	180,7	9,1	120,0	110,0	186,1	5,3
Zr-001				0,0515	0,0020	0,2034	0,0084	0,0293	0,0008	0,14	0,009	0,0004	0,852	0,03	186,2	5,0	187,8	7,1	246,0	79,0	186,2	5,0
Zr-006	122	36,2	0,30	0,0516	0,0034	0,2060	0,0140	0,0293	0,0009	0,01	0,009	0,0004	1,947	0,03	186,3	5,4	190,0	11,0	250,0	140,0	186,3	5,4
Zr-011	279	15,1	0,05	0,0494	0,0035	0,2010	0,0140	0,0294	0,0009	0,06	0,01	0,0005	-0,86	0,03	186,6	5,6	185,0	12,0	170,0	150,0	186,6	5,6
Zr-027	115	47,3	0,41	0,0489	0,0040	0,1990	0,0150	0,0295	0,0009	0,24	0,009	0,0004	-1,68	0,03	187,1	5,9	184,0	13,0	160,0	170,0	187,1	5,9
Zr-024	76	63	0,83	0,0524	0,0057	0,2110	0,0250	0,0297	0,0012	0,09	0,011	0,0008	1,615	0,04	188,9	7,7	192,0	21,0	170,0	210,0	188,9	7,7
Zr-031	368	325	0,88	0,0495	0,0026	0,2034	0,0099	0,0300	0,0009	0,08	0,01	0,0004	-1,55	0,03	190,5	5,5	187,6	8,3	180,0	110,0	190,5	5,5
Zr-021	734	1.320	1,80	0,0513	0,0050	0,2140	0,0200	0,0303	0,0011	0,04	0,01	0,0005	2,879	0,04	192,3	7,0	198,0	17,0	240,0	200,0	192,3	7,0
Zr-034	506	415	0,82	0,0511	0,0036	0,2160	0,0150	0,0309	0,0009	0,14	0,011	0,0005	0,909	0,03	196,2	5,5	198,0	13,0	200,0	150,0	196,2	5,5
Zr-008	299	467	1,56	0,0522	0,0019	0,2250	0,0170	0,0329	0,0019	0,21	0,014	0,0012	-1,46	0,06	209,0	12,0	206,0	14,0	269,0	84,0	209,0	12,0
Zr-010	245	392	1,60	0,0701	0,0026	1,4300	0,0550	0,1503	0,0040	0,06	0,049	0,0039	0,221	0,08	903,0	22,0	905,0	22,0	924,0	72,0	924,0	72,0
Zr-026	221	244	1,10	0,0706	0,0029	1,5550	0,0660	0,1606	0,0046	0,08	0,046	0,0022	-1,05	0,1	960,0	25,0	950,0	26,0	934,0	89,0	934,0	89,0
Zr-012	261	305	1,17	0,0728	0,0019	1,4130	0,0480	0,1416	0,0044	0,22	0,024	0,0012	4,474	0,06	854,0	25,0	894,0	21,0	1.005,0	56,0	1.005,0	56,0
Zr-005	1.390	1.850	1,33	0,0931	0,0028	2,9940	0,0990	0,2340	0,0061	0,50	0,073	0,0032	3,559	0,04	1.355,0	32,0	1.405,0	26,0	1.485,0	57,0	1.485,0	57,0

Zr	Relación final ²⁰⁷ Pb/ ²³⁵ U	Error Interno relación final ²⁰⁷ Pb/ ²³⁵ U a 2 D. E.	Relación final 206Pb/238U	Error Interno relación final ²⁰⁶ Pb/ ²³⁵ U a 2 D. E.	Ajuste error de correlación (datos negativos)	Error de correlación ²⁰⁶ Pb/ ²³⁸ U vs. ²⁰⁷ Pb/ ²³⁵ U	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	% disc	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	± Error edad corregida (Ma)	Aproximación ²³⁸ U (ppm)	Th/U
Zr-17	0,2191	0,0074	0,02773	0,00043	0,38632	0,386	174,638	200,8	15	174,638	4,700	886	2,28
Zr-5	0,218	0,013	0,02854	0,00056	0,1	-0,029	180,032	199	10,5	180,032	5,313	560	2,107
Zr-38	0,1969	0,0042	0,02744	0,00026	0,26453	0,265	173,999	182,5	4,89	173,999	4,156	1.443	2,814
Zr-11	0,206	0,01	0,02776	0,00057	0,38805	0,388	175,813	190,5	8,35	175,813	5,301	579	1,15
Zr-30	0,1982	0,0068	0,02791	0,00028	0,24034	0,240	177,195	183,3	3,45	177,195	4,234	1.134	1,693
Zr-29	0,2021	0,0044	0,02828	0,00039	0,36701	0,367	179,545	186,6	3,93	179,545	4,663	1.618	1,65
Zr-16	0,2073	0,0069	0,02855	0,00038	0,28724	0,287	180,928	190,9	5,51	180,928	4,602	1.107	2,43
Zr-41	0,2026	0,0077	0,02865	0,00035	0,25422	0,254	181,760	187,1	2,94	181,760	4,548	729	1,044
Zr-20	0,2054	0,0045	0,02875	0,00031	0,35795	0,358	182,388	189,3	3,79	182,388	4,408	1.715	3,621
Zr-40	0,2175	0,0053	0,02893	0,00028	0,35183	0,352	182,926	199,8	9,22	182,926	4,395	1.330	3,038
Zr-26	0,2084	0,0056	0,02887	0,00042	0,48103	0,481	183,142	192,5	5,11	183,142	4,786	1.830	2,311
Zr-12	0,2071	0,0077	0,02888	0,00036	0,19569	0,196	183,160	191,2	4,39	183,160	4,607	878	3,61
Zr-42	0,2008	0,0039	0,02889	0,00037	0,56163	0,562	183,514	185,9	1,3	183,514	4,662	3.700	4,351
Zr-25	0,2102	0,0074	0,02898	0,0004	0,18045	0,180	183,742	192,8	4,93	183,742	4,731	617	1,579
Zr-32	0,2055	0,0045	0,02901	0,00031	0,51812	0,518	184,137	189,4	2,86	184,137	4,472	2.024	2,451
Zr-39	0,2074	0,0064	0,02905	0,00035	0,21645	0,216	184,205	190,7	3,53	184,205	4,604	699	1,398
Zr-24	0,2066	0,0046	0,02909	0,00035	0,44214	0,442	184,548	190,3	3,12	184,548	4,595	2.063	3,34
Zr-23	0,2073	0,0091	0,02914	0,00041	0,048993	0,049	185,023	191,9	3,72	185,023	4,807	361	1,042
Zr-35	0,2129	0,008	0,02923	0,00042	0,27071	0,271	185,174	195,5	5,58	185,174	4,854	554	0,782
Zr-21	0,2043	0,0055	0,02917	0,00031	0,1737	0,174	185,212	189	2,05	185,212	4,479	1163	2,387
Zr-27	0,2212	0,0065	0,02955	0,00064	0,30078	0,301	186,926	202,6	8,39	186,926	5,780	761	0,942
Zr-33	0,2132	0,0041	0,0296	0,00027	0,41021	0,410	187,599	196,5	4,74	187,599	4,463	2.590	2,911
Zr-14	0,2088	0,005	0,02968	0,0003	0,26359	0,264	188,349	193,2	2,58	188,349	4,536	1.890	3,704
Zr-36	0,2073	0,0053	0,02971	0,0003	0,31284	0,313	188,702	191,2	1,32	188,702	4,540	1.108	1,147
Zr-18	0,2129	0,0076	0,02981	0,00066	0,62333	0,623	189,049	195	3,15	189,049	5,854	1.264	2,619
Zr-1	0,2095	0,006	0,02992	0,00041	0,51135	0,511	189,975	192,6	1,38	189,975	4,916	1.500	3,273
Zr-43	0,2119	0,0086	0,03	0,00046	0,37041	0,370	190,218	194	1,99	190,218	5,111	497	1,095
Zr-13	0,2196	0,0071	0,03006	0,0004	0,23161	0,232	190,335	201	5,6	190,335	4,847	986	1,593
Zr-15	0,2137	0,0052	0,03012	0,00029	0,48635	0,486	191,114	196,3	2,71	191,114	4,532	2.350	4,179
Zr-19	0,2132	0,0049	0,03023	0,00038	0,47831	0,478	191,758	196,5	2,47	191,758	4,844	2.019	3,388
Zr-28	0,217	0,0059	0,03033	0,00036	0,25737	0,257	192,458	199,7	3,76	192,458	4,787	1.021	1,528
Zr-22	0,219	0,01	0,03038	0,00048	0,040979	0,041	192,509	200,3	4,05	192,509	5,183	254	1,224
Zr-6	0,217	0,011	0,0305	0,00047	0,24837	0,248	193,454	198,5	2,61	193,454	5,185	499	1,84
Zr-31	0,2183	0,0058	0,03053	0,00035	0,43526	0,435	193,522	200	3,35	193,522	4,781	1.500	1,793
Zr-2	0,2163	0,0075	0,03087	0,00037	0,28212	0,282	196,118	198,9	1,42	196,118	4,924	833	2,101
Zr-4	0,2251	0,0075	0,03102	0,00036	0,24619	0,246	196,182	205,8	4,9	196,182	4,842	868	3,214
Zr-34	0,212	0,011	0,03098	0,00042	0,045883	0,046	197,054	193,7	-1,7	197,054	5,081	417	0,851
Zr-7	0,2185	0,0046	0,03142	0,00041	0,60391	0,604	199,426	200,7	0,64	199,426	5,095	3.960	7,197
Zr-3	0,2276	0,0046	0,03147	0,00032	0,33236	0,332	199,443	208,2	4,39	199,443	4,776	2.039	3,462
Zr-9	0,2237	0,0054	0,03172	0,00037	0,38438	0,384	201,139	204,5	1,67	201,139	4,968	1.880	3,138
Zr-37	0,2303	0,0098	0,03186	0,00053	0,25233	0,252	201,867	208,9	3,48	201,867	5,546	521	1,027
Zr-8	0,229	0,01	0,03221	0,00058	0,19029	0,190	204,290	207,4	1,52	204,290	5,739	497	1,787
Zr-10	0,232	0,0053	0,03253	0,00045	0,3267	0,327	205,940	211,4	2,65	205,940	5,273	2.180	1,541

LMC-082, análisis isotópicos U-Pb en circón

Zr	Relación final ²⁰⁷ Pb/ ²³⁵ U	Error Interno relación final ²⁰⁷ Pb/ ²³⁵ U a 2 D. E.	Relación final 206Pb/238U	Error Interno relación final ²⁰⁶ Pb/ ²³⁵ U a 2 D. E.	Ajuste error de correlación (datos negativos)	Error de correlación ²⁰⁶ Pb/ ²³⁸ U vs. ²⁰⁷ Pb/ ²³⁵ U	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	% disc	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	± Error edad corregida (Ma)	Aproximación 238U (ppm)	Th/U
Zr-43	0,674	0,039	0,03321	0,00066	0,1	-0,0066	185,0039	515	178	185,00	7,09	185,00	1,0808
Zr-12	0,546	0,049	0,03565	0,00082	0,21888	0,2189	209,433	427	104	209,43	8,27	209,43	0,7021
Zr-41	0,424	0,037	0,03117	0,00086	0,30896	0,3090	185,977	355	90,9	185,98	7,68	185,98	0,7443
Zr-28	0,367	0,023	0,03057	0,00065	0,21666	0,2167	185,054	318	71,8	185,05	6,91	185,05	0,8747
Zr-32	0,333	0,028	0,02975	0,00068	0,15076	0,1508	181,985	287	57,7	181,99	6,97	181,99	0,8544
Zr-23	0,383	0,038	0,03287	0,00095	0,47843	0,4784	199,856	312	56,1	199,86	8,20	199,86	0,9389
Zr-18	0,336	0,025	0,03191	0,00067	0,21016	0,2102	195,554	289	47,8	195,55	6,99	195,55	1,0583
Zr-35	0,311	0,02	0,03031	03031 0,00056 0,63477 0,6348 187,507		268	42,9	187,51	6,32	187,51	0,7379		
Zr-27	0,302	0,02	0,03071	0,00044	0,58033	0,5803	0,5803 190,540 265 39,1 190,54		6,09	190,54	1,6562		
Zr-10	0,276	0,016	0,02935	0,00046	0,36158	58 0,3616 181,945 247 35,8		181,95	5,90	181,95	1,1034		
Zr-34	0,3	0,027	0,03033	03033 0,00065 0,65762 0,6576		0,6576	188,753	251	33	188,75	6,98	188,75	0,4404
Zr-31	0,27	0,013 0,02939		0,00041	0,51174	0,5117	183,234	240	31	183,23	5,82	183,23	1,2509
Zr-20	0,26	0,014	0.014 0.02955		0,2633	0,2633	184,945	233	26	184,95	5,97	184,95	1,0331
Zr-22	0,266	0.015 0.03002		0,00049	0,079926	0,0799	187,694	236	25,7	187,69	6,17	187,69	0,8988
Zr-6	0,265	0,015	0,0303	0,00048	0,39549	0,3955	189,404	234	23,5	189,40	6,15	189,40	1,1355
Zr-36	0,249	0,017	0,02888	0,00039	0,030231	0,0302	180,675	221	22,3	180,68	5,76	180,68	2,5034
Zr-3	0.277	0.028	0.03161	0.00079	0.40385	0.4039	197.290	241	22.2	197.29	7.66	197.29	0.7419
Zr-19	0.262	0.018	0.0308	0.00054	0.36073	0.3607	192,888	233	20.8	192.89	6.37	192.89	1.125
Zr-40	0.242	0.012	0.02952	0.00038	0.0039886	0.0040	185.690	219.1	18	185.69	5.79	185.69	2,7685
 	0.203	0.013	0.029	0.0004	0 12073	0 1207	184 326	186	0.91	184 33	5 78	184 33	1.0037
 7r-17	0.200	0.012	0.02918	0.0004	0.29196	0.2020	184 860	191.5	3 59	184.86	5.82	184.86	1 2076
	0.2096	0.0087	0.02923	0.00038	0.21029	0.2103	185 290	192	3.62	185 29	5.80	185 29	1.082
	0.2180	0.0073	0,02026	0,00034	0.25191	0.3518	195 596	201.2	9.41	195.60	5,60	195.60	2 2 2 2 1 7
ZI-42	0.2031	0,0073	0,02030	0,00034	0.23401	0,3310	196 610	199	0.74	196.62	5.62	196.62	1 1260
ZI-23	0.2031	0,000	0,02054	0,00033	0.16963	0,2045	197.006	108.3	5.00	197.10	5 75	197.10	1,1203
7: 20	0,217	0,011	0,02034	0,00031	0,10903	0,7005	107,030	010.0	16.0	197,10	5,75	197.10	1,9019
7- 44	0,241	0,01	0,02970	0,00031	0,2095	0,2095	107,110	210,0	0.44	107,12	5,00	107,12	1,0009
Zr-11	0,211	0,012	0,02954	0,00039	0,20456	0,2046	187,100	193,0	3,44	187,17	5,75	187,17	1,1038
ZI-33	0,2164	0,0097	0,02962	0,00035	0,46938	0,4694	187,551	196,4	4,72	187,55	5,74	187,55	0,9815
Zr-45	0,2079	0,0087	0,0296	0,00042	0,25504	0,2550	187,846	191	1,68	187,85	5,93	187,85	1,4061
	0,2076	0,0097	0,0296	0,00041	0,14149	0,1415	187,940	192	2,16	187,94	5,93	187,94	1,1462
Zr-14	0,2082	0,0087	0,02977	0,00038	0,35821	0,3582	188,915	190,7	0,95	188,91	5,80	188,91	1,5034
Zr-15	0,2033	0,0052	0,02985	0,00028	0,25583	0,2558	189,582	187,4	-1,15	189,58	5,61	189,58	2,9855
Zr-13	0,231	0,01	0,03015	0,00039	0,23162	0,2316	190,044	210,8	10,9	190,04	5,86	190,04	2,7383
Zr-30	0,2104	0,0088	0,03007	0,0004	0,19462	0,1946	190,919	193,1	1,14	190,92	5,87	190,92	1,2165
Zr-7	0,2109	0,0088	0,03014	0,0004	0,27636	0,2764	191,002	193,7	1,41	191,00	5,93	191,00	1,5953
Zr-8	0,24	0,011	0,03057	0,00044	0,49125	0,4913	192,208	218	13,4	192,21	6,04	192,21	0,893
Zr-24	0,249	0,011	0,03066	0,00038	0,21315	0,2132	192,624	225,2	16,9	192,62	5,91	192,62	2,2219
Zr-21	0,2147	0,006	0,03042	0,00034	0,38937	0,3894	192,975	197,3	2,24	192,98	5,85	192,98	1,5447
Zr-16	0,227	0,013	0,03066	0,00051	0,19048	0,1905	193,541	207	6,95	193,54	6,37	193,54	0,8018
Zr-9	0,2053	0,0095	0,03048	0,0004	0,050545	0,0505	193,568	190,7	-1,48	193,57	6,00	193,57	1,5695
Zr-44	0,2232	0,0077	0,03059	0,00037	0,36643	0,3664	193,730	193,730 204,1 5,35 193,73 5,92 193		193,73	1,4549		
Zr-25	0,2232	0,0068	0,03063	0,00041	0,43445	0,4345	193,860	203,8	5,13	193,86	5,97	193,86	2,4045
Zr-4	0,208	0,014	0,03085	0,0005	0,16829	0,1683	196,186	191	-2,64	196,19	6,40	196,19	0,7296
Zr-37	0,2362	0,0093	0,03112	0,00035	0,17461	0,1746	196,416	214,6	9,26	196,42	5,98	196,42	2,0973
Zr-39	0,245	0,011	0,03177	0,00043	0,52319	0,5232	200,503	221,6	10,5	200,50	6,29	200,50	2,2989

LMC-084, análisis isotópicos U-Pb en circón

Zr	Zr Relación final relación final 207pb/235U 207Pb/235U a 2 D. E.		Relación final 206Pb/238U	Error Interno relación final ²⁰⁶ Pb/ ²³⁵ U a 2 D F	Ajuste error Error d de correlación correlaci (datos ²⁰⁶ Pb/ ²³⁸ U negativos) ²⁰⁷ Pb/ ²³⁶		Edad corregida 206Pb/238U (Ma)	Edad ²⁰⁷ Pb/ ²³⁵ U (Ma)	% disc.	Edad corregida ²⁰⁶ Pb/ ²³⁸ U (Ma)	± Error edad corregida (Ma)	Aproximación ²³⁸ U (ppm)	Th/U
Zr-20	0,3220	0,0120	0,03322	0,00034	0,5306	0,53058	205,72	282,60	37,37	205,72	6,23	0,69	1,441
Zr-21	0,3620	0,0340	0,03690	0,00081	0,4867	0,48672	227,54	310,00	36,24	227,54	8,24	0,45	2,226
Zr-40	0,2937	0,0099	0,03133	0,00032	0,3901	0,39011	194,10	260,70	34,31	194,10	5,86	1,63	0,615
Zr-35	0,2660	0,0150	0,02959	0,00053	0,1485	0,14848	183,84	240,00	30,55	183,84	6,20	0,68	1,477
Zr-50	0,2880	0,0150	0,03214	0,00041	0,2157	0,21571	199,76	258,00	29,16	199,76	6,27	0,43	2,341
Zr-25	0,2540	0,0120	0,03074	0,00045	0,4367	0,43673	192,47	228,20	18,57	192,47	6,15	0,47	2,137
Zr-11	0,2552	0,0053	0,03102	0,00019	0,3950	0,39500	194,69	230,70	18,49	194,69	5,64	0,87	1,148
Zr-5	0,2560	0,0110	0,03122	0,00035	0,5190	0,51903	195,94	229,80	17,28	195,94	5,97	0,69	1,454
Zr-27	0,2660	0,0150	0,03269	0,00044	0,2429	0,24287	205,20	237,00	15,50	205,20	6,37	0,74	1,354
Zr-31	0,2560	0,0110	0,03213	0,00034	0,6044	0,60442	201,79	229,80	13,88	201,79	6,10	0,75	1,325
Zr-45	0,2088	0,2088 0,0037		0,00022	0,2098	0,20979	190,98	192,60	0,85	190,98	5,54	1,01	0,991
Zr-48	0,2143	0,2143 0,0052		0,00030	0,4558	0,45578	191,21	196,90	2,97	191,21	5,72	0,89	1,123
Zr-47	0,2190	0,0120	0,03035	0,00041	0,2675	0,26751	192,08	199,60	3,91	192,08	6,00	0,71	1,411
Zr-44	0,2130	0,0110	0,03056	0,00034	0,0879	0,08792	193,83	194,60	0,40	193,83	5,88	0,65	1,546
Zr-15	0,2292	0,0043	0,03072	0,00020	0,2277	0,22769	194,28	209,80	7,99	194,28	5,60	1,05	0,957
Zr-39	0,2125	0,0094	0,03061	0,00034	0,0357	0,03566	194,34	195,40	0,55	194,34	5,88	0,56	1,797
Zr-37	0,2191	0,0062	0,03093	0,00044	0,6191	0,61909	195,76	201,40	2,88	195,76	6,16	0,90	1,113
Zr-42	0,2250	0,0110	0,03102	0,00038	0,1717	0,17168	195,77	208,60	6,56	195,77	6,06	0,60	1,676
Zr-13	0,2178	0,0032	0,03092	0,00023	0,2810	0,28104	196,18	199,90	1,89	196,18	5,67	1,07	0,937
Zr-8	0,2153	0,0060	0,03095	0,00028	0,1770	0,17698	196,57	197,80	0,62	196,57	5,80	0,26	3,774
Zr-18	0,2239	0,0049	0,03118	0,00038	0,5498	0,54976	197,41	205,40	4,04	197,41	6,03	0,43	2,311
Zr-43	0,2110	0,0032	0,03112	0,00025	0,3964	0,39639	197,55	194,40	-1,60	197,55	5,73	0,82	1,212
Zr-14	0,2282	0,0064	0,03130	0,00047	0,2874	0,28744	198,06	208,90	5,47	198,06	6,28	0,36	2,789
Zr-49	0,2124	0,0081	0,03132	0,00040	0,3121	0,31208	198,73	196,50	-1,12	198,73	6,11	1,10	0,909
Zr-46	0,2250	0,0120	0,03149	0,00054	0,1918	0,19181	199,08	206,00	3,48	199,08	6,37	0,59	1,691
Zr-7	0,2330	0,0110	0,03150	0,00037	0,1659	0,16585	199,11	212,50	6,72	199,11	6,05	0,68	1,466
Zr-30	0,2220	0,0053	0,03146	0,00025	0,4585	0,45845	199,31	203,10	1,90	199,31	5,79	1,13	0,888
Zr-28	0,2178	0,0032	0,03146	0,00021	0,3836	0,38357	199,48	199,90	0,21	199,48	5,73	0,72	1,384
Zr-34	0,2300	0,0096	0,03163	0,00036	0,4972	0,49716	200,08	208,70	4,31	200,08	6,05	0,36	2,792
Zr-38	0,2340	0,0100	0,03173	0,00035	0,2335	0,23352	200,20	214,60	7,19	200,20	6,05	0,40	2,47
Zr-1	0,2470	0,0140	0,03183	0,00037	0,4138	0,41380	200,38	222,00	10,79	200,38	6,12	0,60	1,667
Zr-22	0,2328	0,0050	0,03178	0,00024	0,2854	0,28536	200,87	212,40	5,74	200,87	5,84	0,30	3,35
Zr-17	0,2219	0,0034	0,03170	0,00020	0,3020	0,30202	201,12	203,80	1,33	201,12	5,79	0,93	1,075
Zr-10	0,2389	0,0037	0,03195	0,00019	0,3510	0,35099	201,92	217,50	7,72	201,92	5,78	0,94	1,065
Zr-12	0,2502	0,0058	0,03209	0,00031	0,1794	0,17935	202,15	227,00	12,29	202,15	6,02	0,90	1,108
Zr-29	0,2150	0,0160	0,03183	0,00047	0,0324	0,03239	202,23	196,00	-3,08	202,23	6,42	0,76	1,317
Zr-6	0,2525	0,0038	0,03250	0,00026	0,4482	0,44817	204,67	228,40	11,59	204,67	5,96	0,59	1,702
Zr-19	0,2146	0,0079	0,03221	0,00032	0,0511	0,05107	204,72	196,90	-3,82	204,72	6,06	0,56	1,779
Zr-4	0,2303	0,0050	0,03246	0,00029	0,4283	0,42825	205,68	210,10	2,15	205,68	6,04	0,86	1,161
Zr-9	0,2504	0,0069	0,03272	0,00032	0,3044	0,30436	206,39	226,60	9,79	206,39	6,15	0,27	3,772
Zr-26	0,2700	0,0150	0,03315	0,00045	0,5556	0,55559	208,21	237,00	13,83	208,21	6,35	0,29	3,444
Zr-41	0,2393	0,0062	0,03297	0,00026	0,1486	0,14864	208,36	216,70	4,00	208,36	6,10	0,94	1,061
Zr-33	0,2600	0,0100	0,03330	0,00040	0,3837	0,38370	209,40	232,20	10,89	209,40	6,34	1,00	0,999
Zr-16	0,2281	0,0038	0,03306	0,00037	0,5584	0,55839	209,67	208,60	-0,51	209,67	6,29	0,85	1,181
Zr-23	0,2380	0,0120	0,03324	0,00042	0,1756	0,17561	210,31	215,90	2,66	210,31	6,37	0,64	1,552
Zr-2	0,2350	0,0100	0,03325	0,00045	0,2807	0,28070	210.61	214.60	1,90	210.61	6,37	0,74	1,343
Zr-24	0,2350	0,0067	0,03337	0,00036	0,3554	0,35540	211.28	214.50	1,52	211.28	6,35	0,81	1,233
Zr-3	0,2463	0,0042	0,03346	0,00022	0,1712	0,17121	211,43	223,60	5,75	211,43	6,09	0,91	1,099
Zr-32	0,2436	0,0061	0,03620	0,00069	0,6118	0,61181	229.39	221.20	-3.57	229.39	7,59	0,58	1,721
Zr-36	0,2615	0,0067	0,03672	0,00042	0,1485	0,14854	231,90	236,00	1,77	231,90	6,97	0,71	1,403

Anexo 3. Análisis isotópicos de elementos traza en circón

(ppm)	Р	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
Zr-012	1.080	16,4	6.080	8,66	0,5	159	1,25	18,2	30,4	10,35	160	52	577	211	893	1.530	308	8.280	7,825	625	267
Zr-017	560	39,2	1.910	13,63	0,62	39	0,479	5,85	7,85	2,99	41,2	13,2	160	63,9	297	617	134,4	9.800	4,773	177	156,9
Zr-028	520	36,1	1.820	15,4	0,299	80,6	0,257	3,69	5,9	1,84	34,1	11,9	149	60,7	277	558	117,2	10.910	8,375	327	243
Zr-010	810	9,17	3.110	13,76	1,19	118,4	0,81	8,1	10,6	2,81	62,6	21,3	260	100,5	466	941	194,8	10.630	16,3	708	491
Zr-011	390	9,3	1.005	1,19	0	22,57	0,088	1,29	2,24	2,07	13,15	4,95	65,5	29,19	157,7	421	105	5.712	3,988	122,7	123,5
Zr-013	417	6,53	1.811	14,89	0,026	58,2	0,022	0,75	2,96	0,738	21,7	9,55	131,7	58,51	295,8	675	148,7	11.800	11,13	259	349,4
Zr-014	2.770	26,2	2.719	16,01	13,5	155	4,7	25	11,1	2,95	50,7	17,69	218,3	88,2	419,2	902	196,9	9.980	18,25	780	554
Zr-015	480	14,7	1.930	2,29	0,074	36,4	0,73	10,9	15	5,77	57,7	17,6	188	66	290	538	112	8.230	2,095	104	62,8
Zr-016	1.870	12,76	3.190	12,3	5,4	123,8	1,9	10,2	10,7	3,94	56,8	20,85	259	104,2	503	1.034	222,3	9.860	11,38	552	358
Zr-018	440	7,86	1.680	7,02	0,08	58,3	0,118	2,07	5,2	1,36	30,7	11,3	138	54,8	258	530	108	11.580	6,8	261	202
Zr-019	230	8,03	1.170	5,32	0,095	46,6	0,52	5,28	6,46	2,18	23,5	7,88	90,8	36,5	176	408	91,6	9.220	5,375	184	155
Zr-020	830	8,72	3.090	11,67	0,154	108,9	0,329	5,48	10,6	2,99	59,1	20,9	255	100	459	933	194	9.640	15,48	856	499
Zr-021	1.000	10,7	4.750	9,97	0,04	149	0,47	9,2	16,5	5,9	86,6	31,1	382	149	710	1.500	308	8.860	19,78	1.000	582
Zr-022	526	10,66	1.641	4,25	0,004	31,77	0,096	1,84	4,75	1,73	28,1	9,87	122,5	51,7	255,4	583	130,3	9.570	4,633	140,1	138,1
Zr-023	470	11,11	1.257	3,04	0,009	39,74	0,076	2,35	4,12	1,55	23,4	8,37	104,2	41,34	200,8	407,6	86,5	8.955	4,145	169,6	124,4
Zr-024	290	8,1	1.063	5,33	0,38	31,9	0,163	1,64	2,42	0,86	15,5	5,91	81	34,5	170,5	401	88,4	10.970	5,175	147	154,7
Zr-025	560	10,27	2.269	10,34	0,153	68,4	0,18	2,68	6,1	2,04	38	14,03	177,2	73,5	356,6	784	172	10.040	12,43	485	380,1
Zr-026	2.740	18,3	3.570	18,2	12,2	270	3,7	22,8	15,8	4,36	66,9	21,9	266	105	490	1.040	221	10.070	6,225	355	183,5
Zr-027	390	11,57	1.950	4,15	0,048	45,4	0,405	7,1	10,6	3,72	49	15,7	179	65,8	295	582	123,3	9.050	4,225	176	130,6
Zr-029	780	11,9	4.080	17,55	2,37	103,9	0,9	7,56	13,9	3,79	77	29,19	355	140,2	653	1.283	260	11.200	12,55	498	437
Zr-030	210	7,87	670	2,38	0,02	28,7	0,159	2,25	3,24	1,13	16,1	4,6	58	21,8	104	219	48,2	10.370	3	122	77
Zr-031	710	11,13	4.170	5,68	0,205	79,3	0,73	12	20,6	7,33	97,6	31,6	363,9	138,9	630	1.277	266,2	8.530	8,043	420	268,9
Zr-032	1.820	9,87	7.360	39,4	0,062	262	0,511	10,6	26,9	6,91	151,1	54	648	246,6	1073	1.910	361	9.140	13,68	865	444
Zr-033	6.500	10,1	2.366	16,37	8800	14300	1340	4500	470	30,3	303	32,8	229	77,4	361,6	795	173,7	11.500	11,4	1.240	350,5
Zr-034	399	7,52	1.358	9,96	0,267	42,8	0,078	0,84	2,26	0,618	17,6	7,13	99,3	43,1	217,3	510	110,8	11.560	9,325	206,2	282,5
Zr-035	671	12,53	2.505	7,3	0,013	69,6	0,167	3,47	6,09	2,51	41,1	15,39	197,7	81,4	387,6	806	174,3	8.110	6,55	257,1	195,5
Zr-036	140	6,76	621	2,03	0	21,83	0,033	0,9	1,28	0,61	8,42	3,28	43,1	18,75	100	260	62,4	11.140	3,485	71,1	104,3
Zr-037	510	10,2	2.060	5,27	0,138	55,1	0,229	3,87	7,04	2,62	34,5	12,28	151,9	61,5	312	729	165,2	9.920	10,3	466	305
Zr-038	571	9,12	2.106	14,99	0,018	86,7	0,117	1,87	5,26	1,47	33,3	13,18	168,9	68,2	326	671	143,8	10.950	20,05	956	630
Zr-039	570	8,7	2.350	6,16	0,01	66,3	0,189	4,7	7,7	2,8	42,4	15,1	186	74,6	362	818	179,6	9.820	8,775	437	302
Zr-040	400	7,08	454	3,74	0,025	16,49	0,019	0,2	0,71	0,152	4,46	2,08	31,1	14,44	75,3	192,5	43,9	11.330	3,725	64,8	105,2
Zr-041	3.110	19,1	1.933	6,29	29,1	115	9,6	43	13,1	2,25	38	13,09	157,1	63,9	303,1	641,7	138,2	10.670	5,088	142,6	158,6
Zr-042	200	8,52	1.953	2,01	0,028	38,7	0,321	4,6	8,25	3,76	43,3	13,68	168,6	64,9	298	623	136,7	9.790	7,075	318	235
Zr-043	730	12,94	3.054	4,65	0,53	59,4	0,61	7,72	12,4	4,73	66	21,76	259,3	100,5	468,3	952	204,8	8.120	6,31	299,4	207,8
Zr-044	534	9,97	2.707	10,78	0	76,1	0,083	2,09	5,88	2,26	42,4	16,58	214,3	88,9	434	933	203	9.960	8,478	284,4	261,2
			-							-		-								-	

GZ-6743, análisis isotópicos de elementos traza en circón

JGB-462, análisis isotópicos o	de elementos traza en circón
--------------------------------	------------------------------

	(ppm)	Р	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
	Zr-058	332	53	1.720	5	0	39	0	6	10	4	48	15	167	60	263	490	99	6.538	3,75	186	110
2010 201 20 2 2 1 1 1 1	Zr-067	382	10	1.132	3	0	32	0	3	6	2	27	9	99	38	181	359	77	7.014	3,5	136	102
2040 205 40 50 50 50 50<	Zr-047	6.224	57	1.021	3	2	27	2	11	5	1	17	6	80	33	160	316	66	7.060	2,25	75	71
b b	Zr-040	212	10	565	1	0	14	0	1	2	1	11	4	48	19	89	196	45	7.490	1	44	33
b b	Zr-057	348	11	937	6	0	41	0	1	3	1	15	6	70	30	152	338	73	9.237	6.5	170	207
b b	Zr-069	600	8	2 184	7	0	71	0	4	9	3	47	16	189	74	336	674	138	6 996	7 25	449	222
0 0 0 <	Zr=068	489	10	1 582	6		50			4	2	27	10	125	53	260	558	119	7 295	3.75	147	115
b b	Zr-041	402	10	1.043	5		38		1	3	1	16	6	76	33	171	394	89	10 754	3.75	113	111
bar bar <td>7: 026</td> <td>200</td> <td></td> <td>0.040</td> <td>4</td> <td></td> <td>40</td> <td>0.1</td> <td></td> <td></td> <td></td> <td>16</td> <td></td> <td>75</td> <td>21</td> <td>151</td> <td>220</td> <td>70</td> <td>0.715</td> <td>4</td> <td>166</td> <td>107</td>	7: 026	200		0.040	4		40	0.1				16		75	21	151	220	70	0.715	4	166	107
Math Math <th< td=""><td>7- 007</td><td>000</td><td>10</td><td>930</td><td>4</td><td>0,1</td><td>40</td><td>0,1</td><td></td><td></td><td></td><td>10</td><td>- 10</td><td>150</td><td></td><td>000</td><td>500</td><td>100</td><td>9.715</td><td>4</td><td>700</td><td>007</td></th<>	7- 007	000	10	930	4	0,1	40	0,1				10	- 10	150		000	500	100	9.715	4	700	007
Date Date <th< td=""><td>Zr-037</td><td>505</td><td>10</td><td>1.842</td><td>9</td><td>0,1</td><td>87</td><td>0,1</td><td>3</td><td>/</td><td>2</td><td>39</td><td>13</td><td>158</td><td>00</td><td>283</td><td>200</td><td>120</td><td>9.162</td><td>10,5</td><td>132</td><td>327</td></th<>	Zr-037	505	10	1.842	9	0,1	87	0,1	3	/	2	39	13	158	00	283	200	120	9.162	10,5	132	327
24308 6 0 1 0 0 1 0 0 1 0 <td>ZI-038</td> <td>525</td> <td>14</td> <td>2.852</td> <td>-</td> <td>0,1</td> <td>58</td> <td></td> <td>15</td> <td>23</td> <td>8</td> <td>91</td> <td>21</td> <td>280</td> <td>100</td> <td>432</td> <td>/80</td> <td>158</td> <td>8.034</td> <td>4</td> <td>200</td> <td>131</td>	ZI-038	525	14	2.852	-	0,1	58		15	23	8	91	21	280	100	432	/80	158	8.034	4	200	131
Zuck Ki S L S L S L S L S L S L S L S L S L S L S L S L S S L S L S L S L S L S L S S L S S L S S L S <td>Zr-039</td> <td>/31</td> <td>11</td> <td>3.309</td> <td>5</td> <td>0,1</td> <td>95</td> <td>2</td> <td>23</td> <td>30</td> <td>9</td> <td>105</td> <td>33</td> <td>331</td> <td>119</td> <td>503</td> <td>889</td> <td>1/3</td> <td>7.484</td> <td>5,5</td> <td>587</td> <td>184</td>	Zr-039	/31	11	3.309	5	0,1	95	2	23	30	9	105	33	331	119	503	889	1/3	7.484	5,5	587	184
2head 3et 1 </td <td>Zr-042</td> <td>891</td> <td>9</td> <td>2.087</td> <td>9</td> <td>0,1</td> <td>40</td> <td>0,1</td> <td>2</td> <td>5</td> <td>1</td> <td>33</td> <td>13</td> <td>168</td> <td>68</td> <td>333</td> <td>698</td> <td>148</td> <td>8.404</td> <td>13</td> <td>257</td> <td>413</td>	Zr-042	891	9	2.087	9	0,1	40	0,1	2	5	1	33	13	168	68	333	698	148	8.404	13	257	413
Za-44 447 1.1 1.1 1.7 0.1 2 3 1 1 7 88 98 100 100 7 100 7 100 7 100 100 100	Zr-043	402	8	1.939	12	0,1	87	0,1	3	6	2	35	12	160	65	320	659	142	10.036	8,5	270	243
Zeek M V M	Zr-044	347	11	1.111	2	0,1	17	0,1	2	3	1	18	7	88	36	180	410	91	7.990	3	96	91
Zicka Sicka Sicka <th< td=""><td>Zr-045</td><td>611</td><td>10</td><td>2.030</td><td>7</td><td>0,1</td><td>62</td><td>0,1</td><td>3</td><td>6</td><td>2</td><td>34</td><td>13</td><td>166</td><td>68</td><td>321</td><td>675</td><td>144</td><td>7.815</td><td>5,25</td><td>230</td><td>159</td></th<>	Zr-045	611	10	2.030	7	0,1	62	0,1	3	6	2	34	13	166	68	321	675	144	7.815	5,25	230	159
2-04 7-1 9 1 7 0 1 7 0 1 7 0 1 7 0 1 7 0 1 2 5 1 1 1 0 0 1 1 1 1 0 0 1 <td>Zr-046</td> <td>356</td> <td>9</td> <td>1.301</td> <td>5</td> <td>0,1</td> <td>43</td> <td>0,1</td> <td>2</td> <td>3</td> <td>1</td> <td>21</td> <td>8</td> <td>101</td> <td>43</td> <td>215</td> <td>490</td> <td>109</td> <td>8.396</td> <td>3,5</td> <td>121</td> <td>107</td>	Zr-046	356	9	1.301	5	0,1	43	0,1	2	3	1	21	8	101	43	215	490	109	8.396	3,5	121	107
2-04 444 8 1.14 7 0.1 0 1 2 5 2 7 10 138 54 158 168 158 168 158 168 158 168 15	Zr-048	761	9	2.000	9	1	76	0,1	4	6	2	36	12	152	62	305	739	160	8.418	8,25	436	279
Z-60 Hie H D <td>Zr-049</td> <td>494</td> <td>8</td> <td>1.544</td> <td>7</td> <td>0,1</td> <td>67</td> <td>0,1</td> <td>2</td> <td>5</td> <td>2</td> <td>27</td> <td>10</td> <td>128</td> <td>51</td> <td>255</td> <td>539</td> <td>114</td> <td>8.003</td> <td>5</td> <td>225</td> <td>146</td>	Zr-049	494	8	1.544	7	0,1	67	0,1	2	5	2	27	10	128	51	255	539	114	8.003	5	225	146
Z-061 488 11 2.08 8 0.1 75 0.1 8 6 2 77 14 180 73 180 732 187 7000 6.28 282 196 Z-085 58 11 2.88 0.1 2.80 0.1 3 5 2.30 10 14 2.80 10.1 3.0 11 142 58 58 10.1 3.0 3.0 11 142 58 58 161 171 0.1 4 8 3 42 15 185 71 1.0 1.0 2.9 9 1.0	Zr-050	416	8	1.761	7	0,1	64	0,1	2	4	2	26	10	133	58	283	606	132	7.821	5	196	154
Z-062 380 11 1.44 2 0.1 28 0.1	Zr-051	498	11	2.203	8	0,1	75	0,1	3	6	2	37	14	180	73	352	732	157	7.609	5,25	252	156
z+63 58 11 2es 9 0.1 9 0.1 2 6 1 31 11 142 263 68 10 31 11 142 55 68 10 77.0 55 33 147 2765 10 213 60 1 71 15 71 15 88 144 73 85 148 140 15 71 33 147 140 140 140 150 71 33 141 140 150 14 140<	Zr-052	330	11	1.141	2	0,1	28	0,1	3	5	2	30	10	109	40	179	340	70	7.286	1,75	96	54
red ss s< s< s< s< s< s<	Zr-053	538	11	2.685	9	0,1	99	0,1	3	9	3	53	18	231	91	422	839	173	7.161	5,5	331	167
Z+065 510 10 21.97 6 0.1 71 0.1 4 8 3 42 15 185 71 533 661 144 7308 4.5 258 140 Z+066 684 11 3400 4 0.1 75 1 47 18 27 67 100 103 641 102 70 1 47 18 27 67 107 127 207 10 118 47 218 101 101 18 47 227 43 104 768 5 235 150 Z+064 98 7 70 4 0.1 22 1 11 45 58 142 168 44 3 42 11 14 5 11 14 5 112 20 12 261 123 123 256 222 60 100 15 11 12 60 <td>Zr-054</td> <td>395</td> <td>8</td> <td>1.622</td> <td>15</td> <td>0,1</td> <td>92</td> <td>0,1</td> <td>2</td> <td>6</td> <td>1</td> <td>31</td> <td>11</td> <td>142</td> <td>55</td> <td>255</td> <td>508</td> <td>103</td> <td>7.959</td> <td>11</td> <td>528</td> <td>345</td>	Zr-054	395	8	1.622	15	0,1	92	0,1	2	6	1	31	11	142	55	255	508	103	7.959	11	528	345
Zr-68 684 11 3.400 4 0.1 79 1 17 29 9 114 33 352 123 515 688 178 7.783 7.25 327 241 Zr-69 666 7 2837 13 0.1 68 0.1 9 20 6 111 38 431 1271 250 7.67 1.6 8.67 7.83 7.25 8.77 2.11 Zr-60 100 450 1.3 0.1 18 2 7.67 1.6 0.1 2 4 1 22 8 104 4.2 190 4.21 40 8.37 5 2.11 151 Zr-664 139 7 7.740 4 0.1 15 11 2 10 14 5 33 75 12 60 8.160 170 8.8 2.28 10 175 6.8 8.43 34 34	Zr-055	510	10	2.137	6	0,1	71	0,1	4	8	3	42	15	185	71	333	681	144	7.308	4,5	258	140
Z+089 666 7 2.637 13 0.1 53 0.1 2 7 1 47 18 227 87 410 609 163 9.47 33.5 742 1021 Z+060 1009 10 4560 13 0.1 188 0.1 2 4 2 27 10 118 421 102 180 104 42 104 42 104 44 227 43 104 768 5 235 111 114 Z+062 227 7 740 4 0.1 29 0.1 1 2 1 11 4 59 25 120 271 59 8.065 3.5 111 101 Z+068 103 8 287 7 144 8 0.1 75 0.1 2 5 2 281 100 127 50 235 6228 10.80 175	Zr-056	684	11	3.400	4	0,1	79	1	17	29	9	114	33	352	123	515	898	178	7.793	7,25	397	241
2r.680 1.008 1.01 4.880 1.1 5 0.1 5 0.1 2 6 111 38 431 162 7.8 1271 250 7.87 8.5 885 273 2r-061 385 9 1.429 5 0.1 52 0.1 2 4 1 22 8 104 7.666 5 235 150 2r-062 282 9 1.250 7 7.40 4 0.1 2 1 11 4 5 63 26 120 271 59 8.00 3.5 114 10 2r-063 315 7 7.40 4 0.1 7.5 11 2 1 14 5 63 26 128 10 127 60 133 376 142 637 123 255 6.22 80 10 125 60 123 480 66 616 <	Zr-059	866	7	2.637	13	0,1	53	0,1	2	7	1	47	18	227	87	410	809	163	9.647	33,5	742	1.021
2r-061 385 9 1.429 5 0.1 52 0.1 2 4 2 27 10 118 47 227 483 104 7.666 5 235 150 $2r-062$ 282 9 1.250 7 0.1 61 0.1 2 4 1 22 8 104 42 199 421 90 8.327 5 211 151 2r-064 319 7 711 2 0.1 1 2 1 14 5 63 26 126 272 60 84 348 44 2 27 10.1 14 1 15 2 8 102 103 356 142 657 123 255 2.2 8 101 127 50 233 488 96 8.160 6.25 551 266 233 100 1.4 1.0 1.0 1.0 1.0	Zr-060	1.008	10	4.560	13	0,1	188	0,1	9	20	6	111	38	431	162	718	1271	250	7.367	8,5	858	273
Zr-082 282 9 1.280 7 0.1 61 0.1 2 4 1 22 8 104 42 199 421 90 8.327 5 211 151 $Zr-083$ 257 7 740 4 0.1 29 0.1 1 2 1 11 4 59 25 120 271 59 8.005 3.5 114 166 $Zr-068$ 103 8 2.877 12 0.1 14 1 5 2 8 102 33 376 142 60 170 7.552 20 800 161 27.02 144 8 0.1 75 0.1 2 5 2 28 10 127 50 233 468 96 8.160 2.5 2.5 2.230 101 1.50 10.4 325 388 2r-028 330 110 1.50 1.65	Zr-061	385	9	1.429	5	0,1	52	0,1	2	4	2	27	10	118	47	227	483	104	7.686	5	235	150
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zr-062	282	9	1.250	7	0,1	61	0,1	2	4	1	22	8	104	42	199	421	90	8.327	5	211	151
Zr-064 319 7 771 2 0.1 27 0.1 1 2 1 14 5 63 26 126 272 60 8.160 1.75 66 53 Zr-066 815 8 4.133 11 0.1 164 1 15 22 8 102 33 376 142 637 1253 255 6.228 10.8 843 348 Zr-066 10.33 8 2.877 12 0.1 94 0.1 5 11 2 60 22 281 100 455 880 170 7.52 20 899 616 Zr-030 910 10.7 2.100 16.5 1.23 199 0.6 4.9 5.5 3.47 34.5 132 171 14.4 10.000 10.48 25 333 101 1.77 1.57 0.57 0.105 1.4 3.07 1.09 2.2.8 <td>Zr-063</td> <td>257</td> <td>7</td> <td>740</td> <td>4</td> <td>0,1</td> <td>29</td> <td>0,1</td> <td>1</td> <td>2</td> <td>1</td> <td>11</td> <td>4</td> <td>59</td> <td>25</td> <td>120</td> <td>271</td> <td>59</td> <td>8.005</td> <td>3,5</td> <td>114</td> <td>106</td>	Zr-063	257	7	740	4	0,1	29	0,1	1	2	1	11	4	59	25	120	271	59	8.005	3,5	114	106
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zr-064	319	7	771	2	0.1	27	0.1	1	2	1	14	5	63	26	126	272	60	8.160	1.75	66	53
10 10 11 10 12 0 10 12 0 10 11 2 0 10 11 2 0 10 10 0.0 <td>Zr-065</td> <td>815</td> <td>8</td> <td>4 133</td> <td>11</td> <td>0.1</td> <td>164</td> <td>1</td> <td>15</td> <td>22</td> <td>8</td> <td>102</td> <td>33</td> <td>376</td> <td>142</td> <td>637</td> <td>1253</td> <td>255</td> <td>6 228</td> <td>10.8</td> <td>834</td> <td>348</td>	Zr-065	815	8	4 133	11	0.1	164	1	15	22	8	102	33	376	142	637	1253	255	6 228	10.8	834	348
2 - 070 389 7 1.44 8 0.1 75 0.1 2 5 2 28 10 127 50 233 488 96 8.160 6.25 511 206 2 - 025 530 110 1.560 10.8 3.7 60 0.8 4.6 5.7 1.86 21.5 9.7 125 50 233 488 96 8.160 6.25 514 206 2 -032 330 15.7 1.660 14.1 0.102 52.5 0.044 0.97 2.31 1.04 19.5 8.2 117 51.5 265 636 144 10.900 10.38 297 357 2 -042 330 15.7 1.68 1.31 3.07 1.09 2.7.3 10.5 11.38 56 297 650 144 6.200 12.7 38.2 117 51.5 265 636 144 10.90 10.38 297 357 2 -042 890 13.1 1.33 0.97 0.105 1.4 3.07	Zr-066	1.033	8	2 877	12	0.1	94	0.1		11	2	60	22	261	100	455	860	170	7 552	20	809	616
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zr-070	380	7	1.464	9	0,1	75	0,1	2	5	2	28	10	107	50	222	469	06	8 160	6.25	351	206
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7: 025	500	110	1.404	10.9	0,1	60	0,1	4.6	57	1.00	20	0.7	105	50	200	560	100	8.000	7.975		200
21-33091010,7 2.100 16,81,231090,64,95,35,4754,512,21717154679016210,3010,48323368 $Zr-032$ 33015,71.66014,10,10252,50,0440,972,311,0419,58,211751,526663614410.90010,38297357 $Zr-029$ 89013,11.77015,70570,1051,43,071,0927,310,5113,856297650144620012,75362420 $Zr-003$ 66010,11.3508,8048,30,051,333,971,0922,88,210944,32154649810.2008,725343269 $Zr-019$ 1.27015,33.50016,80,311230,296,212,837724,63001165401.06021912.00201.050590 $Zr-001$ 73012,23.28026,90,012110,286,313,73,3722529111150095012,51.610720 $Zr-002$ 1.2809,33.84056,30,0111010,972,317,631.8959,324,53121286011.24024410.00630,51.210986 $Zr-004$ <td>7- 000</td> <td>010</td> <td>10.7</td> <td>0.400</td> <td>10,0</td> <td>1.00</td> <td>100</td> <td>0,0</td> <td>4,0</td> <td>5,7</td> <td>0.47</td> <td>21,5</td> <td>9,7</td> <td>125</td> <td></td> <td>240</td> <td>700</td> <td>120</td> <td>40.500</td> <td>1,375</td> <td>244</td> <td></td>	7- 000	010	10.7	0.400	10,0	1.00	100	0,0	4,0	5,7	0.47	21,5	9,7	125		240	700	120	40.500	1,375	244	
Zr-132 330 15 , 7 1.860 14 , 1 $0,102$ 52.5 $0,044$ $0,97$ $2,31$ $1,04$ $19,5$ 8.2 117 $51,5$ 265 636 144 10.900 $10,38$ 297 357 $Zr-029$ 890 $13,1$ 1.770 $15,7$ 0 57 $0,105$ 1.4 $3,07$ $10,9$ $22,8$ $8,2$ 109 $44,3$ 215 464 98 10.200 $8,725$ 343 269 $Zr-019$ 1.270 $15,3$ 3.500 16.8 $0,31$ 123 $0,29$ 6.2 12.8 3 77 $24,6$ 300 116 540 1.060 219 12.00 20 1.050 590 $Zr-001$ 730 12.2 3.250 $66,3$ $0,01$ 211 $0,281$ $6,3$ $13,7$ $3,3$ 72 25 291 111 500 193 9.500 $22,5$ 1.610 720 21.5 1.610 720	Zr-030	910	10,7	2.100	16,5	1,23	109	0,6	4,9	5,5	3,47	34,5	13,2	1/1	/1	348	790	162	10.500	10,48	325	308
$ \begin{array}{c} 2r-029 \\ 880 \\ \hline 13,1 \\ r/70 \\ 1.770 \\ 1.57 \\ 0 \\ 1.70 \\ 1.57 \\ 0 \\ 1.70 \\ 1.30 \\ 1.30 \\ 1.3 \\ 0.10 \\ 1.33 \\ 0.5 \\ 1.33 \\ 0.05 \\ 1.33 \\ 0.75 \\ 1.09 \\ 2.8 \\ 8.2 \\ 109 \\ 2.8 \\ 8.2 \\ 109 \\ 4.4.3 \\ 215 \\ 464 \\ 98 \\ 10.200 \\ 219 \\ 1.200 \\ 219 \\ 12.00 \\ 20 \\ 1.050 \\ 590 \\ 22.5 \\ 1.610 \\ 720 \\ 22.5 \\ 1.610 \\ 720 \\ 22.0 \\ 1.28 \\ 1.33 \\ 3.97 \\ 1.09 \\ 22.8 \\ 8.2 \\ 109 \\ 4.4.3 \\ 215 \\ 464 \\ 98 \\ 10.60 \\ 219 \\ 12.00 \\ 219 \\ 12.00 \\ 20 \\ 1.050 \\ 590 \\ 22.5 \\ 1.610 \\ 720 \\ 720 \\ 720 \\ 720 \\ 720 \\ 720 \\ 720 \\ 711 \\ 4 \\ 1.97 \\ 8.5 \\ 0.003 \\ 85 \\ 0.15 \\ 3.25 \\ 6.6 \\ 2.12 \\ 36.1 \\ 12.9 \\ 1.8 \\ 46.9 \\ 16.5 \\ 202 \\ 78.8 \\ 362 \\ 746 \\ 150 \\ 80 \\ 24 \\ 120 \\ 880 \\ 28. \\ 880 \\ 28.5 \\ 36.2 \\ 74 \\ 130 \\ 85 \\ 89 \\ 28. \\ 890 \\ 176 \\ 9.80 \\ 8.710 \\ 9.15 \\ 40 \\ 77 \\ 105 \\ 500 \\ 27.7 \\ 105 \\ 500 \\ 27.00 \\ 77 \\ 105 \\ 500 \\ 27.01 \\ 77 \\ 105 \\$	Zr-032	330	15,7	1.660	14,1	0,102	52,5	0,044	0,97	2,31	1,04	19,5	8,2	117	51,5	265	636	144	10.900	10,38	297	357
$ \begin{array}{c} 2r-003 & 660 & 10,1 & 1.350 & 8,8 & 0 & 48,3 & 0,05 & 1,33 & 3,97 & 1,09 & 22,8 & 8,2 & 109 & 44,3 & 215 & 464 & 98 & 10.200 & 8,25 & 343 & 269 \\ \hline \\ $	Zr-029	890	13,1	1.770	15,7	0	57	0,105	1,4	3,07	1,09	27,3	10,5	113,8	56	297	650	144	6.200	12,75	362	420
$ \begin{array}{c} \hline P_{1} P_{1} P_{2} P_{1} P_{2} P_{1} P_{2} P_{1} P_{2} P_{1} P_{2} P_$	Zr-003	660	10,1	1.350	8,8	0	48,3	0,05	1,33	3,97	1,09	22,8	8,2	109	44,3	215	464	98	10.200	8,725	343	269
Zr-00173012.23.25026.90.012110.2816.313.73.372252911115009501939.50022.51.610720 $Zr-002$ 1.2809.33.84056.30.0111010.0972.317.631.8959.324.53121286011.24024410.08030.51.210986 $Zr-004$ 6.00030.53.5005124.114910.45921.92.4771.324.73081215591.09021513.10042.751.8501.390 $Zr-005$ 5009.46701.810.0264.020.0160.631.50.11810.24.2653.522.4105206408.98028.536.2122 $Zr-006$ 72011.41.9708.50.003850.153.256.62.1236.112.916366.53116471328.8105.925277192 $Zr-007$ 61011.22.70010.70.003960.1223.217.43.1646.916.520278.83627461508.7109.15467299 $Zr-008$ 1.00012.32.4405.208.40.0520.132.50.2122.412.31897941096020414.20039166	Zr-019	1.270	15,3	3.500	16,8	0,31	123	0,29	6,2	12,8	3	77	24,6	300	116	540	1.060	219	12.000	20	1.050	590
Zr-002 1.280 $9,3$ 3.840 $56,3$ $0,011$ 101 $0,097$ $2,31$ $7,63$ $1,89$ $59,3$ $24,5$ 312 128 601 1.240 244 10.080 $30,5$ 1.210 986 $Zr-004$ 6.000 $30,5$ 3.500 51 $24,1$ 149 $10,4$ 59 $21,9$ $2,47$ $71,3$ $24,7$ 308 121 559 1.090 215 13.100 $42,75$ 1.850 1.390 $Zr-005$ 500 $9,4$ 670 1.81 0.026 4.02 0.016 0.63 $1,5$ 0.118 $10,2$ 4.26 $53,5$ $22,4$ 105 206 40 8.980 $28,5$ $36,2$ 122 $Zr-006$ 720 $11,4$ 1.970 $8,5$ 0.003 86 $0,152$ $3,25$ $6,6$ $2,12$ $36,1$ $12,9$ 163 $66,5$ 311 647 132 8.810 5.925 277 192 $Zr-007$ 610 $11,2$ 2.70 $10,7$ 0.003 96 $0,122$ $3,21$ $7,4$ $3,16$ $46,9$ $16,5$ 202 78.8 362 746 150 8.710 $9,15$ 467 299 $Zr-008$ 1.000 $12,3$ 2.440 $5,2$ 0 $8,4$ 0.052 $0,13$ $2,5$ $0,21$ $22,4$ $12,3$ 189 79 410 960 204 14.200 39 166 1.050 $Zr-010$ </td <td>Zr-001</td> <td>730</td> <td>12,2</td> <td>3.250</td> <td>26,9</td> <td>0,01</td> <td>211</td> <td>0,281</td> <td>6,3</td> <td>13,7</td> <td>3,3</td> <td>72</td> <td>25</td> <td>291</td> <td>111</td> <td>500</td> <td>950</td> <td>193</td> <td>9.500</td> <td>22,5</td> <td>1.610</td> <td>720</td>	Zr-001	730	12,2	3.250	26,9	0,01	211	0,281	6,3	13,7	3,3	72	25	291	111	500	950	193	9.500	22,5	1.610	720
Zr-004 6.000 $30,5$ 3.500 51 $24,1$ 149 $10,4$ 59 $21,9$ $2,47$ $71,3$ $24,7$ 308 121 559 1.000 215 13.100 $42,75$ 1.850 1.390 $Zr-005$ 500 $9,4$ 670 1.81 0.026 4.02 0.016 0.63 1.5 0.118 10.2 4.266 $53,5$ $22,4$ 105 206 40 8.980 $28,5$ $36,2$ 122 $Zr-006$ 720 11.4 1.970 $8,5$ 0.003 85 0.15 3.25 $6,6$ $2,12$ $36,1$ 12.9 163 $66,5$ 311 647 132 8.810 5.925 277 192 $Zr-007$ 610 11.2 2.270 10.7 0.003 96 0.122 3.21 $7,4$ 3.16 $46,9$ $16,5$ 202 78.8 362 746 150 8.710 9.15 467 299 $Zr-008$ 1.000 12.3 2.440 5.2 0 8.4 0.052 0.13 2.5 0.21 22.4 12.3 189 79 410 960 204 14.200 39 166 1.050 $Zr-009$ 590 11.7 3.530 6 0.055 89 0.51 9.4 17.9 5.97 83 27.4 319 121 544 1.010 203 10.700 7.125 392 245 $Zr-010$ 1	Zr-002	1.280	9,3	3.840	56,3	0,011	101	0,097	2,31	7,63	1,89	59,3	24,5	312	128	601	1.240	244	10.080	30,5	1.210	986
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zr-004	6.000	30,5	3.500	51	24,1	149	10,4	59	21,9	2,47	71,3	24,7	308	121	559	1.090	215	13.100	42,75	1.850	1.390
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zr-005	500	9,4	670	1,81	0,026	4,02	0,016	0,63	1,5	0,118	10,2	4,26	53,5	22,4	105	206	40	8.980	28,5	36,2	122
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zr-006	720	11,4	1.970	8,5	0,003	85	0,15	3,25	6,6	2,12	36,1	12,9	163	66,5	311	647	132	8.810	5,925	277	192
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zr-007	610	11,2	2.270	10,7	0,003	96	0,122	3,21	7,4	3,16	46,9	16,5	202	78,8	362	746	150	8.710	9,15	467	299
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zr-008	1.000	12,3	2.440	5,2	0	8,4	0,052	0,13	2,5	0,21	22,4	12,3	189	79	410	960	204	14.200	39	166	1.050
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zr-009	590	11,7	3.530	6	0,055	89	0,51	9,4	17,9	5,97	83	27,4	319	121	544	1.010	203	10.700	7,125	392	245
Zr-011 790 14 2.620 10,7 0 81,5 0,125 3,37 7,4 2,76 45,1 17,8 228 89 423 890 176 9.800 8,075 305 261 Zr-012 330 9,6 960 4,4 0,02 25 0,039 0,97 3,3 0,75 18 7 81 32 148 294 60 12.400 77 105 500 Zr-013 660 10.8 3.350 29.2 0,057 103 0,064 1,56 3,93 1,56 36,1 15.2 214 99 525 1.350 309 11.900 24 880 784 Zr-014 890 14 2.500 17,8 0,002 111 0,119 3,2 6,8 2,19 45,1 16,8 213 85 399 840 176 12.400 13,05 640 429 Zr-015 940 16,	Zr-010	10	9,6	388	2,84	0	3,01	0,01	0,04	0,28	0,161	3,12	1,32	22,2	10,6	62	236	74	13.700	46,25	15,1	279
Zr-012 330 9,6 960 4,4 0,02 25 0,039 0,97 3,3 0,75 18 7 81 32 148 294 60 12.400 77 105 500 Zr-013 660 10.8 3.350 29.2 0.057 103 0,064 1,56 3.93 1,56 36,1 15,2 214 99 525 1.350 309 11.900 24 880 784 Zr-014 890 14 2.500 17,8 0,002 111 0,119 3,2 6,8 2,19 45,1 16,8 213 85 399 840 176 12.400 13,05 640 429 Zr-015 940 16,3 1.750 5,51 1,8 46,2 0,67 5,5 5,4 1,73 30,2 11,1 144 58,6 281 582 125 8,520 4.75 179 156	Zr-011	790	14	2.620	10,7	0	81,5	0,125	3,37	7,4	2,76	45,1	17,8	228	89	423	890	176	9.800	8,075	305	261
Zr-013 660 10,8 3.350 29,2 0.057 103 0.064 1,56 3,93 1,56 36,1 15,2 214 99 525 1.350 309 11.900 24 880 784 Zr-014 890 14 2.500 17,8 0,002 111 0,119 3,2 6,8 2,19 45,1 16,8 213 85 399 840 176 12.400 13,05 640 429 Zr-015 940 16,3 1.750 5,51 1,8 46,2 0,67 5,5 5,4 1,73 30,2 11,1 144 58,6 281 582 125 8.520 4.75 179 156	Zr-012	330	9,6	960	4,4	0,02	25	0,039	0,97	3,3	0,75	18	7	81	32	148	294	60	12.400	77	105	500
Zr-014 890 14 2.500 17,8 0,002 111 0,119 3,2 6,8 2,19 45,1 16,8 213 85 399 840 176 12.400 13,05 640 429 Zr-015 940 16,3 1.750 5,51 1,8 46,2 0,67 5,5 5,4 1,73 30,2 11,1 144 58,6 281 582 125 8.520 4.75 179 156	Zr-013	660	10,8	3.350	29,2	0,057	103	0,064	1,56	3,93	1,56	36,1	15,2	214	99	525	1.350	309	11.900	24	880	784
Zr-015 940 16,3 1.750 5,51 1,8 46,2 0,67 5,5 5,4 1,73 30,2 11,1 144 58,6 281 582 125 8.520 4.75 179 156	Zr-014	890	14	2.500	17,8	0,002	111	0,119	3,2	6,8	2,19	45,1	16,8	213	85	399	840	176	12.400	13,05	640	429
	Zr-015	940	16,3	1.750	5,51	1,8	46,2	0,67	5,5	5,4	1,73	30,2	11,1	144	58,6	281	582	125	8.520	4,75	179	156

(ppm)	Р	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
Zr-016	950	13,6	2.280	10,7	0,217	107	0,214	3,87	8	3,43	49,8	16,9	207	78,3	351	655	133	9.800	12,35	910	409
Zr-017	540	9,4	1.490	10,5	0,011	66,8	0,084	1,57	3,46	1,18	23,4	8,8	114	47,3	237	499	110	10.200	7,95	349	274
Zr-018	460	9,7	1.050	2,33	0,015	41	0,294	4,03	6,4	1,87	25,1	7,87	91	34,8	161	357	77	9.050	9,7	435	321
Zr-020	1.230	12	3.660	27,5	0,002	158	0,165	4,86	12,1	4,33	77	26	337	134	599	1.170	223	10.100	21,75	1.320	734
Zr-021	620	12,8	1.900	5,3	0,001	51,6	0,159	2,85	6,3	2,38	33,8	12,6	157	63	301	630	134	11.500	4,7	156	149
Zr-022	600	8,5	1.280	11,5	0	32,7	0,026	0,53	2,3	0,63	13,7	6,02	87	38,2	207	484	110	9.500	7,575	205	264
Zr-023	-600	10,5	630	1,64	0	17,1	0,09	1,2	2,4	0,38	8	4	49	21,2	101	212	46	5.700	2,575	63	76
Zr-024	270	10,8	592	2,31	1,17	24,3	0,75	4,58	3,43	1,37	12,3	3,9	46,7	18,2	87	192	43	9.100	2,125	74	72
Zr-026	290	14,6	1.570	2,52	0,012	13,8	0,389	7,3	11,3	2,24	51,7	15,8	164	55,5	220	359	68	10.300	19	47,3	115
Zr-027	330	13,5	1.540	5,82	0,51	61,5	0,333	3,4	6,31	2,21	32,6	11,4	135	51,3	230	448	94	8.920	5,975	393	194
Zr-028	370	8,59	1.400	5,47	0	54	0,1	2,11	4,38	1,5	25,2	9,2	119	44,6	221	440	97	9.520	4,525	208	147
Zr-031	700	10,6	2.530	13,5	0,005	98	0,107	2,75	5,85	2,34	39,9	14,8	204	84	406	840	173	10.100	10,58	335	323
Zr-033	960	172	2.090	12	0,158	53,2	0,102	1,59	4,33	1,49	28,7	11,5	155	65,7	328	789	169	9.290	15,03	415	506
Zr-034	580	9,1	1.680	13,3	0,5	85	0,207	2,2	4,29	1,28	26,3	10,2	136	55,4	260	551	112	10.400	9,6	385	311
Zr-035	510	16	3.070	8,48	0,02	86,4	0,24	3,81	8,2	3,41	52,3	19,8	261	99,4	473	882	181	8.500	6,625	328	223

TONALITA DE SAN MARTÍN

»Cordillera Oriental Departamento de Santander

Gabriel Rodríguez, Gilberto Zapata, Ana María Correa Martínez y María Isabel Arango

Catálogo de las unidades litoestratigráficas de Colombia / Jurásico

Citación: Rodríguez, G., Zapata, G., Correa Martínez, A. M. y Arango, M. I. (2020). Tonalita de San Martín. En *Catálogos de las unidades litoestratigráficas de Colombia: Macizo de Santander.* Vol. 1. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585279445.6 La actividad magmática del periodo Triásico-Jurásico en el Macizo de Santander está evidenciada por el emplazamiento de plutones graníticos, así como de cuerpos hipoabisales y volcánicos riolítico-riodacíticos, con dirección preferencial N-S a NW-SE que concuerda con el rumbo de las fallas regionales, principalmente la falla de Bucaramanga, que marcan la tectónica del Macizo de Santander y delimitan las diferentes unidades.

La intrusión de la Tonalita de San Martín, clasificada como "tonalita" por Arias y Vargas (1978), es uno de esos cuerpos, producto de la actividad magmática del Triásico-Jurásico.

En el *Catálogo de la Tonalita de San Martín* se incluyen los análisis petrográficos, químicos y las edades radiométricas U/Pb de este plutón. Con este trabajo se pretende hacer un aporte al desarrollo del conocimiento geológico del país.

1. Proponente del nombre

Cuerpo ígneo descrito por Arias y Vargas (1978) en la memoria de la plancha 86, Ábrego, quienes le dieron el nombre informal de *tonalita*, debido a que en su composición participa principalmente este tipo de roca. Estos autores, además, en esta denominación incluyeron dos intrusivos de tamaño *stock*. En este trabajo, los autores proponemos el nombre de *Tonalita de San Martín*.

2. Origen del nombre y distribución geográfica

El componente geográfico del nombre de la unidad *Tonalita de San Martín* proviene del municipio de San Martín, situado en el sur del departamento del Cesar. Fue descrito inicialmente por Arias y Vargas (1978) en la memoria de la plancha 86, Ábrego, con el nombre informal de *tonalita*.

En este catálogo se propone el nombre de *Tonalita de San Martín*, considerando la definición original dada por Arias y Vargas (1978) de *tonalita*. La composición del plutón es variable, presenta tonalitas, granodioritas y monzogranitos en proporciones similares, sin que se presente una litología predominante. El nombre de San Martín proviene del municipio donde aflora el intrusivo, y se ciñe a las recomendaciones de la International Subcommission on Stratigraphic Classification of IUGS (1987, 1994).

La unidad se encuentra cartografiada en el mapa geológico de la plancha 86, Ábrego (Vargas y Arias, 1981), donde presentan dos *stocks* con la denominación "tonalitas". En el presente estudio se nombra como *Tonalita de San Martín* el plutón que aflora en el borde occidental de la cordillera Oriental y que tiene forma alargada de tendencia NNW-SSE, con un área aproximada de 45,5 km²; 31 km de largo y 2 km de ancho, en promedio (figura 1), ubicado a lo largo de la región noroccidental de la plancha 86 (Ábrego), drenado por las quebradas Torcoroma, en su parte sur; La Rayita, en su parte central, y Torcoromita, en su parte norte.

3. Descripción geológica

3.1. Marco geológico

El Macizo de Santander hace parte de un bloque regional de forma triangular formado por las fallas de Santa Marta-Bucaramanga, en el lado occidental, la falla de Oca-Ancón, en el lado norte, y la falla de Boconó, en el lado oriental.

Las rocas más antiguas del Macizo de Santander comprenden unidades metamórficas como la Anfibolita de Sanín Villa, que arrojó edades U/Pb en circón del Neoproterozoico y el Neis de Bucaramanga (Ward *et al.*, 1973), denominado también Complejo Bucaramanga (Clavijo, 1994). El Neis de Bucaramanga consiste de paraneises migmatíticos de alto grado considerados de edad proterozoica (Goldsmith *et al.*, 1971; Restrepo *et al.*, 1997; Cordani *et al.*, 2005; Ordóñez *et al.*, 2006), con un pico de metamorfismo de edad 1057±28 Ma U/Pb-Shrimp en circón, relacionada con la orogenia Grenvilliana (figura 2).

Edades publicadas por Van der Lelij *et al.* (2016), y otras obtenidas mediante el método U/Pb-ICP-MS en circones, en el desarrollo del presente estudio en unidades cartografiadas como el Neis de Bucaramanga y Ortoneis, arrojaron edades de metamorfismo y cristalización del Ordovícico.

Figura 1. Localización de la Tonalita de San Martín y distribución del muestreo de secciones delgadas, litogeoquímica y dataciones U/Pb Fuente: Arias y Vargas (1978) y autores

Figura 2. Localización de la Tonalita de San Martín y distribución del muestreo de secciones delgadas, litogeoquímica y dataciones U/Pb Fuente: Arias y Vargas (1978) y autores

Figura 3. Aspecto macroscópico de rocas de la Tonalita de San Martín. A) Granodiorita con xenolito de diorita, estación LMC-088. B) Cuarzomonzonita tomada en la estación TCR-399

El Neis de Bucaramanga está cubierto por la Formación Silgará, constituida por esquistos, filitas, metalodolitas, metaareniscas y escasos mármoles, rocas que hacen parte del basamento del Macizo de Santander (Ward *et al.*, 1973; Ríos *et al.*, 2003; Mantilla *et al.*, 2013; Mantilla *et al.*, 2016). La Formación Silgará presenta edades de metamorfismo del Ordovícico inferior-medio relacionadas con la orogenia Famatiniana (Ríos *et al.*, 2003; Ordóñez Cardona *et al.*, 2006; Clavijo *et al.*, 2008; Mantilla *et al.*, 2013).

Algunas edades U/Pb en circón obtenidas en el proyecto muestran magmatismo posterior y anterior al metamorfismo, representado por metavulcanitas y plutones que intruyen el basamento metamórfico, con edades U/Pb en circón del Silúrico, Devónico inferior, Carbonífero y límite Triásico-Jurásico.

Los plutones triásico-jurásicos del Macizo de Santander se consideran emplazados en rocas metamórficas del Terreno Chibcha, en el sentido de Restrepo y Toussaint (1988) y Restrepo *et al.* (2011) o del Terreno Santander de Etayo *et al.* (1983). Estos plutones están emplazados en rocas metamórficas ordovícicas relacionadas a la orogenia Famatiniana, y probablemente algunos se emplazaron en basamento del Neoproterozoico, como la Diorita del alto de Sanín Villa y la Tonalita de San Martín, que intruyen las Anfibolitas de Sanín Villa (figura 2).

Durante el límite Triásico-Jurásico se desarrolló un importante magmatismo de arco continental, con el emplazamiento de grandes batolitos, *stocks* graníticos y cuerpos riolíticos subvolcánicos localizados hacia la margen occidental del Macizo de Santander, en el basamento metamórfico paleozoico (figura 2).

Unidades sedimentarias cretácicas reposan discordantes sobre el basamento metamórfico y los plutones. Después de la sedimentación cretácica hubo escaso magmatismo durante el Mioceno, que emplazó pequeños cuerpos de pórfidos con mineralización de oro (Leal, 2011; Mantilla *et al.*, 2013).

3.2. Características macroscópicas

La Tonalita de San Martin es un cuerpo intrusivo de composición variable de dioritas-cuarzodioritas-cuarzomonzonitas y tonalita-granodioritas-monzogranitos, que, de acuerdo con Arias y Vargas (1978), no son separables en la cartografía a escala 1:100.000, y por esta razón fueron agrupadas en una sola unidad.

Las rocas tonalíticas son de color gris, con tonalidades verdes, textura fanerítica de grano medio, constituidas por minerales como cuarzo, plagioclasa, hornblenda y biotita (Arias y Vargas, 1978). Localmente se reconocen granitoides de color blanco a rosado, con motas negras, moderadamente meteorizados, faneríticos, de grano fino a medio, equigranulares a inequigranulares, con estructura masiva y constituidos por cuarzo, plagioclasa, feldespato potásico rosado y biotita. La Tonalita de
San Martín tiene enclaves de microdiorita y andesita de grano fino, de formas subredondeadas y tamaños decimétricos, con contactos netos con las rocas granitoides (figura 3). El cuerpo está atravesado por diques de dacita que tienen formas tabulares y presentan contactos tajantes, cuyo espesor varía entre 10 y 70 cm, de colores blanco a gris claro.

3.3. Características microscópicas

De la Tonalita de San Martín se analizaron quince secciones delgadas, que fueron clasificadas como dioritas, cuarzodioritas, cuarzomonzonitas, tonalitas, granodioritas y monzogranitos, con textura alotriomorfa granular a inequigranular, ocasionalmente con texturas pertíticas, gráficas y simplectíticas locales. Está compuesta principalmente por plagioclasa (22% a 61%), pueden tener feldespato alcalino (0% a 49%) y, en menor proporción, cuarzo (4% a 48%), hornblenda, biotita y, en rocas intermedias, clinopiroxeno. Como minerales accesorios se encuentran apatito, opacos, titanita y allanita. Como minerales de alteración, clorita, sericita, epidota y agregados arcillosos. En la tabla 1 se resumen los resultados del análisis modal, y en la figura 4 se muestra el triángulo de Streckeisen (1976) con la clasificación de las rocas, donde puede observarse el predominio de rocas tonalíticas y monzograníticas en el muestreo realizado.

```
Tabla 1. Composición modal de las rocas de la Tonalita de San Martín
```

IGM	N.° de campo	х	Y	Qtz	PI	Fsp	Срх	Hbl	Bt	Ор	Ар	Zrn	Ttn	Matriz	Otros	Clasificación petrográfica
31124		1070738	1393134	17	48		4	23	3	Tr	1	1	3			Tonalita
31125		1070352	1392430	4	61		1	31		Tr	Tr	Tr	3			Diorita hornbléndica
31134		1069250	1397589	48	28	22			2	Tr			Tr			Monzogranito
31197		1073156	1369803	22	48	22				1	Tr	Tr			7	Granodiorita
31200		1072232	1374914	37	31	28		1	2	1	Tr	Tr			Tr	Monzogranito
31204		1073504	1370620	26	41	22		3	6	2	Tr	Tr			Tr	Granodiorita
31205		1074019	1370446	13	58			16	10	3	Tr	Tr			Tr	Cuarzodiorita
31206		1070586	1385713	25	43	27			5	Tr	Tr					Monzogranito
74856	LJM-1238	1070150	1390970	33	51	4		0	12	Tr	Tr	Tr				Tonalita
120225	AR-77	1071630	1392660	42	22	35			Tr				Tr		1	Cuarzomonzonita
901002	LMC-088	1069983	1392339	37	34	19			10	Tr		Tr				Granodiorita
901003	LMC-090A	1070179	1385799	7	57	20				1	Tr	Tr	1		14	Cuarzomonzodiorita
901004	LMC-090B	1070179	1385799	11	24				4	2	Tr	Tr		59		Fenodacita (dique)
901032	TCR-395A	1075180	1368544	28	53	4		4	6,5	3,5	0,5	1				Tonalita deformada
901033	TCR-399	1072495	1376017	12	30	49		1	8	0,7		0,3			х	Cuarzomonzonita

Tr: trazas

1 Sienita de feldespato alcalino

2 Monzodiorita monzogabro

3 Diorita, gabro

Figura 4. Clasificación modal de las rocas de la Tonalita de San Martín en cuadrados grises y círculo rojo representa el dique fenodacítico

De los diques se analizó una fenodacita con textura porfídica y matriz desvitrificada con desarrollo de esferulitas, y en menor proporción con microcristales félsicos de cuarzo y feldespatos.

La plagioclasa varía desde oligoclasa sódica, en las rocas graníticas, hasta andesina en los dioritoides, siguiendo el método de Michel-Lévy. Se encuentra en cristales subhedrales de hábito tabular, incoloros, cuyo tamaño oscila entre 0,2 y 5 mm, con desarrollo de macla de albita y albita-Carlsbad. Pueden alterarse a escamas de sericita y saussurita, que se presenta en agregados muy finos de tonalidades oscuras (figura 5).

El feldespato de potasio es ortosa. Se presenta en cristales anhedrales de tamaños entre 0,3 y 5 mm, de formas irregulares, con leve moteado marrón por alteración a minerales arcillosos. Presenta textura pertítica con desmezcla de plagioclasa en forma de "flamas" y parches, y puede tener intercrecimientos micrográficos con cuarzo (figura 5A).

El cuarzo aparece en forma de cristales anhedrales incoloros, algunos con extinción ondulatoria, cuyo tamaño varía entre 0,2 y 1,5 mm, como cristales individuales. En algunas rocas, el cuarzo se presenta en intercrecimientos micrográficos, aunque también puede aparecer como inclusiones en el feldespato y tener inclusiones de plagioclasa.

La hornblenda aparece principalmente en las rocas dioritoides (figura 5C, D), en cristales de forma hexagonal, en corte basal, y en algunas rocas, longitudinal; algunos cristales, con maclas dobles. También pueden aparecer en nidos de hornblenda. Presentan color verde intenso a verde pálido, con pleocroísmo de tonos amarillos. El tamaño de los cristales fluctúa entre 0,5 y 1,5 mm, y tienen extinción de 12° a 19° en sección longitudinal. Algunos cristales tienen núcleo de piroxeno con inclusiones de titanita, plagioclasa y apatitos, principalmente, y leve desarrollo de textura simplectítica por presencia de pequeños cristales de cuarzo con forma de gotas en el mineral. Puede estar alterada a clorita y epidota.

La biotita es subhedral a euhedral, con pleocroísmo de color marrón oscuro a claro, con exfoliación perfecta en una dirección, de tamaños entre 0,5 y 1,5 mm, y extinción en ojo de pájaro. Algunos cristales presentan alteración a clorita, de color verde oscuro y birrefringencia anómala azul Berlín, desarrollada entre las trazas de exfoliación de los cristales. Los circones aparecen como cristales euhedrales, en algunas rocas, algo fracturados, de forma prismática corta, incoloros, con tamaño <0,3 mm, birrefringencia fuerte de segundo orden color azul-fucsia. Pueden estar incluidos en biotita o junto a minerales opacos.

La titanita se encuentra en cristales euhedrales, romboédricos y anhedrales de forma irregular, oscurecida por el alto relieve, con birrefringencia fuerte de tercer orden, color rosado moteado con extinción paralela.

El apatito aparece en pequeños cristales prismáticos a redondeados y hexagonales euhedrales, de tamaño <0,1 mm, birrefringencia débil de primer orden gris y extinción paralela. Se presenta como inclusiones en cuarzo, principalmente.

La muestra de dique es una fenodacita (IGM-901004, LMC-090C) constituida por fenocristales de cuarzo, plagioclasa y biotita envueltos por una matriz vítrea (figura 6).

Los fenocristales de cuarzo son bipiramidales, redondeados por corrosión de la matriz, y presentan bahías y "huecos" rellenos de vidrio.

La plagioclasa se presenta en fenocristales y microfenocristales de tamaños que varían entre 0,5 y 2 mm, y microcristales subhedrales. Tiene forma tabular, con maclas de Carlsbad y albita pobremente desarrolladas y en cuñas. Los cristales tienen bordes redondeados y están alterados a saussurita en agregados y a sericita en menor proporción.

La biotita se presenta ocasionalmente en microfenocristales euhedrales de color marrón y verde producto de su alteración, con un tamaño promedio de 0,5 mm, extinción en ojo de pájaro. Se encuentra parcialmente alterada a clorita de color verde claro-oscuro pleocroico, con birrefringencia azul anómala. La mayoría de los cristales presentan inclusiones de opacos asociados.

La matriz está desvitrificada y alterada a minerales del grupo de la arcilla, con desarrollo abundante de esferulitas.

Como minerales accesorios aparecen apatito, circón y opacos de tamaños menores de 0,2 mm.

Los opacos son cristales accesorios de forma irregular, con un tamaño menor de 0,5 mm, y generalmente aparecen junto a biotita.

Figura 5. Aspecto microscópico de rocas de la Tonalita de San Martín. Microfotografías tomadas con nícoles cruzados A) textura micrográfica. B) Cristales de plagioclasa (PI), cuarzo (Qtz) y biotita (Bt) en arreglo granular. C) Tonalita con hornblenda (HbI) y plagioclasa alterada a sericita (PI), cuarzo intersticial (Qtz) y venilla de cuarzo tardía. D) Cristales de hornblenda (HbI), plagioclasa (PI) y titanita (Ttn). E y F) Textura granular con feldespato alcalino pertítico (Fsp)

Figura 6. Aspecto microscópico de la muestra IGM-901004 LMC-090B Fenodacita con textura portídica y fenocristales de cuarzo (Qtz) con bahías de corrosión, biotita (Bt) alterada a clorita y plagioclasa alterada a minerales arcillosos (PI) en una matriz desvitrificada (M)

4. Química mineral

Los análisis de química mineral se hicieron en la Universidad Nacional de Colombia, sede Bogotá. El equipo usado es una microsonda JEOL JXA 8230, cuyas condiciones de operación fueron: 1 a 10 µm de diámetro del haz, tiempo en el pico de 20 msec, intensidad 20 nA y voltaje de aceleración de 15 kV. Los conteos del instrumento son convertidos a porcentajes de óxidos mediante comparaciones con conteos de estándares naturales y sintéticos. Los datos se han tratado mediante la corrección ZAF (Z: número atómico: A: absorción de masas: F: fluorescencia), utilizando el programa de JEOL. La adquisición de los datos consistió en obtener imágenes de electrones retrodispersados de los cristales y en realizar los análisis puntuales. Se seleccionó la muestra TCR-399, clasificada como cuarzomonzonita, teniendo en cuenta la escasa alteración de los minerales. Se escogieron para el análisis plagioclasa, feldespato, pirita y magnetita.

4.1. Feldespato potásico

El feldespato alcalino se analizó para la muestra TCR-399 en un solo cristal, en tres puntos (figura 7), y los resultados de la química mineral se muestran en la tabla 2 y se resumen en la figura 8. En la muestra TCR-399, el feldespato potásico exhibe micropertitas en filoncillo y parches que se pueden apreciar en las imágenes petrográfica y de electrones retrodispersados (figura 7). Para el campo C3 ($Or_{90,9}$ - $Or_{96,06}$, $Ab_{3,77}$ - $Ab_{8,84}$), los análisis grafican en el campo de la ortosa pertítica. Tabla 2. Análisis en cristales de feldespato alcalino en la muestra TCR-399

	TCR-399-C3-Kfs-1	TCR-399-C3-Kfs-3	TCR-399-C3-Kfs-4
SiO ₂	65,297	64,951	64,898
TiO ₂	-0,009	0,001	0,009
Al ₂ O ₃	18,791	18,715	18,713
FeO	0,012	0,024	0,095
MgO	0,027	0,055	0,036
CaO	0,008	0,035	0,051
Na₂O	0,508	0,418	0,972
K ₂ O	15,921	16,203	15,182
Total (% en peso)	100,501	100,292	99,884
Si	11,979	11,965	11,963
AI	4,063	4,063	4,065
Ti	-0,001	0,000	0,001
Fe ²⁺	0,001	0,002	0,010
Mg	-0,00738518	0,0151064	0,00989389
Na	0,181	0,149	0,347
Ca	0,002	0,007	0,010
К	3,726	3,808	3,570
Total cationes (a.p.f.u.)	19,9433	19,980	19,957
Or	95,34	96,06	90,90
Ab	4,62	3,77	8,84
An	0,04	0,17	0,26
Total	100	100	100
a. p. f. u.: átomos por fórmula unitaria			

Figura 7. Imagen de electrones retrodispersados muestra TCR-399

Izquierda cristal de feldespato potásico (C3); derecha imagen petrográfica con nícoles cruzados, donde se observan las micropertitas en filoncillos y parches

Figura 8. Composición de los feldespatos potásicos y las plagioclasas en la muestra TCR-399 Fuente: Smith-Brown (1988) y autores

4.2. Plagioclasa

La plagioclasa se analizó en dos cristales (C1, C2; figura 9, tabla 3), en núcleos y bordes. El cristal C1 mostró inclusiones anhedrales de feldespato alcalino y composición homogénea albítica en la plagioclasa ($Ab_{92,53-95,59} An_{3,09-6,52} Or_{0,95-1,31}$), con una débil zonación composicional con bordes más sódicos. Del cristal C2 se analizaron cinco puntos aleatorios distribuidos en el cristal, que tiene una leve alteración a sericita local y variación composicional que indica composición de albita ($Ab_{88,56-97,07} An_{0,76-9,82} Or_{1,23-2,1}$), como se puede observar en la figura 8.

4.3. Magnetita y pirita

De la muestra TCR-399 se analizaron dos cristales de magnetita (figura 10); los resultados obtenidos se pre-

sentan en la tabla 4. El cálculo del Fe³⁺ se hizo usando la fórmula de Droop (1987).

La magnetita presenta coloración gris, con baja reflectancia, fracturamiento irregular; es homogénea y de aspecto liso, con inclusiones de pirita de color amarillo pálido, con buena reflectancia. La magnetita tiene valores altos de FeO_{total} , entre 94,85 y 96,28 wt% (11,86 a 11,93 a.p.f.u. de Fe^{3+} y aproximadamente 12 a.p.f.u. de Fe^{2+}), concentraciones menores de MnO, entre 0,08 y 0,14 wt%, TiO₂ bajo (alcanza 0,27 a 0,53 wt%) y Al₂O₃ de hasta 0,19 wt%. La pirita tiene concentración en azufre (S) de 52,9 wt% y hierro (Fe) entre 45,5 wt% y 45,9 wt%, valores de Co < 0,11 wt% y valores poco representativos de Cu, As y Ni (tabla 4).

Tabla 3. Análisis en cristales de plagioclasa de la muestra TCR-399

	TCR-399-C1-PI-1	TCR-399-C1-PI-2	TCR-399-C1-PI-3	TCR-399-C2-PI-1	TCR-399-C2-PI-2	TCR-399-C2-PI-3	TCR-399-C2-PI-4	TCR-399-C2-PI-5
SiO ₂	67,452	67,413	68,619	67,286	67,127	68,038	68,526	66,227
TiO ₂	0,004	0,011	-0,003	-0,03	0,008	-0,02	-0,017	0,040
Al ₂ O ₃	20,159	19,888	19,540	20,066	20,292	19,823	19,524	20,268
FeO	0,233	0,087	0,081	0,048	0,063	0,032	0,055	0,036
MgO	-0,016	0,028	0,003	0,012	0,034	-0,002	0,007	-0,008
CaO	1,402	1,324	0,672	1,921	1,795	1,444	0,167	2,095
Na ₂ O	10,992	10,924	11,486	10,523	10,736	11,053	11,400	10,440
K ₂ O	0,171	0,202	0,240	0,323	0,271	0,226	0,382	0,291
Total (% en peso)	100,397	99,877	100,638	100,149	100,326	100,594	100,044	99,389
Si	11,796	11,836	11,943	11,796	11,754	11,864	11,978	11,714
AI	4,155	4,116	4,008	4,146	4,188	4,074	4,022	4,225
Ti	0,023	0,009	0,008	0,005	0,006	0,003	0,005	0,004
Fe	0,001	0,001	0,000	0,000	0,001	0,000	0,000	0,005
Mg	0,000	0,007	0,001	0,003	0,009	0,000	0,002	0,000
Na	3,727	3,719	3,876	3,577	3,645	3,737	3,864	3,580
Ca	0,263	0,249	0,125	0,361	0,337	0,270	0,031	0,397
K	0,038	0,045	0,053	0,072	0,061	0,050	0,085	0,066
Total cationes (a.p.f.u.)	19,998	19,982	20,014	19,957	20,000	19,994	19,985	19,989
Ab	92,53	92,67	95,595	89,200	90,171	92,111	97,074	88,56
An	6,52	6,21	3,091	8,998	8,331	6,650	0,786	9,82
Or	0,95	1,13	1,314	1,802	1,498	1,239	2,140	1,62
Total	100,00	100,00	100,000	100,000	100,00	100,00	100	100,00

Figura 9. Cristales de plagioclasa (PI) en los campos C1 y C2 de la muestra TCR-399 Imagen de microscopía óptica con nícoles cruzados con la selección de puntos, arriba, e imagen de electrones retrodispersados, abajo

Figura 10. Imágenes de electrones retrodispersados (BSE) (izquierda) y luz reflejada (derecha), correspondientes a magnetita y pirita de la muestra TCR-399

	TCR-399-C5- Mt-1	TCR-399-C5- Mt-2	TCR-399-C5- Mt-3	TCR-399-C6- Mt-1	TCR-399-C6- Mt-2	TCR-399-C6- Mt-3		TCR-399-C5- Py-3	TCR-399-C6- Py-1	TCR-399-C6- Py-2
SiO ₂			0,001		0,012	0,007	Zn	0,011	N. D.	0,038
TiO ₂	0,267	0,526	0,513	0,298	0,456	0,271	As	N. D.	0.125	N. D.
Al ₂ O ₃	0,039	0,101	0,071	0,055	0,198	0,018	S	52,886	52,939	52,886
Cr ₂ O ₃	0,017		0,007	0,016	0,003	0,038	Fe	45,647	45,895	45,523
FeO	96,279	95,689	95,911	95,612	94,853	96,187	Co	0,112	0,079	0,066
MnO	0,099	0,14	0,129	0,058	0,134	0,082	Ni	N. A.	N. A.	N. A.
MgO	0,007		0,015	0,002	0,023		Sb	N. A.	N. A.	N. A.
Total	96,708	96,456	96,647	96,041	95,679	96,603	Cu	N. D.	0,003	N. D.
		Formula	basada en 32 o	oxígenos			Total	98,656	99,041	98,513
Si	0,000	0,000	0,000	0,000	0,004	0,002	Zn	0,007	N. D.	0,024
Ti	0,060	0,118	0,115	0,067	0,103	0,061	As	N. D.	0.067	N. D.
AI	0,014	0,035	0,025	0,019	0,070	0,006	S	66,813	66,688	66,883
Cr	0,004	0,000	0,002	0,004	0,001	0,009	Fe	33,103	33,189	33,048
Fe ³⁺	11,931	11,863	11,871	11,921	11,857	11,929	Co	0,077	0,054	0,045
Fe ²⁺	11,963	11,948	11,949	11,973	11,922	11,972	Ni	N. A.	N. A.	N. A.
Mg	0,003	0,000	0,007	0,001	0,010	0,000	Sb	N. A.	N. A.	N. A.

Tabla 4. Composición química de magnetita y pirita en la muestra TCR-399

	TCR-399-C5- Mt-1	TCR-399-C5- Mt-2	TCR-399-C5- Mt-3	TCR-399-C6- Mt-1	TCR-399-C6- Mt-2	TCR-399-C6- Mt-3		TCR-399-C5- Py-3	TCR-399-C6- Py-1	TCR-399-C6- Py-2
Mn	0,025	0,035	0,032	0,015	0,034	0,021	Cu	N. D.	0,002	N. D.
Total	24,000	24,000	24	24,000	24,000	24,000	Total	99,938	99,983	99,968
Mg/(Mg+Fe ²⁺)	0,000259	0	0,001	0,000	0,001	0				
Cr/(Cr+Al)	0,22622	0	0,062	0,163	0,010	0,586				
Fe ²⁺ /(Fe ²⁺ +Mg)	0,999741	1	0,999	1,000	0,999	1				

5. Litogeoquímica

La caracterización litogeoquímica de la Tonalita de San Martín se realizó a partir de cuatro análisis de rocas de las facies más abundantes del plutón (LMC-088, LMC-090A, TCR-395A y TCR-399). Un quinto análisis corresponde a una muestra de dique dacítico (LMC-090B). Los análisis se realizaron con un espectrómetro de fluorescencia de rayos X, FRX, Panalytical AXIOS Mineral para análisis elemental, configurado con software especializado para materiales geológicos. La cuantificación de los óxidos mayores se realizó en muestra fundida con metaborato y tetraborato de litio, y la cuantificación de elementos menores se realizó en muestra prensada (V, Mo, Nb, Ta, W, Zr y Hf). En el análisis de elementos traza de interés geoquímico en rocas se usó un espectrómetro de masas con plasma inductivamente acoplado, ICP-MS, Perkin Elmer Nexion. Para la disolución de la muestra se realizó un ataque por pasos utilizando ácidos inorgánicos fuertes (HF, HNO3, HClO4 y HCl). El proceso se realiza en sistema abierto, empleando distintas rampas de temperatura y tiempos de calentamiento. Gran parte de los diagramas geoquímicos se generaron con el uso del GCDKit versión 4.0 (Janoušek et al., 2006).

5.1. Óxidos mayores

Para la interpretación de los óxidos mayores se hizo el recálculo, teniendo en cuenta los valores de LOI (pérdidas por ignición). Los resultados de óxidos mayores se muestran en la tabla 5.

Los valores de SiO₂ en rocas granitoides de la Tonalita de San Martín varían entre 65,2 wt% y 74,96 wt%, y la muestra de dique de fenodacita presenta valores de SiO₂ de 75,3 wt% (LMC-090B). Considerando las cinco muestras en conjunto, los valores de Al₂O₃, Fe₂O₃, MgO, Na₂O y CaO disminuyen con el aumento de SiO₂; el K₂O varía entre 1,69 wt% y 3,26 wt%; el CaO varía entre 0,41 y 2,05 wt%, MgO < 1 wt% y TiO₂ < 0,7 wt%; las razones K₂O/Na₂O > 1, y presentan contenido de álcalis (Na₂O + K₂O) > 7 wt%. En general, los óxidos mayores con relación al SiO₂ muestran dispersión en las cinco muestras y no es claro un tren de diferenciación común; esto puede deberse al número de muestras analizadas.

En los diagramas K_2O versus SiO₂ (figura 11A), la muestra IGM-901003 se aparta del resto y grafica en el campo de la serie toleítica, mientras las otras muestras se distribuyen en el campo de series calcoalcalinas de contenidos medios y altos en K. No obstante, en el diagrama

Tabla 5. Composición de óxidos mayores en rocas granitoides y roca de diques de la Tonalita de San Martín

•		o ,			
IGM	901002	901003	901032	901033	901004
N.° campo	LMC-088	LMC-090A	TCR-395A	TCR-399	LMC-090B
W	1069983	1070179	1075180	1072495	1070179
Ν	1392339	1385799	1368544	1376017	1385799
SiO ₂	74,48	69,23	65,24	74,96	75,33
TiO ₂	0,16	0,3	0,7	0,18	0,14
Al ₂ O ₃	13,61	16,99	16,94	13,41	13,58
Fe ₂ O ₃	2,2	2,25	4,77	1,74	1,58
MgO	0,33	0,46	0,83	0,35	0,33
CaO	1,17	0,41	2,05	0,67	0,22
Na ₂ O	4,04	9,1	6,68	4,25	4,43
K ₂ O	3,26	0,13	1,69	3,77	3,37
P ₂ O ₅	0,057	0,074	0,118	0,04	0,047
MnO	0,04	0,13	0,15	0,03	0,04
FeO	1,13	1,22	1,82	0,94	0,19
LOI	0,54	0,84	0,53	0,49	0,82
Clasificación petrográfica	Granodiorita	Cuarzomonzodiorita	Tonalita deformada	Cuarzomonzonita	Fenodacita

de Hastie, Kerr, Pearce y Mitchell (2007) (figura 11B), las rocas granitoides y la roca de dique dacítico grafican en las series calcoalcalina con contenidos medios de K y se separan en los campos de BA/A: andesitas basálticas y andesitas y D/R*: dacitas, riolitas, latitas y traquitas, con mejor agrupación. De acuerdo con el diagrama AFM (figura 12), las rocas hacen parte de la serie calcoalcalina y son altamente diferenciadas; sin embargo, la muestra IGM-901032, que corresponde a una tonalita deformada, presenta los menores valores de SiO₂ y valores mayores de Fe₂O₃ (4,77 wt%) y MgO (0,83 wt%).

Figura 11. Diagramas de clasificación de series correspondientes a rocas de la Tonalita de San Martín A) Diagrama K₂O Vs SiO₂ (Peccerillo y Taylor, 1976). B) Diagrama de clasificación Th-Co (Hastie *et al.*, 2007). B: Basalto. BA/A: andesita basáltica/ andesita. D/R*: dacita/riolita/latita traquita (en negro, facies granitoide; en verde, muestra de dique dacítico)

Figura 12. Diagrama AFM (Irvine y Baragar, 1971) correspondiente a las rocas de la Tonalita de San Martín

Figura 13. Clasificación con base en la composición química de rocas de la Tonalita de San Martín A) Diagrama TAS de Middlemost (1985). B) Diagrama TAS de Middlemost (1994) (el símbolo de color verde corresponde a una roca de dique)

Las rocas de la Tonalita de San Martín son subalcalinas y químicamente clasifican en los diagramas TAS de Middlemost (1985, 1994) (figura 13 A y B) en los granitos y cuarzomonzonitas, sin una buena concordancia con la clasificación petrográfica, debido a los valores altos de SiO₂ y álcalis.

Las rocas analizadas (cuarzomonzonitas y granitos), de la Tonalita de San Martín, grafican en el campo peraluminoso del gráfico de Shand (1943), con valores de $(Na_2O+K_2O/Al_2O_3)_{mol}$ (A/NK) > 1 y valores de $(Al_2O_3/$ $Na_2O+K_2O+CaO)_{mol}$ (A/CNK) > 1 (figura 14A), con valores altos de SiO₂ > 65 wt%. La roca de dique IGM-901003 también es peraluminosa. En el diagrama de Debon y Le Fort (1983), modificado por Villaseca, Barbero y Herreros (1998) (figura 14B), las rocas se agrupan en el límite entre los campos de granitoides con baja peraluminosidad (l-p) y los granitos medianamente peraluminosos, la mayoría de ellas por debajo de la línea límite para granitoides tipos I y S y en el campo de los granitoides tipo I. La roca de dique grafica en el campo de las rocas félsicas peraluminosas.

IGM	901002	901004	901032	901033	901003
N.° campo	LMC-088	LMC-090B	TCR-395A	TCR-399	LMC-090A
Li	4,89	7,99	3,49	1,62	7,86
Be	1,58	1,17	1,30	1,60	1,70
Sc	3,40	2,13	10,97	2,15	5,20
v	12,27	12,15	23,18	9,45	10,20
Cr	4,05	5,24	4,36	3,11	4,32
Co	20,24	19,56	10,50	19,88	9,04
Ni	2,26	9,91	1,79	1,20	1,43
Cu	80,24	4,40	6,90	5,49	7,04
Zn	26,53	30,64	81,75	25,01	203,20
Ga	15,66	12,59	20,62	15,73	18,17
As	0,93	0,89	1,10	1,01	1,45
Rb	49,71	53,96	28,83	74,66	1,60
Sr	114,41	116,32	229,94	88,94	116,75
Y	13,72	9,10	27,57	13,15	24,56
Cd	<0,08	<0,08	0,13	<0,08	0,44

IGM	901002	901004	901032	901033	901003
N.° campo	LMC-088	LMC-090B	TCR-395A	TCR-399	LMC-090A
In	0,03	0,01	0,06	0,01	0,48
Cs	0,11	0,13	0,16	0,12	<0,05
Ва	916,73	1081,52	1186,40	1130,75	132,92
La	14,73	14,62	22,73	24,06	17,63
Ce	27,97	25,83	51,03	49,69	39,79
Pr	3,60	3,22	6,21	5,38	5,51
Nd	13,24	11,16	25,10	18,03	19,41
Sm	2,55	2,07	5,79	3,55	4,19
Eu	0,84	0,78	3,68	0,81	0,96
Gd	2,41	1,75	5,92	3,49	4,05
Tb	0,38	0,26	0,91	0,46	0,70
Dy	2,09	1,33	5,44	2,45	4,05
Но	0,42	0,29	1,11	0,48	0,84
Er	1,31	1,00	3,29	1,41	2,50
Tm	0,19	0,16	0,47	0,21	0,34
Yb	1,32	1,19	3,10	1,43	2,20
Lu	0,19	0,20	0,48	0,21	0,31
ті	0,22	0,22	0,11	0,27	<0,01
Pb	7,91	3,19	6,10	8,90	13,13
Th	2,06	1,93	1,70	3,27	2,11
U	0,32	0,54	0,39	0,47	0,53
Zr	137,70	109,20	777,00	152,10	199,40
Nb	5,5	4,5	9,4	6,3	5,3
w	81,4	77,6	37,3	76,4	23
Hf	<8	<8	11,6	<8	<8

Figura 14. Diagrama de alcalinidad-aluminosidad correspondiente a rocas de la Tonalita de San Martín A) Diagrama de Shand (1943). B) diagrama de Debon y Le Fort (1983) modificado por Villaseca *et al.* (1998): f-P, granitoides peraluminosos félsicos; h-P, granitoides altamente peraluminosos; m-P, granitoides medianamente peraluminosos, granitos bajo peraluminoso. (El símbolo de color verde corresponde a una roca de dique)

5.2. Elementos trazas

En la tabla 6 se resumen los resultados de los análisis químicos de elementos traza y tierras raras correspondientes a las cuatro rocas de la Tonalita de San Martín y la roca de dique dacítico. Al analizar el comportamiento de los patrones de tierras raras (REE) en el diagrama multielemental de REE y contrastarlo con los valores normalizados con el condrito de Nakamura (1974) (figura 15A), se observa que las rocas tienen un patrón de REE no paralelo, con un empobrecimiento progresivo desde las tierras raras livianas (LREE) hacia las tierras raras pesadas (HREE), pendiente negativa y anomalía negativa de Eu en las muestras IGM-901002, 9019004 y 901032, lo que sugiere fraccionamiento de la plagioclasa en el magma. Las relaciones Eu/Eu* > 1 y (La/Yb)_N > 4,5 evidencian un enriquecimiento de tierras raras ligeras con relación a las HREE en todas las muestras; además, la muestra 901033 tiene anomalía positiva de Eu. Los patrones de REE presentan diferencias en cada roca, y mayor o menor pendiente de cada uno, lo que sugiere variaciones composicionales en los magmas, diferencias

que podrían explicarse por cambios en la fuente de los magmas de cada patrón, con mayor o menor aporte del manto y de corteza en cada uno de ellos. Los valores de (La/Yb)_N que se han encontrado no son altos y sugieren mayor aporte de manto y menor aporte de corteza por contaminación cortical (Girardi, 2008). La tabla 7 presenta las relaciones normalizadas según el condrito de Nakamura (1974) de algunas REE, donde las relaciones $(Ce/Yb)_N$ varían entre 4,1 y 8,86 y $(La/Sm)_N > 2$, lo que evidencia un enriquecimiento de tierras raras ligeras con relación a las HREE en todas las muestras. Las rocas tienen relación $(La/Yb)_{N}$ con valores entre 4,9 y 11,2, que podrían representar mayores aportes de la corteza, periodos de mayor flujo magmático o corteza más gruesa en los valores más altos de (La/Yb)_N, y los menores valores podrían indicar mayores aportes al magma de material del manto y periodos de más bajo flujo magmático; menores pendientes en los patrones de REE podrían relacionarse con profundidades menores de génesis del magma (Girardi, 2008).

Tabla 6. Resultados de elementos traza y tierras raras en rocas de la Tonalita de San Martín

IGM	901002	901004	901032	901033	901003
N.° campo	LMC-088	LMC-090B	TCR-395A	TCR-399	LMC-090A
Li	4,89	7,99	3,49	1,62	7,86
Ве	1,58	1,17	1,30	1,60	1,70
Sc	3,40	2,13	10,97	2,15	5,20
v	12,27	12,15	23,18	9,45	10,20
Cr	4,05	5,24	4,36	3,11	4,32
Со	20,24	19,56	10,50	19,88	9,04
Ni	2,26	9,91	1,79	1,20	1,43
Cu	80,24	4,40	6,90	5,49	7,04
Zn	26,53	30,64	81,75	25,01	203,20
Ga	15,66	12,59	20,62	15,73	18,17
As	0,93	0,89	1,10	1,01	1,45
Rb	49,71	53,96	28,83	74,66	1,60
Sr	114,41	116,32	229,94	88,94	116,75
Y	13,72	9,10	27,57	13,15	24,56
Cd			0,13		0,44
In	0,03	0,01	0,06	0,01	0,48
Cs	0,11	0,13	0,16	0,12	<0,05
Ва	916,73	1081,52	1186,40	1130,75	132,92
La	14,73	14,62	22,73	24,06	17,63
Се	27,97	25,83	51,03	49,69	39,79
Pr	3,60	3,22	6,21	5,38	5,51
Nd	13,24	11,16	25,10	18,03	19,41
Sm	2,55	2,07	5,79	3,55	4,19
Eu	0,84	0,78	3,68	0,81	0,96
Gd	2,41	1,75	5,92	3,49	4,05
Tb	0,38	0,26	0,91	0,46	0,70

IGM	901002	901004	901032	901033	901003
N.° campo	LMC-088	LMC-090B	TCR-395A	TCR-399	LMC-090A
Dy	2,09	1,33	5,44	2,45	4,05
Но	0,42	0,29	1,11	0,48	0,84
Er	1,31	1,00	3,29	1,41	2,50
Tm	0,19	0,16	0,47	0,21	0,34
Yb	1,32	1,19	3,10	1,43	2,20
Lu	0,19	0,20	0,48	0,21	0,31
ті	0,22	0,22	0,11	0,27	<0,01
Pb	7,91	3,19	6,10	8,90	13,13
Th	2,06	1,93	1,70	3,27	2,11
U	0,32	0,54	0,39	0,47	0,53
Zr	137,70	109,20	777,00	152,10	199,40
Nb	5,5	4,5	9,4	6,3	5,3
W	81,4	77,6	37,3	76,4	23
Hf			11,6		

El diagrama multielemental de elementos trazas normalizado con respecto al NMORB de Sun y McDonough (1989), correspondiente a rocas de la Tonalita de San Martín, muestran empobrecimiento de los elementos inmóviles Nb, Sr, Ti y P, donde el Nb se comporta geoquímicamente de modo similar al Ti (figura 15B). Los mayores valores en elementos incompatibles Cs, Ba, Th, Sr, K, Ba y Rb están relacionados con enriquecimiento del manto localizado por encima de la zona de subducción, debido a movilización de fluidos liberados durante el metamorfismo de alta presión de la placa subducida. El diagrama multielemental de elementos incompatibles (Sun y McDonough, 1989) presenta pequeñas diferencias en los trenes de los elementos traza de las rocas, lo que sugiere varios pulsos magmáticos.

Tabla 7. V	/alores normalizad	os de REE	según e	condrito	de Nakamur	a (1974) en roca	s de la	a Tona	lita de	San	Martín
------------	--------------------	-----------	---------	----------	------------	---------	-----------	---------	--------	---------	-----	--------

	Eu/Eu*	(La/Yb) _N	(La/Sm) _N	(Ce/Yb) _N	(Ce/Sm) _N	(Eu/Yb) _N	Sum_REE
901002	1,04	7,45	3,56	5,39	2,58	1,82	71,26
901004	1,26	8,2	4,35	5,53	2,93	1,87	63,85
901032	1,93	4,88	2,42	4,18	2,07	3,39	135,25
901033	0,71	11,24	4,17	8,86	3,29	1,62	111,65
901003	0,72	5,35	2,59	4,61	2,23	1,25	102,47

Figura 15. Diagramas multielementales de rocas de la Tonalita de San Martín. A) Diagrama de REE normalizado respecto al condrito (Nakamura, 1974); B) Diagrama multielemental normalizado al NMORB (Sun y McDonough, 1989) En negro, rocas de la facies normal de la Tonalita de San Martín, y en verde, roca de dique

5.3. Discriminación del ambiente tectónico

Las anomalías negativas de Nb, Ti y P en el diagrama multielemental de elementos traza normalizados al condrito de Nakamura (1974) son características de rocas relacionadas con ambientes de subducción, que en este caso corresponde a rocas de arco magmático calcoalcalino. El empobrecimiento de las LREE hacia las HREE muestra como resultado patrones comparables al de rocas generadas en ambientes de arcos de margen continental.

Figura 16. Diagramas de discriminación del ambiente tectónico correspondientes a rocas de la Tonalita de San Martín

El símbolo azul corresponde a una roca de dique). A) Pearce (2008) B) Pearce *et al.* (1984) Según el diagrama de Pearce (2008), las muestras de la Tonalita de San Martín están por encima del campo de las rocas de corteza oceánica NMORB-OIB, lo que sugiere fusión de una fuente de manto con influencia de un componente cortical reciclado, en un ambiente de arco. En el diagrama de Pearce *et al.* (1984), las muestras grafican en el campo de los granitos de arco volcánico (figuras 16 A y B). La presencia de minerales como hornblenda y biotita en las facies más básicas y menos diferenciadas del plutón sugiere aporte mantélico.

En el diagrama de Frost *et al.* (2001), las rocas graníticas pertenecen al campo de los granitos ferrosos, junto con las rocas de dique (figura 17).

6. Posición estratigráfica y edad

La Tonalita de San Martín está en contacto intrusivo, al oriente, con la Anfibolita de Sanín Villa, y al occidente está intruida por riolitas subvolcánicas (Arias y Vargas, 1978), probablemente relacionadas a la Formación Noreán, y se presenta cubierta por depósitos cuaternarios.

A la fecha, la Tonalita de San Martín no ha sido datada por métodos radiométricos, y Arias y Vargas (1978) estimaron que su edad correspondía al Triásico, basados en su correlación con otras masas tonalíticas del Macizo de Santander y suponiendo que es más joven que el evento metamórfico de la Formación Silgará, del Paleozoico inferior.

En este proyecto se analizaron tres muestras distribuidas a lo largo del plutón. Los resultados finales y la localización de las muestras se presentan en la figura 1 y en la tabla 8, mientras que el conjunto de análisis llevados a cabo en cada muestra se incluyen en el anexo 1. La separación de minerales densos se realizó en el Laboratorio Químico del Servicio Geológico Colombiano, sede

Figura 17. Diagrama de clasificación para la Tonalita de San Martín Fuente: Frost *et al.* (2001) y autores

Medellín, utilizando separación hidrodinámica, magnética y, por último, el montaje de los circones.

Las muestras LMC-088 y LMC-090B se dataron por el método U/Pb LA-ICPMS en circones en el Laboratorio de Ablación Laser del Servicio Geológico Colombiano, que cuenta con un equipo de ablación laser Photon Machines, Laser Excimer de 193 nm y espectrómetro ICP-Masas Element 2. Se utilizaron como patrones de referencia Plesovice, 91500 y M, Dromedry. Los puntos analizados son de 20 micrones, y la reducción de datos se realizó utilizando el programa Iolite IGROpro y un espectrómetro de masas. En la línea base 0 s-38 s y en las muestras y patrones de referencia 32,5 s-8 s se utilizaron, como lapsos de integración, tiempos que concuerdan con el tiempo de corrida de los análisis. Los isótopos utilizados en la integración manual son ²³⁸U, Pb²⁰⁶ y Pb²⁰⁴. Los resultados finales corresponden a la media de los datos obtenidos luego de aplicar una discriminación de datos a dos desviaciones estándares. El procesamiento se lleva a cabo con las rutinas de Isoplot V3.5, y la corrección por plomo común se realiza de acuerdo con el modelo de evolución según Stacey y Krammers (1975).

La muestra TCR-395A fue enviada al Laboratorio de Estudios Isotópicos (LEI) del Centro de Geociencias de la Universidad Nacional Autónoma de México (UNAM), campus Juriquilla, donde se aplicó la siguiente metodología: las concentraciones de U y Th fueron calculadas empleando un circón estándar externo, de acuerdo con Paton et al. (2010). Las incertidumbres de sigma 2 propagadas se lograron según Paton et al. (2010). Las proporciones 207Pb/206Pb, edades y errores se calcularon según Petrus y Kamber (2012). Los puntos analizados son de 23 micrómetros, y se estudiaron utilizando un protocolo de análisis modificado de Solari et al. (2010). Los datos se midieron empleando un Thermo X series QICPMS acoplado a un Resonetics, estación de trabajo láser Excimer Resolución M050. Se realizó un análisis estadístico con el fin de mejorar el rango de confiabilidad de la edad proporcionada por el Laboratorio, teniendo en cuenta la relación [(207Pb/235U)-(206Pb/238U)/206Pb/238U), eliminando los datos de circones con valores discordantes que estuvieran, en general, por encima de 15% y errores de más de 5%. Los gráficos de concordia e histogramas se elaboraron con el software de Isoplot/Ex vers, 4,15 (Ludwig, 2012).

Tabla 8. Resumen de los resultados de geocronología obtenidos en las muestras de la Tonalita de San Martín por el método LA-MC-ICP-MS U/Pb en circones

IGM-SD	N.° campo	npo W N		Plancha	Clasificación	Edad	N.° Zr
901032	TCR-395A	1075180	1368544	86	Tonalita	198,9±1,8	45
901002	LMC-088	1069983	1392339	86	Granodiorita	198,0±2,8	55
901004	LMC-090B	1070179	1385799	86	Dique-fenodacita	197,1±2,0	38

De las facies normales del intrusivo se dataron las muestras TCR-395A y LMC-088, localizadas en los extremos sur y norte, respectivamente. La muestra TCR-395A corresponde a una tonalita deformada. Los circones tienen un tamaño que varía entre 1 80 y 200 mm, de forma corta, ovalada a prismática. Algunos cristales de circón presentan alargamiento marcado, con zonación concéntrica, y en ellos no se observa una relación aparente entre morfología interna y tamaño.

Los análisis efectuados revelan homogeneidad, ya que todos los zircones son concordantes y exhiben un rango limitado. Se realizó un filtro de los datos para descartar los circones con valores discordantes (discordancia > 15%) y errores de edad corregida > 5, con el fin de mejorar el rango de confiabilidad de la edad con un rango de edades que varía entre 184,8 y 205,1 Ma, lo que arroja una edad promedio ponderada de 198,9±1,8 Ma, n = 20 y MSWD = 1,14, considerando esta la edad de cristalización de la roca (figura 18).

Las razones Th/U en circones de la muestra TCR-395A varían entre 0,7 y 1,2, relación que sugiere cristalización ígnea (Rubatto, 2002).

Se ha datado una segunda muestra de granodiorita (LMC-088), localizada al norte del intrusivo. Los circones son transparentes, predominan los prismáticos cortos, pero hay prismáticos largos con forma de tallos, euhedrales, de tamaños entre 50 y 100 mm. La imagen de catodoluminiscencia (CL) revela que los circones tienen estructura interna concéntrica (zonación oscilatoria) típica de cristales ígneos, algunos con núcleos luminiscentes, pero también hay cristales con núcleos menos luminiscentes que los bordes.

Esta edad presenta una agrupación a lo largo y en la parte baja de la discordia y algunos pocos datos tocan la curva de concordia, lo que indica que los circones fueron afectados por pérdida de plomo. El grupo más consistente lo conforman n = 19 datos, con errores de edad corregida < 5%, con una edad discordante promedio ponderada de 198,0±2,8 Ma, y MSWD = 2,2, similar a la edad concordante obtenida en la muestra TCR-395A. La edad de la muestra LMC-088 se interpreta con cautela, debido a que es discordante, como una edad de cristalización de la roca (figura 19), por estar dentro del rango de cristalización de la Tonalita de San Martín y de otros plutones del Macizo de Santander. La relación Th/U de los circones es cercana a 1 y varía entre 0,5 y 1,2, valores que se asocian a circones que se formaron por cristalización ígnea (Rubatto, 2002).

La tercera muestra analizada (LMC-090B) corresponde a un dique de fenodacita que intruye las facies normales de la Tonalita de San Martín y se localiza en la parte central del cuerpo. Los circones son euhedrales prismáticos alargados con forma de tallos, translúcidos, con escasas inclusiones, algunos de tonalidad amarillenta, algo fracturados. Las imágenes de catodoluminiscencia (CL) evidencian zonación oscilatoria, con núcleo gris claro.

180

190

200

210

170

0,1

0,01

160

A) Gráfico de concordia. B) Gráfico de edad promedio ponderada C). Gráfico de relación Th/U vs. edad en circones de la muestra TCR-395A

220

Figura 19. Calculo de la edad de la muestra LMC-088 A) Gráfico de concordia. B) Gráfico de edad promedio ponderada con imagen de catodoluminiscencia de algunos circones de la muestra

La muestra LMC-090B tiene un amplio rango de edades, que varían entre 187 y 202 Ma, tomando como grupo más coherente n=13 circones, que arrojaron una edad promedio ponderada de 197,1 ±2,0 Ma, con MSWD=1,15, que se interpreta como la edad de cristalización de la roca de dique (figura 20). La muestra LMC-090B presenta un núcleo de circón que arrojó una edad de 999,26 ± 36,8 Ma (Neoproterozoico) (figura 20), con relación Th/U<0,1, que sugiere que corresponde a un núcleo heredado de un xenocristal metamórfico. Las relaciones Th/U en el resto de circones están por encima de 0,3, lo que sugiere origen ígneo.

6.1. Geoquímica de elementos traza en circones

El análisis de ICP-MS permitió determinar la abundancia de los elementos traza de cada circón de la muestra TCR-395A (anexo B). Los valores de REE se normalizaron al condrito (McDonough y Sun, 1995) y se calcularon los valores teóricos de Pm* y Tm*. En el análisis de los elementos traza se tienen en cuenta las edades obtenidas en cada circón y cuáles fueron descartados por tener discordancias > 15%.

En la muestra TRC-395A se observa un patrón de REE con anomalía positiva de Ce y negativa de Eu moderadamente pronunciada (figura 21A), que son características de circones ígneos (Hoskin y Schaltegger, 2003), provenientes de granitoides ígneos de tipos I, A y S (Wang *et al.*, 2012).

El patrón de REE muestra una inclinación positiva entre Lu y Gd, enriquecimiento en HREE, con anomalía negativa moderada de Eu y positiva de Ce, patrón que es más inclinado que en circones metamórficos (Rubatto, 2017) y similar a circones de origen ígneo. Los circones de la muestra TCR-395A presentan contenidos de Pb entre 1,02 y 3,89, Th entre 19,9 y 104 ppm, la relación Th/ Pb varía de 19,4 a 43,94; las concentraciones de Y varían de 938 a 3.208 ppm, con una anomalía negativa de Eu $(Eu/Eu^* = 0, 16 a 0, 54)$ y valores de $(Lu)_N$ en el rango comprendido entre 3.528 y 7.882. Los granitos de tipo I, según Wang et al. (2012), presentan contenidos de Pb < 25 ppm, Th entre 34 y 1.746 ppm, Th/Pb de 14 a 130, (Lu) Nentre 1.330 y 15.574, anomalía negativa de Eu (Eu/Eu* = 0,14 a 0,34) y concentraciones de Y entre 493 y 7.833 ppm (tabla 9).

Los circones de la muestra TCR-395A grafican en el diagrama de Th vs. Pb en el campo de los granitos tipo I (diagrama modificado de Wang *et al.*, 2012) (figura 21B), con algunos pocos circones por fuera del campo. Los contenidos de Pb y Th en circones están en el rango propuesto por Wang *et al.* (2012), con valores bajos de Pb.

Figura 20. Calculo de la edad de la muestra LMC-090B

A) Gráfico de concordia. B) Gráfico de edad promedio ponderada. C) Imagen de catodoluminiscencia de algunos circones

Figura 21. Diagrama REE con valores McDonough y Sun (1995) correspondiente a la muestra TCR-395A de la Tonalita de San Martín y diagrama modificado de Wang et al. (2012)

	Tabla 9. Com	paración de valo	ores de elementos	traza reportados i	por Wang et al.	(2012), con	los encontrados en la	a Tonalita de San Martín
--	--------------	------------------	-------------------	--------------------	-----------------	-------------	-----------------------	--------------------------

	Pb	Th	Th/Pb	Y	Eu/Eu*	(Lu) _N
Tonalita de San Martín	1,02-3,89	19,9-104	19,4-43,94	938-3.208	0,16-0,54	3.528-7.882
Granitos tipo I (Wang et al., 2012)	< 25	34-1746	14 a 130	493-7.833	0,14-0,34	1.330-15.574

7. Correlaciones

La posición geotectónica de la Tonalita de San Martin, asociada con los datos geocronológicos U/Pb, presentan un problema de correlación con dos eventos de magmatismo de arco: el magmatismo del Macizo de Santander característicamente peraluminoso y el magmatismo del Valle Superior del Magdalena-serranía de San Lucas-Sierra Nevada de Santa Marta, que varía de metaluminoso, en las facies iniciales, a peraluminoso en las facies finales.

La posición geotectónica no es muy clara todavía, puesto que dependerá de las edades que se obtengan del basamento metamórfico, en este caso específico, las edades en la unidad denominada Anfibolita de Sanín Villa. En caso de obtener edades proterozoicas en la Anfibolita de Sanín Villa, la Tonalita de San Martín se habría emplazado en el basamento Neo a Mesoproterozoico del Terreno Chibcha y la correlación se establecería con el magmatismo jurásico del valle superior del Magdalena-serranía de San Lucas-Sierra Nevada de Santa Marta; en caso de obtener edades del Paleozoico, la correlación se establecería con los plutones triásico-jurásicos del Macizo de Santander.

La Tonalita de San Martín se correlaciona por edad con ambos plutonismos, es decir, la edad está en los pulsos finales del magmatismo peraluminoso del Macizo de Santander y en los pulsos iniciales del magmatismo metaluminoso a peraluminoso del valle superior del Magdalena-serranía de San Lucas-Sierra Nevada de Santa Marta.

En este sentido, la correlación con los plutones del Macizo de Santander se establecería con el Monzogranito de Santa Bárbara (Rodríguez *et al.*, 2018), el Monzogranito de La Corcova (Rodríguez *et al.*, 2016); el Monzogranito de Rionegro (Van der Lelij, 2013; Arango *et al.*, 2016); la Tonalita y Granodiorita de Páramo Rico (Van der Lelij, 2013; Mantilla *et al.*, 2013; Rodríguez *et al.*, 2017); el Batolito de Mogotes (Correa Martínez *et al.*, 2016) y el Granito de Pescadero (Zapata *et al.*, 2016) (tabla 10).

Tabla 10. Edades U/Pb en circones de cuerpos plutónicos del Macizo de Santander

N. muestra	w	N	Clasificación	Unidad	Edad
AMC-0162	1137867	1206436	Monzogranito deformado	Batolito de Mogotes	189,1±3,6
GZ-6831	1140363	1206394	Cuarzomonzodiorita deformada	Batolito de Mogotes	193,7±1,3
LMC-075	1131045	1208090	Monzogranito	Batolito de Mogotes	195,7±3,9
MIA-638	1126040	1217144	Monzogranito	Batolito de Mogotes	200,4±2,2
TCR-376	1124265	1231161	Monzogranito	Batolito de Mogotes	202,5±1,3
MIA-636	1122841	1230947	Monzogranito micrográfico	Batolito de Mogotes	205,4±3,0
GZ-6823	1117247	1257175	Monzogranito	Granito de Pescadero	194,8±3,2
GZ-6824	1119450	1253741	Monzogranito	Granito de Pescadero	197,3±2,4
AMC-0131	1114638	1284010	Sienogranito	Monzogranito de La Corcova	192,5±2,6
JGB-456B	1126023	1260523	Cuarzodiorita	Monzogranito de La Corcova	201,6±4,0
LMC-077	1112260	1283759	Monzogranito	Monzogranito de La Corcova	204,8±6,1
MIA-630B	1114060	1270011	Cuarzodiorita	Monzogranito de La Corcova	202,7±1
MIA-650B	1099011	1313300	Sienogranito	Monzogranito de Rionegro	184,1±2,3
LMC-082	1087830	1343414	Diorita	Monzogranito de Rionegro	189,9±1,6
GR-6743	1083826	1397465	Granodiorita-monzogranito	Monzogranito de Rionegro	195,9±1,6
GZ-6848A	1094474	1337677	Granodiorita	Monzogranito de Rionegro	196,6±2,1
LMC-084	1088404	1339424	Granodiorita con hornblenda	Monzogranito de Rionegro	200,8±1,9
AMC-0137	1126567	1238901	Monzogranito	Monzogranito de Santa Bárbara	191,7±1,2
JGB-457A	1126936	1261464	Monzogranito	Monzogranito de Santa Bárbara	195,1±1,9
GR-6719	1138272	1285445	Monzogranito	Monzogranito de Santa Bárbara	196,8±2,0
GZ-6821	1129543	1257204	Monzogranito	Monzogranito de Santa Bárbara	198,0±2,7
GR-6718	1135523	1280563	Monzogranito	Monzogranito de Santa Bárbara	203,8±2,7
GR-6729	1135094	1204469	Fenodacita	Riolita de San Joaquín	201,0±2,1
MIA-641	1141203	1206200	Riolita porfídica	Riolitas El Uvo	197,2±1,6
TCR-395A	1075180	1368544	Metatonalita	Tonalita de San Martín	197,9±3,0
LMC-088	1069983	1392339	Granodiorita	Tonalita de San Martín	198,0±2,8
TCR-363	1130187	1289698	Granodiorita	Tonalita de Páramo Rico	206,8±1

8. Localidad tipo

Para la Tonalita de San Martín se propone como localidad tipo la quebrada Torcoromita, en su parte norte, en el municipio de San Martín, plancha 86, Ábrego. En este sector, la unidad muestra afloramientos continuos de fácil acceso.

9. Génesis

Los mayores valores de los elementos litófilos de alto radio iónico (LILE) Cs, Ba y Th indican que la génesis del plutón tiene afinidad con márgenes convergentes. Valores mayores en Sr, K, Ba y Rb y anomalías negativas de Nb, Ti y P son características de arcos continentales relacionados con ambientes de subducción; además, presentan anomalía negativa de Nb con respecto al Th y Ce, signatura geoquímica típica de magmas originados en ambientes tectónicos relacionados a arcos calcoalcalinos.

La Tonalita de San Martín se correlaciona por edad con dos eventos de plutonismo regionales diferentes; es decir, la edad está relacionada con los pulsos finales del magmatismo peraluminoso del Macizo de Santander y los pulsos iniciales del magmatismo metaluminoso a peraluminoso del valle superior del Magdalena-serranía de San Lucas-Sierra Nevada de Santa Marta. La localización geotectónica corresponde al límite de estos dos eventos. La afinidad de las muestras analizadas de la Tonalita de San Martín con magmas peraluminosos sugiere una probable correlación con el magmatismo triásico-jurásico del Macizo de Santander, correlación que se fundamenta en los datos de Rodríguez et al. (2017), donde se muestra que los pulsos iniciales del magmatismo jurásico del valle superior del Magdalena inicialmente formaron plutones metaluminosos y evolucionaron a plutones peraluminosos.

La Tonalita de San Martín presenta rocas que varían entre dioritas y granitos, lo cual sugiere diferenciación magmática y cristalización fraccionada, con presencia de minerales fraccionados como hornblenda y plagioclasa. A diferencia de otros plutones triásico-jurásicos del macizo de Santander (MS), la Tonalita de San Martín presenta escasa herencia en los circones analizados (un solo núcleo de edad neoproterozoica), mientras los demás plutones del MS presentan xenocristales con edades que van desde 1.873,1 ±105 (Mesoproterozoico) hasta aproximadamente 220 Ma (Triásico inferior), lo que sugiere un posible emplazamiento de este intrusivo asociado al basamento neoproterozoico del Terreno Chibcha. La Tonalita de San Martín está constituida por rocas con ortosa pertítica, textura común en rocas plutónicas que se forman en ambientes de temperaturas intermedias.

10. Recursos minerales

La alteración meteórica de este cuerpo intrusivo es profunda y desarrolla perfiles de suelo y saprolito espeso, con desarrollo de saprolito de contextura arenosa, que permite localmente la extracción de material que se utiliza en la construcción como arena de mortero.

La Tonalita de San Martín presenta abundantes fracturas y un color de la roca blanco moteado de negro, que hacen de este cuerpo poco atractivo para piedra ornamental.

La Tonalita de San Martín no exhibe características petrográficas y geoquímicas que indiquen una alteración hidrotermal en los sitios visitados. Con el fin de evaluar el potencial mineral de la unidad se interpretaron algunos datos de los resultados de química de roca total a partir de las cinco muestras analizadas, utilizando diagramas que son reconocidos como indicadores de fertilidad de las rocas. En el diagrama de Rb versus Ba (figura 22), adaptado por El-Sheshtawi *et al.* (1999) del diagrama original de Mason (1966), se aprecia que las muestras pertenecen al campo de los granitos estériles.

Figura 22. Diagrama de variación de Rb versus Ba en roca total (Mason, 1966 adaptado por El-Sheshtawi *et al.*, 1999) El símbolo azul corresponde a una roca de dique

Fuente: Mason (1966), adaptado por El-Sheshtawi *et al.* (1999) y autores

Conclusiones

Este catálogo presenta nueva información de la Tonalita de San Martín y mejora el conocimiento petrográfico, litogeoquímico y geocronológico del cuerpo plutónico.

Petrográficamente, las muestras de esta unidad litológica tienen una composición variable entre dioritas-cuarzodioritas-cuarzomonzonitas y tonalitas-granodioritas-monzogranitos. Están compuestas principalmente por plagioclasa (22% a 61%), pueden tener feldespato alcalino (0% a 49%) y, en menor proporción, cuarzo (4% a 48%), hornblenda, biotita y, en rocas intermedias, clinopiroxeno. Como minerales accesorios presentan apatito, opacos, titanita y allanita.

Los valores de SiO₂ varían entre 65,2 wt% y 74,96 wt%; el Al₂O₃, Fe₂O₃, MgO, Na₂O y CaO disminuye con el aumento de SiO₂; el K₂O varía entre 1,69 wt% y 3,26 wt%; el CaO varía entre 0,41 wt% y 2,05 wt%; MgO < 1 wt% y TiO₂ < 0,7 wt%; las razones K₂O/Na₂O > 1; presentan contenido de álcalis (Na₂O + K₂O)> 7, características que sugieren cristalización fraccionada de hornblenda y plagioclasa.

Al analizar el comportamiento de los patrones de tierras raras (REE), las rocas tienen un patrón de REE no paralelo, con un empobrecimiento progresivo de las tierras raras. Varía el patrón de una muestra a otra y solamente presentan en común la pendiente negativa, que sugiere que se generaron en un ambiente de arco continental.

La Tonalita de San Martín muestra empobrecimiento de los elementos inmóviles Nb, Sr, Ti y P, que puede corresponder a separación de fases minerales accesorias como titanita, rutilo, circón y apatito, reflejo de la evolución magmática (Winter, 2001). Los mayores valores de los elementos litófilos Cs, Ba y Th indican una afinidad de corteza continental (márgenes convergentes), y las anomalías negativas de Nb, Ti y P son características de arcos magmáticos relacionados con ambientes de subducción, con empobrecimiento progresivo.

Las edades de cristalización obtenidas por el método U/Pb LA-ICPMS en circones de dos rocas de la masa principal indican una edad de cristalización entre 198,9±1,8 Ma y 198,0±2,8 Ma, y presencia de diques dacíticos que cristalizaron hacia 197,1±2,0 Ma.

Referencias

- Arango, M. I., Rodríguez, G., Zapata G. y Correa, A. M. (2016). Catálogo Monzogranito de Rionegro, cordillera Oriental, departamento Santander. Medellín: Servicio Geológico Colombiano.
- Arias, A. y Vargas, R. (1978). Geología de las planchas 86, Ábrego, y 97, Cáchira, departamento de Santander. Memoria explicativa, Escala 1:100.000. Bogotá: Servicio Geológico Colombiano.
- Clavijo, J. (1994). Mapa geológico generalizado del departamento de Norte de Santander. Memoria explicativa. Escala 1:250.000. Informe. Ingeominas.
- Clavijo, J., Mantilla, F. L. C., Pinto, J., Bernal, L. y Pérez, A. (2008). Evolución geológica de la serranía de San Lucas, norte del valle medio del Magdalena y noroeste de la cordillera Oriental. *Boletín de Geología*, 30 (1), 45-62.
- Cordani, U. G., Cardona, A., Jiménez, D. M., Liu, D. y Nutman, A. P. (2005). Geochronology of Proterozoic basement inliers in the Colombian Andes: Tectonic history of remnants of a fragmented Grenville belt. *Geological Society, London, Special Publications*, 246, 329-346. https://doi.org/10.1144/GSL. SP.2005.246.01.13
- Correa Martínez, A. M., Rodríguez, G., Arango, M. I., Zapata, G. y Bermúdez J. G. (2016). *Catálogo de unidades litoestratigráficas de Colombia: Batolito de Mogotes*. Medellín: Servicio Geológico Colombiano.
- Droop, G. (1987). A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. *Mineralogical Magazine*, 51 (361), 431-435. https://doi.org/10.1180/minmag.1987.051.361.10
- El-Sheshtawi, Y. A., Youssef, F., Ammar, F. A., Hassaan, M. M. y Sakr, S. M. (1999). Petrography and geochemistry of some granites and their metavolcanic country rocks in the Central Eastern Desert, Egypt. The proceeding of 1st Seminar of nuclear raw material and their technology. Cairo, Egypt, 1-3.
- Etayo, F., Barrero, D., Lozano, H., Espinosa, A., González, H., Orrego, A., Ballesteros, I., Forero, H. y Ramírez, C. (1983). *Mapa de terrenos geológicos de Colombia*. Publicaciones Geológicas Especiales del Ingeominas, n.º 14, 235.

- Frost, R. B., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. y Frost, C. D. (2001). A geochemical classification for granitic rocks. *Journal of Petrology*, 42 (11), 2033-2043. https://doi.org/10.1093/petrology/42.11.2033
- Girardi, D. J. (2008). Evolution of magmas and magma sources to the Coast Mountains batholith, British Columbia, Canada, reflected by elemental and isotopic geochemistry [MSc. Thesis]. University of Arizona.
- Goldsmith, R., Marvin, R. F. y Mehnert, H. H. (1971). Radiometric ages in the Santander Massif, Eastern Cordillera, Colombian Andes. U.S. Geological Survey Professional Paper, 750 (D), 44-49.
- Hastie, A. R., Kerr, A. C., Pearce, J. A. y Mitchell, S. F. (2007). Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. *Journal of Petrology*, 48 (12), 2341-2357. https://doi. org/10.1093/petrology/egm062
- Hoskin, P. W. y Schaltegger, U. (2003). The composition of zircon and igneous and metamorphic petrogenesis. *Reviews in Mineralogy and Geochemistry*, 53 (1), 27-62. https://doi.org/10.2113/0530027
- International Subcommision on Stratigraphic Classification. (1987). Stratigraphic classification and nomenclature of igneous and metamorphic rock bodies. *GSA Bulletin*, 99 (3), 440-442. https://doi.org/10.1130/0016-7606(1987)99<440:SCANOI>2.0. CO;2
- International Subcommision on Stratigraphic Classification. (1994). International Stratigraphic Guide: A guide to stratigraphic classification, terminology and procedure. 2nd ed. Boulder: Geological Society of America. https://doi.org/10.1130/9780813774022
- Irvine, T. N. y Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rock. *Canadian Journal of Earth Sciences*, 8 (5), 523-548. https://doi.org/10.1139/e71-055
- Janoušek, V., Farrow, C. M. y Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing Geochemical Data Toolkit (GCDkit). *Journal of Petrology*, 47 (6), 1255-1259. https://doi.org/10.1093/petrology/egl013
- Leal Mejía, H. (2011). *Phanerozoic gold metallogeny in the Colombian Andes: A tectono- magmatic approach* [Ph. D. thesis]. Universitat de Barcelona.

- Ludwig, K. R. (2008). *Isoplot version 4.15: A geochronological toolkit for Microsoft Excel.* Special Publication n.° 4. Berkeley Geochronology Center.
- Ludwig, K. R. (2012). User's Manual for Isoplot 3.75-4.15. A Geochronological Toolkit Microsoft Excel. Special Publication n.° 5. Berkeley Geochronology Center.
- Mantilla, L. C., Bissig, T., Valencia. V. y Hart , C. (2013). The magmatic history of the Vetas-California mining district, Santander Massif Eastern Cordillera, Colombia. *Journal of South American Earth Scien*ces, 45, 235-249. https://doi.org/10.1016/j.jsames.2013.03.006
- Mantilla, L. C., García, C. A. y Valencia, V. (2016). Propuesta de escisión de la llamada "Formación Silgará" (Macizo de Santander) Colombia, a partir de edades U/Pb en circones detríticos. *Boletín de Geología*, 38 (1), 33-47. https://doi.org/10.18273/revbol.v38n1-2016002
- Mason, B. (1966). *Principles of geochemistry*. New York: John Wileys & Sons.
- McDonough, W. F. y Sun S. S. (1995). The composition of the Earth. *Chemical Geology*, 120 (1-3), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
- Middlemost, E. (1994). Naming materials in magma-igneous rock system. Earth-Science Reviews, 37 (3-4), 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
- Middlemost, E. A. K. (1985). *Magmas and Magmatic Rocks. An Introduction to Igneous Petrology*. London, New York: Longman.
- Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. *Geochimica et Cosmochimica Acta*, 38 (5), 757-775. https://doi.org/10.1016/0016-7037(74)90149-5
- Ordóñez Cardona, O., Restrepo Álvarez, J. J. y Pimentel, M. M. (2006). Geochronological and isotopical review of pre-Devonian crustal basement of the Colombian Andes. *Journal of South American Earth Sciences*, 21 (4), 372-382. https://doi.org/10.1016/j. jsames.2006.07.005
- Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A. y Maas, R. (2010). Improved laser ablation U/Pb zircon geochronology through robust downhole fractionation correction. *Geochemistry Geophysics Geosystems*, 11 (3). https://doi.org/10.1029/ 2009GC002618

- Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. *Lithos*, 100 (1-4), 14-48. https://doi.org/10.1016/j. lithos.2007.06.016
- Pearce, J. A., Harris, N. W. y Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. *Journal of Petrology*, 25 (4), 956-983. https://doi.org/10.1093/petrology/25.4.956
- Peccerillo, A. y Taylor, T. S. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey. *Contributions to Mineralogy and Petrology*, 58 (1), 63-81. https://doi. org/10.1007/BF00384745
- Petrus, J. A. y Kamber, B. S. (2012). VizualAge: A novel approach to laser ablation ICP-MS U/Pb geochronology data reduction. *Geostandards and Geoanalytical Research*, 36 (3), 247-270. https://doi.org/10.1111/ j.1751-908X.2012.00158.x
- Restrepo Pace, P., Ruiz, J., Gehrels, G. y Cosca, M. (1997). Geochronology and Nd isotopic data of the Grenville-age rocks in the Colombian Andes: New constraints for late Proterozoic-early Paleozoic paleocontinental reconstructions of the Americas. *Earth and Planetary Science Letters*, 150 (3-4), 427-441. https://doi.org/10.1016/S0012-821X(97)00091-5
- Restrepo, J. J. y Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. *Episodes*, 11 (3), 189-193. https://doi.org/10.18814/epiiugs/1988/v11i3/006
- Restrepo, J. J., Ordóñez Carmona, O., Armstrong, R. y Pimentel, M. M. (2011). Triassic metamorphism in the northern part of the Tahamí Terrane of the Central Cordillera of Colombia. *Journal of South American Earth Sciences*, 32 (4), 497-507. https://doi.org/10.1016/j.jsames.2011.04.009
- Ríos, C., García, C. y Takusa, A. (2003). Tectono-metamorphic evolution of the Silgara Formation metamorphic rocks in the Southwestern Santander Massif, Colombian Andes. *Journal of South American Earth Sciences*, 16 (2), 133-154. https://doi. org/10.1016/S0895-9811(03)00025-7
- Rodríguez, Correa, A. M., Zapata, G. y Arango, M. I. (2018). Catálogo Monzogranito de Santa Bárbara, cordillera Oriental, departamento Santander. Medellín: Servicio Geológico Colombiano.

- Rodríguez, G., Correa, A. M., Zapata, G. y Arango, M. I. (2016). *Catálogo Cuarzomonzonita La Corcova, cordillera Oriental, departamento Santander*. Medellín: Servicio Geológico Colombiano.
- Rodríguez, G., Zapata, G., Correa Martínez, A. M. y Arango, M. (2017). *Caracterización del magmatismo triásico-jurásico del Macizo de Santander*. Medellín: Servicio Geológico Colombiano.
- Rubatto, D. (2002). Zircon trace element geochemistry: Partitioning with garnet and the link between U/ Pb ages and metamorphism. *Chemical Geology*, 184 (1-2), 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2
- Rubatto, D. (2017). Zircon: The metamorphic mineral. *Reviews in Mineralogy and Geochemistry*, 83 (1), 261-295. https://doi.org/10.2138/rmg.2017.83.9
- Shand, S. J. (1943). Eruptive rocks: Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. New York: John Wiley & Sons.
- Smith, J. V. y Brown, W. L. (1988). Feldspar minerals. I. crystal structures, physical, chemical and microtextural properties. Berlin: Springer-Verlag. https://doi. org/10.1007/978-3-642-72594-4
- Solari, L., Gómez Tuena, A., Bernal, J., Pérez Arvizu, O. y Tanner, M. (2010). U/Pb zircon geochronology with an integrated LA-ICP-MS microanalytical workstation: Achievements in precision and accuracy. *Geostandards and Geoanalytical Research*, 34 (1), 5-18. https://doi.org/10.1111/j.1751-908X.2009.00027.x
- Stacey, J. S. y Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a 2-Stage model. *Earth and Planetary Science Letters*, 26 (2), 207-221. https://doi.org/10.1016/0012-821X(75)90088-6
- Streckeisen, A. (1976). Classification and nomenclature of plutonic rocks. *Geologische Rundschau*, 63 (2), 773-786. https://doi.org/10.1007/BF01820841
- Sun, S. y Mcdonough, W. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. En A. Sanders y M. Norry (eds.), *Magmatism in oceanic basins*, vol. 42. Londres: The Geological Society. https://doi.org/10.1144/GSLSP.1989.042.01.19
- Van der Lelij, R. (2013). Reconstructing North-Western Gondwana with implications for the evolution of the lapetus and Rheic Oceans: A geochronological, thermo-

chronological and geochemical study [Tesis de doctorado]. Université de Genéve.

- Van der Lelij, R., Spikings, R., Ulianov, A., Chiaradia, M. y Mora, A. (2016). Palaeozoic to early Jurassic history of the Northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. *Gondwana Research*, 31, 271-294. https://doi.org/10.1016/j.gr.2015.01.011
- Vargas, R. y Arias, A. (1981). *Geología de la Plancha 86 Ábrego. Escala 1:100.000*, versión digital 2009. Ingeominas.
- Villaseca, C., Barbero, L. y Herreros. V. (1998). A reexamination of the typology of peraluminous granite types in intracontinental orogenic belts. *Earth* and Environmental Science Transactions of The Royal Society of Edinburgh, 89 (2), 113-119. https://doi. org/10.1017/S0263593300007045
- Wang, Q., Zhu, D. C., Zhao, Z. D., Guan, Q., Zhang, X. Q., Sui, Q. L., Chu Hu, Z. y Mo, X. X. (2012). Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. *Journal of Asian Earth Sciences*, 53, 59-66. https://doi.org/10.1016/j. jseaes.2011.07.027
- Ward, D., Goldsmith, R., Cruz, J. y Restrepo, A. (1973). Geología de los cuadrángulos H-12 Bucaramanga y H-13 Pamplona, departamento de Santander. *Bo-letín Geol*ógico, 21 (1-3), 1-132.
- Winter, J. (2001). An introduction to igneous and metamorphic petrology. New Jersey: Prentice Hall.
- Zapata, G., Correa, A. M., Rodríguez, G. y Arango, M. I. (2016). *Catálogo de unidades litoestratigráficas de Colombia: Granito de Pescadero*. Medellín: Servicio Geológico Colombiano.

ANEXO A

Edades U/Pb de la Tonalita de San Martín. Muestras TCR-395A (IGM 901032), LMC-088 (IGM-901002) y LMC-090B (IGM 901004)

TCR-395A. Análisis isotópicos U/Pb en circón. Laboratorio de la UNAM

Zr	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Correlación de errores	²⁰⁸ Pb/ ²³² Th	±2s abs	Disc %	Error	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Best age	±2s
Zr-126	30	25.99	0.87	0.142	0.032	0.63	0.16	0.0331	0.0022	0.18729	0.0164	0.0035	56.612	11.47%	210	13	484	72	2180	250	2180	250
Zr-121	33,45	20,09	0,60	0,121	0,021	0,442	0,074	0,0293	0,0025	0,1136	0,017	0,0032	50,532	18,72%	186	16	376	52	1870	350	1870	350
Zr-127	52,7	50,5	0,96	0,084	0,011	0,36	0,044	0,0312	0,0011	0,07401	0,01138	0,0009	35,327	3,44%	198	6,8	306	31	1220	220	197,9	6,8
Zr-147	86,4	49,7	0,58	0,0807	0,0099	0,37	0,05	0,0324	0,001	0,03504	0,0159	0,0014	35,110	3,11%	206	6,4	317	34	1150	220	205,7	6,4
Zr-134	43,51	31,13	0,72	0,082	0,01	0,385	0,044	0,0345	0,0016	0,091984	0,0158	0,0013	32,708	4,44%	219	9,7	325	32	1140	270	218,7	9,7
Zr-137	157	295	1,88	0,0744	0,0046	0,286	0,019	0,027	0,0008	0,040921	0,00779	0,00048	32,134	2,85%	172	4,9	253	15	1080	130	171,7	4,9
Zr-129	60,1	36,76	0,61	0,073	0,023	0,31	0,15	0,0326	0,0017	0,39084	0,0133	0,0035	23,616	5,31%	207	11	271	84	940	340	207	11
Zr-139	40,92	38,7	0,95	0,069	0,013	0,298	0,058	0,0316	0,0012	0,043846	0,01132	0,00097	20,791	3,59%	200	7,2	253	45	770	400	200,4	7,2
Zr-116	45	28,4	0,63	0,063	0,011	0,272	0,041	0,0307	0,0015	0,08091	0,0106	0,0011	18,708	4,92%	195	9,6	240	32	650	330	195,1	9,6
Zr-125	29,33	28,4	0,97	0,066	0,031	0,29	0,16	0,0317	0,0023	0,045102	0,0112	0,0028	17,959	6,97%	201	14	245	89	680	470	201	14
Zr-141	37,71	23,46	0,62	0,0622	0,0083	0,253	0,034	0,0305	0,0016	0,094865	0,0125	0,0011	16,147	5,01%	194	9,7	231	27	660	260	193,7	9,7
Zr-140	64,7	62,7	0,97	0,06	0,05	0,24	0,43	0,0314	0,0036	0,33331	0,0102	0,0093	9,545	11,06%	199	22	220	160	460	520	199	22
Zr-122	99,3	57,7	0,58	0,0552	0,005	0,217	0,019	0,02908	0,0009	0,016108	0,01002	0,00079	6,667	3,19%	185	5,9	198	15	370	180	184,8	5,9
Zr-130	70	70	1,00	0,0526	0,0067	0,221	0,029	0,0297	0,0011	0,349	0,00942	0,00073	5,750	3,50%	189	6,6	200	23	240	250	188,5	6,6
Zr-120	80,4	73,6	0,92	0,054	0,0065	0,214	0,023	0,0306	0,001	0,085716	0,01058	0,00079	0,256	3,29%	195	6,4	195	19	280	230	194,5	6,4
Zr-117	55,82	79,1	1,42	0,0518	0,0064	0,216	0,025	0,0308	0,0014	0,001299	0,00961	0,00062	2,400	4,35%	195	8,5	200	21	250	260	195,2	8,5
Zr-148	31,8	19,9	0,63	0,049	0,0095	0,218	0,041	0,0308	0,0018	0,25211	0,01	0,0012	1,508	5,61%	196	11	199	33	90	350	196	11
Zr-144	63,3	66,6	1,05	0,0534	0,0091	0,224	0,035	0,031	0,0012	0,11906	0,0105	0,0007	1,650	3,66%	197	7,2	200	30	130	340	196,7	7,2
Zr-149	70,3	78,7	1,12	0,0557	0,0081	0,247	0,033	0,03101	0,0009	0,026328	0,01128	0,00074	10,545	3,00%	197	5,9	220	27	410	290	196,8	5,9
Zr-135	52,4	69,6	1,33	0,0551	0,0072	0,237	0,034	0,0311	0,0016	0,072487	0,01076	0,00086	11,659	5,08%	197	10	223	28	390	240	197	10
Zr-142	49,7	34,6	0,70	0,0585	0,0086	0,245	0,033	0,0311	0,0013	0,006182	0,01165	0,00098	11,570	4,01%	197	7,9	223	27	390	310	197,2	7,9
Zr-115	115,4	100,2	0,87	0,052	0,0054	0,229	0,024	0,03127	0,0009	0,017319	0,00907	0,00063	5,476	2,87%	199	5,7	210	19	370	200	198,5	5,7
Zr-123	48,2	39,5	0,82	0,0536	0,0076	0,233	0,032	0,0314	0,0013	0,22372	0,01035	0,00088	4,737	4,02%	199	8	209	26	290	290	199,1	8
Zr-146	70,4	58,1	0,83	0,0531	0,0073	0,23	0,031	0,0314	0,001	0,20615	0,01023	0,00081	6,038	3,26%	199	6,5	212	26	320	280	199,2	6,5
Zr-136	79,8	63,5	0,80	0,0512	0,0055	0,221	0,021	0,0314	0,0011	0,044325	0,01063	0,00075	0,846	3,31%	199	6,6	201	17	230	210	199,3	6,6
Zr-128	58,4	33	0,57	0,0518	0,0067	0,232	0,029	0,0314	0,0014	0,15443	0,01037	0,00095	4,593	4,26%	199	8,5	209	23	240	270	199,4	8,5
Zr-133	45,51	38,8	0,85	0,0498	0,0076	0,223	0,03	0,0315	0,0014	0,12499	0,00979	0,00089	0,498	4,40%	200	8,8	201	25	280	310	200	8,8
Zr-132	88	104	1,18	0,054	0,0057	0,226	0,021	0,0315	0,0011	0,13815	0,00974	0,00058	2,864	3,50%	200	7	206	17	300	220	200,1	7
Zr-119	77	70,1	0,91	0,0519	0,0065	0,232	0,024	0,0318	0,0011	0,10655	0,00938	0,00069	4,000	3,52%	202	7,1	210	20	270	230	201,6	7,1
Zr-131	50,4	48,7	0,97	0,057	0,011	0,251	0,04	0,032	0,0012	0,2824	0,0098	0,0013	12,208	3,65%	203	7,4	231	35	460	300	202,8	7,4
Zr-118	59,49	61,3	1,03	0,0475	0,008	0,202	0,036	0,032	0,0013	0,024965	0,0098	0,00079	-10,217	3,94%	203	8	184	29	-20	310	202,8	8
Zr-124	66,1	55,8	0,84	0,053	0,007	0,232	0,029	0,032	0,0012	0,043384	0,00956	0,00092	2,871	3,69%	203	7,5	209	24	300	250	203	7,5
Zr-145	82	96	1,17	0,0498	0,0071	0,217	0,03	0,0321	0,0013	0,086377	0,00973	0,00081	-1,900	4,07%	204	8,3	200	25	180	280	203,8	8,3
Zr-143	44,32	40,41	0,91	0,0469	0,0069	0,213	0,031	0,0323	0,0018	0,039969	0,01158	0,00086	-7,330	5,37%	205	11	191	26	50	290	205	11
Zr-138	100,1	82,7	0,83	0,0541	0,0057	0,237	0,024	0,0323	0,0011	0,10323	0,00967	0,00059	5,91743	3,36%	205	6,9	218	20	350	230	205,1	6,9

LMC-088. Análisis isotópicos U/Pb en circón, Laboratorio SGC

Identificación	Relación	Error interno	Relación	Error interno	Ajuste error	Error de	Edad	Edad Ph	0/	Edad		Poloción
Muestra	final Pb	Pb 207/U 235	final Pb	Pb 206/U 235	(datos	Pb 206/U 238 vs.	corregida Pb	207/U 235 (Ma)	discordia	corregida Pb	± 2σ	final U/Th
	207/0 235	a 2 D.E.	200/0 230	a 2 D.E.	negativos)	Pb 207/U 235	206/U 238 (Ma)			200/U 200 (Ma)		
LMC_088_46	5,4000	1,0000	0,08190	0,00960	0,7764	0,77641	250,45	1.860,00	642,66	250,45	56.68	3.14
LMC_088_22	2,9800	0,2400	0,05330	0,00230	0,6724	0,67236	191,01	1.361,00	612,52	191,01	18.87	1.28
LMC_088_40	2,2900	0,3000	0,04810	0,00280	0,6446	0,64456	200,73	1.147,00	471,43	200,73	18.64	1.02
LMC_088_48	2,0900	0,2000	0,04570	0,00190	0,7676	0,76764	192,47	1.087,00	464,77	192,47	14.96	2.22
LMC_088_11	1,6900	0,1100	0,04370	0,00140	0,4606	0,46062	193,61	999,00	416,00	193,61	12.72	1.07
LMC_088_20	1,2900	0,1200	0,04140	0,00150	0,3752	0,37518	204,81	790,00	285,72	204,81	12.78	0.91
LMC_088_34	0,7380	0,0560	0,03176	0,00071	0,4358	0,43575	172,82	554,00	220,56	172,82	7.31	1.35
LMC_088_9	0,9100	0,1100	0,03780	0,00150	0,7368	0,73675	206,94	593,00	186,56	206,94	11.88	2.04
LMC 088 17	0,6740	0,0630	0,03300	0,00120	0,4564	0,45635	182,65	513,00	180,87	182,65	9.34	1.24
LMC 088 33	0.5120	0.0510	0.03350	0.00100	0.0213	0.02126	196.99	435.00	120.82	196.99	8.95	1.08
LMC 088 52	0.6130	0.0740	0.03470	0.00110	0.4957	0.49565	202.08	436.00	115.76	202.08	9.57	1.47
LMC 088 21	0.5190	0.0620	0.03310	0.00120	0.3023	0.30228	193.10	405.00	109.74	193 10	8.98	1.25
LMC_088_12	0,5100	0.0490	0.02420	0,00002	0.0192	0.01924	200 52	411.00	104.05	200 52	0.00	1.05
LINC_088_13	0,5240	0,0400	0,03420	0,00093	0,0103	0.00104	104.17	411,00	100.96	104.17	0.32	1.00
LMC_088_12	0,5220	0,0600	0,03324	0,00093	0,2912	0,29124	194,17	390,00	100,86	194,17	8.48	1.13
LMC_088_18	0,5160	0,0500	0,03560	0,00100	0,1102	0,11018	210,06	412,00	96,13	210,06	8.94	0.97
LMC_088_1	0,5140	0,0550	0,03450	0,00096	0,8146	0,81458	203,17	391,00	92,45	203,17	8.79	1.67
LMC_088_6	0,4850	0,0630	0,03350	0,00094	0,3597	0,35966	197,52	369,00	86,82	197,52	8.56	1.48
LMC_088_23	0,3620	0,0350	0,02923	0,00086	0,0916	0,09163	176,18	306,00	73,69	176,18	7.60	1.21
LMC_088_50	0,4230	0,0470	0,03345	0,00095	0,4343	0,43427	201,09	345,00	71,57	201,09	8.36	1.36
LMC_088_42	0,3500	0,0320	0,03079	0,00065	0,2040	0,20404	187,44	299,00	59,52	187,44	7.04	1.61
LMC_088_39	0,3430	0,0250	0,03110	0,00072	0,2529	0,25294	190,02	297,00	56,30	190,02	6.95	0.75
LMC_088_10	0,3450	0,0390	0,03194	0,00084	0,1778	0,17775	195,21	292,00	49,58	195,21	7.77	1.24
LMC_088_41	0,3190	0,0290	0,03044	0,00072	0,1000	-0,00086	186,67	278,00	48,92	186,67	7.03	1.40
LMC_088_27	0,3470	0,0300	0,03226	0,00063	0,4715	0,47154	198,29	289,00	45,75	198,29	7.03	1.53
LMC_088_31	0,3430	0,0400	0,03131	0,00074	0,1839	0,18391	192,50	280,00	45,45	192,50	7.71	1.29
LMC_088_29	0,3164	0,0094	0,03096	0,00036	0,7488	0,74877	191,22	277,90	45,33	191,22	5.90	3.20
LMC_088_15	0,3650	0,0360	0,03366	0,00085	0,1804	0,18035	205,46	298,00	45,04	205,46	7.72	1.14
LMC_088_26	0,3610	0,0390	0,03386	0,00088	0,2376	0,23758	207,36	296,00	42,75	207,36	8.32	1.49
LMC_088_25	0,3700	0,0410	0,03427	0,00093	0,4102	0,41016	210,33	298,00	41,68	210,33	8.34	1.39
LMC 088 44	0,3670	0,0440	0,03390	0,00100	0,1963	0,19633	207,58	294,00	41,64	207,58	8.97	1.84
LMC 088 19	0.3140	0.0350	0.03323	0.00075	0.1000	-0.05541	205.63	288.00	40.06	205.63	7.76	0.81
LMC 088 36	0.3050	0.0230	0.03060	0.00059	0 1578	0 15781	189.60	264.00	39.24	189.60	6.39	1 10
LMC 088 38	0.3150	0.0280	0.03151	0.00068	0.2305	0.23051	194.69	271.00	39.20	194.69	7.03	1.64
LMC 088 3	0.2030	0.0340	0.03043	0.00075	0.1589	0.15886	187.01	253.00	34.64	187.01	7 13	1.48
LMC 088 24	0,2350	0,0340	0,03040	0,00070	0,1303	0,13000	200.17	265.00	22.20	200.17	7.10	1.40
LMC_088_14	0,3350	0,0300	0,03259	0,00070	0,3790	0,37900	200,17	203,00	22,39	200,17	7.12	0.92
LIVIC_086_14	0,3290	0,0340	0,03260	0,00078	0,4400	0,44679	203,35	209,00	52,20	203,35	7.07	0.02
LMC_088_2	0,2170	0,0140	0,02995	0,00056	0,0561	0,05612	189,22	200,00	5,70	189,22	6.38	0.91
LMC_088_4	0,2130	0,0170	0,02992	0,00050	0,0791	0,07907	189,41	196,00	3,48	189,41	6.29	1.10
LMC_088_45	0,2310	0,0240	0,03047	0,00081	0,2360	0,23603	191,73	209,00	9,01	191,73	7.66	0.99
LMC_088_49	0,2550	0,0290	0,03076	0,00077	0,3337	0,33365	192,79	219,00	13,60	192,79	7.71	1.17
LMC_088_37	0,2790	0,0250	0,03108	0,00070	0,2608	0,26078	193,82	246,00	26,92	193,82	7.03	1.64
LMC_088_35	0,2710	0,0260	0,03139	0,00063	0,1831	0,18312	196,55	233,00	18,55	196,55	7.05	0.97
LMC_088_30	0,2510	0,0230	0,03131	0,00062	0,2338	0,23379	196,89	221,00	12,25	196,89	7.04	1.74
LMC_088_5	0,2900	0,0340	0,03166	0,00081	0,1228	0,12281	197,20	255,00	29,31	197,20	7.73	1.22
LMC_088_43	0,3060	0,0330	0,03230	0,00089	0,1913	0,19133	200,61	261,00	30,10	200,61	8.29	1.41
LMC_088_8	0,2280	0,0220	0,03173	0,00063	0,1571	0,15711	200,73	205,00	2,13	200,73	7.08	0.85
LMC_088_51	0,2630	0,0230	0,03204	0,00065	0,0646	0,06460	201,33	235,00	16,72	201,33	7.05	1.12
LMC_088_55	0,2840	0,0250	0,03231	0,00058	0,0829	0,08285	201,87	254,00	25,82	201,87	7.04	1.20
LMC_088_53	0,2930	0,0320	0,03247	0,00094	0,3381	0,33806	202,50	247,00	21,97	202,50	8.29	1.38
LMC_088 16	0,2830	0,0380	0,03260	0,00110	0,2877	0,28769	203,12	237,00	16,68	203,12	9.01	0.94
LMC 088 47	0.2870	0.0350	0,03275	0.00093	0.1738	0.17380	203.90	239.00	17.22	203.90	8.37	1.59
LMC 088 32	0.3030	0.0390	0.03292	0.00095	0 1000	-0.08265	204 43	252.00	23.27	204 43	8 40	1 50
LMC 088 54	0.3180	0.0440	0 03321	0 00007	0 1000	_0.04001	204.70	263.00	28 48	204.70	8.52	1 49
IMC 089 29	0.2500	0.0260	0.03266	0.00087	0.2605	0.26047	205.30	200,00	0.10	205 30	7 00	1 60
LIVIO_000_20	0,2090	0,0200	0.03419	0,00007	0.0007	0.06975	200,02	071 00	3,10	200,02	0.00	1.02
	0,3050	0,0320	0,03418	0,00086	0,0087	0,00875	211,98	2/1,00	∠1,84	211,98	0.32	

LMC-090B.	Análisis	isotópicos	U/Pb en	circón.	Laboratorio	SGC
EIIIO 000D.	Ananoio	1001001000	0/1 0 011	01100111	Laboratorio	000

Identificación muestra	Relación final Pb ²⁰⁷ /U ²³⁵	Error interno relación final Pb ²⁰⁷ /U ²³⁵ a 2 D.E.	Relación final Pb ²⁰⁶ /U ²³⁸	Error interno relación final Pb ²⁰⁶ /U ²³⁵ a 2 D.E.	Ajuste error de correlación (datos negativos)	Error de correlación Pb ²⁰⁶ /U ²³⁸ vs. Pb ²⁰⁷ /U ²³⁵	Edad corregida Pb ²⁰⁶ /U ²³⁸ (Ma)	Edad Pb ²⁰⁷ /U ²³⁵ (Ma)	% discordia	Edad corregida Pb ²⁰⁶ /U ²³⁸ (Ma)	± 2σ	Relación final U/Th
LMC_90_B_37	0,91	0,17	0,0406	0,0024	0,12805	0,12805	218,971853	631	188,16489	218.97	16.58	3,4465195
LMC_90_B_21	0,545	0,062	0,0329	0,0011	0,3231	0,3231	190,902665	412	115,81679	190.90	8.20	1,8321429
LMC_90_B_20	0,494	0,042	0,03229	0,00084	0,27142	0,27142	188,50956	401	112,72131	188.51	6.77	1,4063444
LMC_90_B_34	0,467	0,083	0,0329	0,0021	0,2867	0,2867	194,526608	391	101,00078	194.53	13.70	2,2635659
LMC_90_B_4	0,495	0,095	0,0359	0,0022	0,085836	0,085836	213,787029	427	99,731482	213.79	15.02	2,1481481
LMC_90_B_6	0,408	0,042	0,032	0,001	0,18191	0,18191	192,070918	342	78,059231	192.07	7.51	2,2719679
LMC_90_B_29	0,427	0,071	0,0329	0,0016	0,056036	0,056036	196,336819	347	76,7371	196.34	11.51	2,6377953
LMC_90_B_24	0,403	0,036	0,03286	0,00096	0,088971	0,088971	197,961885	340	71,750234	197.96	7.47	1,6358382
LMC_90_B_27	0,382	0,049	0,031	0,0014	0,062864	0,062864	186,314451	311	66,922103	186.31	9.97	2,235239
LMC_90_B_13	0,369	0,035	0,03242	0,00079	0,044292	0,044292	196,966607	325	65,002588	196.97	6.95	2,5877378
LMC_90_B_14	0,388	0,061	0,0314	0,0013	0,029591	0,029591	189,192601	308	62,797064	189.19	9.69	2,2511905
LMC_90_B_19	0,369	0,042	0,03285	0,00086	0,27696	0,27696	200,794375	318	58,37097	200.79	6.98	2,5333333
LMC_90_B_26	0,34	0,025	0,03189	0,00081	0,18954	0,18954	194,804744	299	53,487022	194.80	6.83	2,2734761
LMC_90_B_16	0,349	0,039	0,03202	0,00099	0,20763	0,20763	195,541145	292	49,329186	195.54	7.59	2,2468514
LMC_90_B_15	0,312	0,022	0,03233	0,00069	0,29115	0,29115	199,679696	274	37,21976	199.68	6.25	2,0779944
LMC_90_B_22	0,307	0,027	0,0322	0,0011	0,071441	0,071441	198,783114	271	36,329487	198.78	8.14	1,7403509
LMC_90_B_38	0,31	0,03	0,0336	0,001	0,032117	0,032117	208,184105	275	32,094619	208.18	8.19	1,28
LMC_90_B_12	0,295	0,036	0,03161	0,00074	0,16731	0,16731	195,747295	257	31,291725	195.75	6.47	2,2542787
LMC_90_B_28	0,298	0,043	0,0326	0,0011	0,24494	0,24494	203,099389	265	30,47799	203.10	8.36	1,5017222
LMC_90_B_23	0,289	0,022	0,03322	0,00089	0,35226	0,35226	206,45334	259	25,452075	206.45	7.47	1,4530201
LMC_90_B_5	0,266	0,024	0,03119	0,00088	0,1762	0,1762	194,791477	237	21,668568	194.79	6.94	2,507837
LMC_90_B_7	0,263	0,018	0,03099	0,00052	0,14034	0,14034	193,895913	235	21,199048	193.90	5.54	2,3374827
LMC_90_B_17	0,24	0,022	0,02976	0,00069	0,32133	0,32133	187,350267	212	13,157031	187.35	6.17	1,6822323
LMC_90_B_8	0,197	0,014	0,03001	0,0005	0,17849	0,17849	191,061599	180	-5,7895458	191.06	5.35	2,8662675
LMC_90_B_3	0,224	0,024	0,03061	0,00093	0,10448	0,10448	193,710807	199	2,7304582	193.71	7.64	2,1219512
LMC_90_B_1	0,22	0,022	0,03072	0,00069	0,07878	0,07878	194,254943	201	3,4722706	194.25	6.33	1,3956159
LMC_90_B_36	0,228	0,031	0,03098	0,00098	0,028846	0,028846	195,590236	196	0,2095012	195.59	7.73	2,2294118
LMC_90_B_35	0,223	0,025	0,03122	0,00072	0,068466	0,068466	197,090475	194	-1,5680489	197.09	6.44	0,8566553
LMC_90_B_32	0,204	0,024	0,03108	0,00087	0,053768	0,053768	197,829959	181	-8,5072852	197.83	7.08	1,3668942
LMC_90_B_25	0,258	0,036	0,03154	0,00093	0,1	-0,0022221	198,023397	223	12,612956	198.02	7.75	1,9725686
LMC_90_B_33	0,192	0,026	0,03109	0,00095	0,1	-0,065805	198,920678	175	-12,025234	198.92	7.73	1,7514911
LMC_90_B_2	0,232	0,03	0,03159	0,00084	0,04663	0,04663	199,104736	206	3,4631341	199.10	7.10	2,3485477
LMC_90_B_10	0,179	0,021	0,03115	0,00076	0,057374	0,057374	199,447736	163	-18,274329	199.45	6.47	1,2022293
LMC_90_B_31	0,272	0,035	0,03197	0,00097	0,056999	0,056999	200,24371	236	17,856386	200.24	7.69	1,8661616
LMC_90_B_30	0,223	0,026	0,03182	0,00078	0,067439	0,067439	201,816248	198	-1,8909518	201.82	7.06	1,7964602
LMC_90_B_9	0,2	0,034	0,0318	0,001	0,029708	0,029708	202,140856	175	-13,426705	202.14	7.82	2,8836545
LMC_90_B_18	0,231	0,031	0,03196	0,00099	0,1452	0,1452	202,217625	210	3,8485148	202.22	7.71	2,3012658
LMC_90_B_11	1,723	0,078	0,1683	0,0051	0,38363	0,38363	999,265056	1.025	2,5753872	999.27	36.82	21,256039

ANEXO B

Análisis de elementos traza en circón. Muestra TCR-395A (IGM 901032)

TCR-395A. Análisis isotópicos de elementos traza en circón (ppm)

(ppm)	Р	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
Circón-115	1.150	9	1.810	5,4	7,1	48,4	2,4	14,5	6,6	0,86	30,1	11,17	144,1	60,3	291,2	622	131,6	10.310	3,888	100,2	115,4
Circón-117	697	13,67	3.208	2,23	0,161	24,01	0,39	6,83	13,14	5,45	69,5	23,73	280,3	108,9	482,8	937	193,9	7.830	1,8	79,1	55,82
Circón–118	410	8,65	1.135	1,91	0,135	14,29	0,122	1,45	2,95	0,593	16,26	6,86	84,1	36,57	181,9	403,4	86,8	9.500	1,975	61,3	59,49
Circón-119	674	9,49	2.485	5,87	0,131	35,02	0,163	2,52	6,09	1,68	44,6	16,36	214	86,6	396,8	740	151,2	8.870	2,565	70,1	77
Circón–120	720	8,71	2.766	5,07	0,002	37,6	0,145	2,92	7,29	1,86	52,6	19,17	245,3	97,3	435	798	161,7	8.540	2,613	73,6	80,4
Circón-122	321	7,01	1.462	5,45	0,102	18,52	0,042	0,92	2,92	0,432	18,81	7,91	109,2	47,45	241,4	540	118,4	10.680	3,058	57,7	99,3
Circón-123	1.150	12,24	2.351	3,52	10,4	47,2	4,4	25,1	11,2	2,51	49,1	16	204,4	81,5	377,5	715	150,5	8.690	1,593	39,5	48,2
Circón-124	713	7,13	2.220	2,3	0,06	17,27	0,17	3,1	6,07	1,47	39,5	14,1	185	74,1	346	701	144,1	9.710	2,185	55,8	66,1
Circón–128	700	7,62	1.212	2,34	4,5	24,4	1,45	8,1	4,04	0,454	18,2	6,73	95,5	40,9	199,9	442	97,2	11.120	1,965	33	58,4
Circón-130	1.114	10,71	2.726	5,12	3,21	42,7	1,51	9,4	9,03	2,23	52,2	19,09	240,8	95,6	426	780	156,2	8.280	2,208	70	70
Circón-131	600	150	1.392	4,17	0,4	14,63	0,236	2,11	2,82	0,44	22,1	8,44	108,9	44,8	215	452	95,3	10.580	1,598	48,7	50,4
Circón–132	490	7,32	1.590	3,99	0,019	26,9	0,052	1,59	3,93	0,67	25,1	9,9	128	54,4	257	519	108,8	10.950	2,95	104	88
Circón–133	530	11,37	2.711	2,25	0,027	12,24	0,25	4,18	8,49	3,38	56,3	19,98	240,7	97	429,2	775	158,4	7.333	1,505	38,8	45,51
Circón–135	560	11,18	2.005	2,64	0,139	21,68	0,226	2,74	5,9	2,62	40,5	14,8	178,1	70,2	312	556	111,4	7.660	1,7	69,6	52,4
Circón–136	493	7,61	1.725	3,59	0,065	17,52	0,059	1,31	3,18	0,8	24,5	9,61	131,5	56	275	591	126,1	10.050	2,663	63,5	79,8
Circón-138	884	7,81	2.324	3,92	0,311	27,19	0,156	2,36	5,19	0,78	39,3	14,33	189,5	79,2	371	751	159,3	11.450	3,48	82,7	100,1
Circón-142	470	7,34	1.333	3,18	0,031	23,6	0,033	0,88	2,81	0,488	20	8,03	108	45,9	220	462	98,1	10.650	1,613	34,6	49,7
Circón–143	570	9,99	2.934	2,7	0,017	18,25	0,239	4,57	9,73	3,52	57,4	21,19	257,9	101,2	448,7	807	164,9	7.710	1,54	40,41	44,32
Circón-144	640	9,48	2.080	3,78	0,029	26,9	0,111	2,46	5,31	1,79	39,9	14,32	184,9	71,3	326,6	604	123,3	8.490	2,04	66,6	63,3
Circón–145	644	7,32	1.830	3,75	0,186	25,1	0,151	2,59	4,18	0,83	29,8	11,2	149	61,5	293	606	127	10.150	2,775	96	82
Circón–146	1.070	12,1	2.663	6,2	6,2	49,8	2,81	17,1	10	2,06	50,4	17,62	228,8	94,6	433,7	822	171,2	8.860	2,255	58,1	70,4
Circón–148	300	9,36	938	2,14	0,28	11,29	0,052	0,52	1,77	0,375	13,7	5,71	74,8	31	151,4	322	68,2	9.580	1,028	19,9	31,8
Circón–149	320	10,5	2.754	2,36	0,144	19,74	0,362	6,29	11,43	3,61	61,2	20,87	247,3	95	426,3	827	169,8	9.360	2,22	78,7	70,3

Microfotografía de cuarzo bipiramidal en riolita de la unidad Riolita de San Joaquín, al NNE de San Joaquín, sección delgada IGM10903 Fotografía de Ana María Correa Martínez

4

RIOLITAS El UVO

» Cordillera Oriental Departamento de Santander

Gilberto Zapata, María Isabel Arango, Ana María Correa Martínez y Gabriel Rodríguez

Catálogo de las unidades litoestratigráficas de Colombia / Jurásico

Citación: Zapata, G., Arango, M. I., Correa Martínez, A. M. y Rodríguez, G. (2020). Riolitas El Uvo. En *Catálogos de las unidades litoestratigráficas de Colombia: Macizo de Santander*. Vol. 1. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585279445.7

En el desarrollo del proyecto Magmatismo Jurásico en el Macizo de Santander, llevado a cabo por el grupo de Estudios Geológicos Especiales de la regional Medellín del Servicio Geológico Colombiano, en el Batolito de Mogotes se encontró un cuerpo de riolitas que no estaba cartografiado ni referenciado en la bibliografía geológica. La mayor parte del cuerpo aflora en el extremo oriental-suroriental de la Plancha 136, Málaga, y en una menor proporción en el extremo nororiental la Plancha 152, Soata, planchas del Ingeominas a escala 1:100.000. Este cuerpo de rocas volcánicas compone una unidad geológica que se denominó Riolitas El Uvo.

En este catálogo se presentan las características del cuerpo subvolcánico Riolitas El Uvo, determinadas por el Servicio Geológico Colombiano (SGC), donde se incluyen su presencia en campo, datos petrográficos macro y microscópicos, geoquímicos y una datación geocronológica U/Pb en circón por el método LA-ICP-MS, las posibles correlaciones del cuerpo con otros semejantes de la región y un análisis general del potencial mineral de la unidad. Con el presente trabajo se pretende contribuir al conocimiento de la geología del Macizo de Santander y de los eventos magmáticos del Jurásico en Colombia.

1. Proponente del nombre

El nombre *Riolitas El Uvo* es propuesto por los autores del presente Catálogo, siguiendo las recomendaciones de la International Subcommission on Stratigraphic Classification of IUGS (1987, 1994). La denominación tiene en cuenta la litología dominante y el nombre geográfico de donde se describió originalmente la unidad.

2. Origen del nombre y distribución geográfica

El nombre de este cuerpo proviene de la composición modal dominante, que son rocas hipoabisales de composición riolítica y de su localización geográfica.

La unidad Riolitas El Uvo aflora en dos planchas geológicas del Ingeominas: 136, Málaga (Vargas *et al.*, 1984) y 152, Soatá (Vargas *et al.*, 1987), a escala 1:100.000, sobre la vía vereda Santa Fe-El Uvo, en el municipio de San Joaquín, departamento de Santander (figura 1) y se presenta como un cuerpo alargado en sentido norte-sur, con un área aproximada de 16 km².

3. Reseña histórica

Las Riolitas El Uvo no aparecen en la cartografía regional de las planchas 136, Málaga (Vargas *et al.*, 1984) y 152, Soatá (Vargas *et al.*, 1987), a escala 1:100.000, ni son mencionadas en la memoria de esas planchas (Vargas *et al.*, 1981), donde el área en la que aflora la unidad de riolitas está cartografiada y descrita como Cuarzomonzonita biotítica blanca a rosada (JRcm) o Batolito de Mogotes. En el presente trabajo se delimita su contorno con base en la cartografía de campo y fotointerpretación, se describe su litología y con petrografía se define la composición modal predominante.

4. Descripción geológica

Las Riolitas El Uvo afloran al oeste de la falla de Bucaramanga, en el sector suroccidental del Macizo de Santander, y están enmarcadas por el Monzogranito de Mogotes al cual intruyen.

4.1. Marco geológico

El Macizo de Santander, localizado en la cordillera Oriental de Colombia, está enmarcado por un bloque de forma triangular delimitado al occidente por las fallas de Santa Marta-Bucaramanga, al norte por la falla de Oca, y al oriente por la falla de Boconó.

El basamento del Macizo de Santander incluye rocas metamórficas del Neis de Bucaramanga (Ward *et al.*, 1973) conformado por paraneises migmatíticos de alto grado con edad proterozoica (García y Ríos, 1999; Ordóñez *et al.*, 2006) con un pico de metamorfismo en 1057±28 Ma U/Pb-Shrimp en circones, edad relacionada con la orogenia Grenvilliana. Estudios más recientes (Van der Lelij, 2013; Van der Lelij *et al.*, 2016; Zuluaga *et al.*, 2017; Rodríguez *et al.*, 2017) obtuvieron edades de metamorfismo de 477 Ma, correspondientes a la orogenia Caparonensis o Famatiniana.

Figura 1. Mapa geológico generalizado de parte de las planchas 136, Málaga, y 152, Soatá, a escala 1:100.000, donde se muestra ubicación de las Riolitas El Uvo, localización de las muestras con sección delgada, geoquímica y datación.

Fuente: modificado a partir de Vargas et al. (1984) y Vargas et al. (1987). Datos de este trabajo

Al neis lo suprayace la Formación Silgará, compuesta por ortoanfibolitas, esquistos, filitas, metalodolitas, metaareniscas y mármoles con edades de metamorfismo del Ordovícico inferior-medio (Forero, 1990; Ríos *et al.*, 2003; Ordóñez-Cardona *et al.*, 2006; Clavijo *et al.*, 2008; Mantilla *et al.*, 2013). Algunas edades U/Pb en circón muestran magmatismo posterior al metamorfismo, representado por metavulcanitas y plutones que intruyen el basamento metamórfico, con edades U/Pb en circón del Silúrico, Devónico inferior, Carbonífero y límite Triásico-Jurásico.

En el límite de los periodos Triásico y Jurásico, dentro del basamento metamórfico, en la margen occidental del Macizo de Santander, se desarrolló magmatismo de arco, con emplazamiento de cuerpos graníticos y riolíticos subvolcánicos (Goldsmith *et al.*, 1971; Ward *et al.*, 1973; Van der Lelij, 2013).

Las unidades sedimentarias cretácicas reposan inconformemente sobre el basamento metamórfico y los plutones. Durante el Mioceno se presentó un nuevo magmatismo, que emplazó pequeños cuerpos de pórfidos con mineralizaciones de oro (Leal Mejía, 2011; Mantilla *et al.*, 2013).

4.2. Características macroscópicas

Las Riolitas El Uvo son rocas faneríticas inequigranulares de grano medio a fino, porfídicas, leucocráticas, con matriz afanítica felsítica, con microfenocristales subredondeados y bipiramidales de cuarzo, cuyo tamaño varía de 0,2 a 10 mm, cristales subhedrales de feldespato potásico de color rosado con tamaños de 0,1 a 0,8 mm, cristales prismáticos de plagioclasa y biotita en láminas de color negro, con bordes oxidados (figura 2).

4.3. Características microscópicas

De las Riolitas El Uvo se analizaron dos secciones delgadas que corresponden a rocas porfídicas holocristalinas, compuestas por cuarzo (38,9% a 39,6%), feldespato potásico (40% a 46,2%), plagioclasa (11,4% a 18,4%), biotita (1%) (tabla 1). Como minerales accesorios se encuentran opacos, apatito, prehnita y allanita con \leq 1%, y de alteración epidota. Los porcentajes se obtuvieron con el conteo de puntos en el análisis petrográfico, y en la clasificación modal se utilizó el diagrama QAP para rocas volcánicas de Streckeisen (1978). Ambas muestras se clasifican como riolitas (figura 3).

Figura 2. Aspecto macroscópico de las rocas de las Riolitas El Uvo. Textura porfídica

La textura general es microporfídica (figura 4). También se presentan texturas glomeroporfídica, poiquilítica, pertitas, mirmequitas, micrográfica y de reabsorción. La matriz es microcristalina felsítica en agregados de cuarzo y feldespato (figura 4). En una de las muestras hay agregados microgranofídicos, y en la otra, biotita y opacos, que también hacen parte de los agregados microcristalinos. La relación matriz (52% a 56,2%)/fenocristales (43,8% a 48%) es de aproximadamente 1:1. La muestra IGM 900945 tiene 1 % de amígdalas.

Las principales alteraciones son argilización del feldespato potásico, sericitización de la plagioclasa y cloritización de la biotita. El grado de alteración de las muestras es moderado.

Tabla 1. Composición modal de las Riolitas El Uvo

Figura 3. Clasificación modal de las rocas de las Riolitas El Uvo en el triángulo de Streckeisen (1978).

El feldespato potásico se encuentra en cristales individuales y en glomerocristales xenomórficos a subidiomórficos, alterados a caolín, de aspecto empolvado. El color de interferencia es gris del primer orden, con texturas de exsolución en forma de pertitas y textura micrográfica. Cristales de tamaños que oscilan entre 1,1 y 5 mm. Los cristales de feldespato potásico muestran inclusiones poiquilíticas de plagioclasa (figura 4).

Los fenocristales y microcristales de cuarzo tienen tamaños de 0,3 a 7 mm, exhiben formas subidiomórficas

bipiramidales (figura 4C), algunos, con bordes corroídos por la matriz; son incoloros, con inclusiones fluidas alineadas y de rutilo en agujas finas.

La plagioclasa es andesina (An_{32-34}) y se presenta en cristales tabulares subidiomórficos alterados a sericita (figura 4 C, D), con maclas de albita, y sus tamaños varían de 0,9 a 1,2 mm. Presenta texturas mirmequíticas en los bordes de los fenocristales por reacción con la matriz.

Figura 4. Características microscópicas de las riolitas. Objetivo 4X.

A) IGM 900946, nícoles paralelos. B) IGM 900946, nícoles cruzados. Matriz felsítica microgranular (Matriz), glomerocristales de feldespato potásico (Kfs) y cristales de plagioclasa (PI) y cuarzo (Qtz). C) IGM 900945, nícoles paralelos. D) Nícoles cruzados. Textura porfídica, matriz felsítica (Matriz), fenocristales de cuarzo (Qtz), feldespato (Kfs) y plagioclasa (PI)

La biotita se observa como láminas tabulares subidiomórficas de color castaño, pleocroicas. X: castaño claro, Y: castaño fuerte, con color de interferencia amarillo naranja del segundo orden. Los cristales tienen inclusiones de circón, allanita, opacos y titanita, y presentan alteración a clorita y epidota. Los tamaños de los cristales van de 0,6 a 1 mm. La biotita también se encuentra en la matriz como láminas intersticiales finas, con tamaño 0,03 mm.

En las muestras se encuentran algunos cristales de allanita de forma alargada, de color pardo rojizo, levemente pleocroicos, con relieve alto. El color de interferencia está enmascarado por el color del mineral. Su tamaño es de 0,2 mm.

La titanita está en cristales incoloros xenomórficos de relieve alto, con colores de interferencia del tercer orden. Tamaño: 0,2 mm. La prehnita se encuentra rellenando vesículas irregulares con diámetros ≤1 mm, en agregados radiales de cristales incoloros, colores de interferencia azul y verde del segundo orden, con extinción paralela a ondulante. Se presenta junto con epidota y agregados finos de titanita.

Los opacos se presentan en los planos de clivaje de biotitas en cristales xenomórficos. Llegan a medir hasta de 0,5 mm y son secundarios.

El apatito se presenta en cristales subidiomórficos hexagonales, incoloros, de 0,1 mm, generalmente asociados a biotitas y opacos.

Los minerales de alteración observados en las placas son: moscovita en láminas incoloras subidiomórficas que se presentan en la matriz con tamaño 0,1 mm; epidota en agregados xenomórficos de relieve alto, como alteración de biotita y caolín a partir de feldespato potásico.

5. Geoquímica

La caracterización litogeoquímica de las Riolitas El Uvo se realizó a partir de los análisis de dos muestras de roca, a las que se les realizó análisis petrográfico.

Los análisis químicos de las muestras se hicieron en los laboratorios del Servicio Geológico Colombiano (Bogotá). Los óxidos mayores y menores se analizaron con un espectrómetro de fluorescencia de rayos X, FRX, Panalytical Axios Mineral para análisis elemental, y la cuantificación de los mayores se realizó en muestra fundida con metaborato y tetraborato de litio, mientras que la de elementos menores se hizo en muestra prensada. En los análisis de elementos traza se usó un espectrómetro de masas con plasma inductivamente acoplado, ICP-MS, Perkin Elmer Nexion. La disolución de la muestra se hizo mediante un ataque por pasos utilizando ácidos inorgánicos fuertes (HF, HNO₄, HClO₄ y HCl). El proceso se realizó en sistema abierto, empleando distintas rampas de temperatura y tiempos de calentamiento.

Los resultados de óxidos mayores se presentan en porcentaje en peso (wt%), y los de elementos traza y tierras raras, en partes por millón (ppm).

Algunos diagramas geoquímicos se generaron con el programa de GCDKit versión 4.0 (Janoušek *et al.*, 2006).

5.1. Óxidos mayores

Los resultados de óxidos mayores son similares en las dos muestras, y se exponen en la tabla 2. Los valores de SiO_2 en rocas de las Riolitas El Uvo varían entre 75,80% y 76,81%; los valores de Al_2O_3 (12,68 y 13,06); el Ti O_2 es menor de 0,16%; el MgO está por debajo del 0,21%; presentan un alto contenido de álcalis (Na₂O+K₂O>7%), y la relación K₂O/Na₂O>1.

Tabla 2. Composición de óxidos mayores en rocas de las Riolitas El Uvo

IGM	N.° campo	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	LOI
900945	MIA-640	75,80	0,15	13,06	1,01	0,21	0,65	2,62	5,45	0,026	0,95
900946	MIA-641	76,81	0,12	12,68	0,85	0,19	0,69	3,00	4,91	0,024	0,59

Con el fin de observar posibles modificaciones químicas en las muestras por meteorización o alteración hidrotermal, estas se analizaron en los diagramas de Nesbitt y Young (1984) y de Hughes (1972). En el primero (figura 5A), que sirve para analizar tendencias de meteorización, se observa que las dos muestras están un poco distantes de la composición de riolitas frescas, lo que sugiere modificación química por meteorización. En el segundo, que presenta los campos de rocas con composición ígnea y campos de alteración sódica y potásica (figura 5B), se aprecia que una de las muestras conserva su composición ígnea (IGM900946), mientras que la otra está alterada (IGM900945).

Figura 5. Diagramas para analizar la meteorización y alteración hidrotermal de las muestras de alteración las Riolitas El Uvo. A) Diagrama de Nesbitt y Young (1984) donde se muestran composiciones de rocas frescas y tendencias de meteorización. B) Diagrama de Hughes (1972), algunos de cuyos campos indican composiciones ígneas y, otros, alteraciones hidrotermales. En la figura 5A, PI: plagioclasa; Ks: feldespato potásico; Mu: moscovita; Ka: caolinita. 1: composición promedio de riolita; 2: promedio de latita; 3: promedio de basalto

En el diagrama de Le Bas *et al.*, (1986), las rocas de las Riolitas El Uvo químicamente se localizan en el campo de las riolitas, lo que confirma la clasificación petrográfica (figura 6A), y son de la serie subalcalina. En el diagrama de Peccerillo y Taylor (1976), ambas muestras se ubican en el campo de las rocas calcoalcalinas ricas en potasio, con contenidos de K₂O>4,9% (figura 6B), donde el contenido de K_2O de la muestra IGM-900945, que grafica más arriba, puede haber aumentado por la alteración.

En el diagrama de alcalinidad-aluminosidad (Shand, 1943) (figura 6C) se graficó la muestra IGM-900946, que parece conservar más su composición original; esta se ubica en el campo de las rocas peraluminosas.

Figura 6. Diagramas de clasificación química para rocas de las Riolitas El Uvo. A) Diagrama TAS Le Bas *et al.* (1986). B) Diagrama K₂O vs SiO₂ (Peccerillo y Taylor, 1976). C) Diagrama de alcalinidad-aluminosidad (Shand, 1943).

5.2. Elementos traza y tierras raras

Los resultados de los análisis de elementos traza y tierras raras presentes en las dos rocas de las Riolitas El Uvo se presentan en la tabla 3.

Tabla 3. Resultados de elementos t	traza y tierras raras presentes en ro-
cas de las Riolitas El Uvo	

Elemento	IGM900945	IGM900946	Ld (ppm)
Li	14,42	11,19	0,5
Be	4,25	4,47	0,1
Sc	5,54	7,27	0,1
V	11,30	12,95	0,2
Cr	6,49	10,53	0,5
Со	14,67	20,18	0,8
Ni	4,65	4,18	0,5
Cu	9,34	6,74	1
Zn	45,91	21,20	4
Ga	17,54	16,26	0,2
As	1,22	1,35	0,4
Rb	268,34	323,38	0,2
Sr	111,33	69,08	1
Cd	0,09	0,08	0,08
Cs	2,41	5,39	0,1
Ва	330,61	160,16	1
La	20,55	17,69	0,1
Ce	36,71	33,88	0,1
Pr	4,59	4,24	0,1
Nd	15,42	15,08	0,1
Sm	2,98	2,99	0,01
Eu	0,50	0,33	0,01
Gd	2,23	2,24	0,01
Tb	0,54	0,52	0,01
Dy	2,75	2,94	0,01
Но	0,60	0,66	0,01
Er	2,02	2,21	0,01
Tm	0,32	0,36	0,01
Yb	2,37	2,71	0,01
Lu	0,41	0,45	0,01
TI	1,98	2,04	0,01
Pb	23,35	26,42	2
Bi	0,14	0,24	0,1
Th	30,89	32,06	0,1
U	9,01	8,28	0
Zr	73,60	62,10	2
Nb	13,00	18,00	2
W	47,00		8

Ld: límite de detección

El diagrama de elementos de las tierras raras (REE) normalizado al condrito según los valores de Nakamura (1974) muestra en las Riolitas El Uvo un enriquecimiento en tierras raras livianas (LREE) con valores mayores de diez veces el valor del condrito, con un patrón homogéneo que se va empobreciendo progresivamente hacia las tierras raras pesadas (HREE), con un pronunciado declive en Eu (anomalía negativa), y con una tendencia paralela levemente ascendente entre Dy y Lu (figura 7A). La relación La/Yb_N (5,78-4,36) representa un patrón de pendiente negativa.

Las dos muestras analizadas tienen anomalía negativa de Eu (Eu/Eu*<1). Las relaciones Eu/Eu*<1 y LaN/ Sm_N>2 evidencian un enriquecimiento de tierras raras ligeras con relación a las HREE en todas las muestras (tabla 4).

En el diagrama multielemental normalizado al manto primitivo, con los valores de Sun y McDonough (1989) se aprecia homogeneidad en el comportamiento de ambas muestras, (figura 6B), que presentan enriquecimiento en elementos litófilos incompatibles de alto radio iónico (LILE) Cs, Ba y Th, que indican un patrón geoquímico con afinidad de corteza continental en márgenes convergentes. Las muestras exhiben anomalías positivas de Rb, Th, U y K, y anomalías negativas de los elementos inmóviles Nb, Sr, P, Zr y Ti (figura 7B). Las anomalías negativas de Nb, Ti y P son características de ambientes relacionados con subducción.

Figura 7. A) Diagrama de REE normalizado respecto a condrito (Nakamura, 1974). B) Diagrama normalizado al NMORB (Sun y McDonough, 1989).

Tabla 4. Relaciones normalizadas al condrito de Nakamura	a (1974) de La, Ce, Sm, Eu e Yb en rocas de las Riolitas El Uv
--	--

IGM	LaN	CeN	SmN	EuN	YbN	Eu/Eu*	LaN/YbN	LaN/SmN	CeN/YbN	CeN/SmN	EuN/YbN	SmN/YbN
900945	62,28	42,4	14,7	6,53	10,77	0,6	5,78	4,24	3,94	2,89	0,61	1,36
900946	53,6	39,2	14,7	4,23	12,3	0,39	4,36	3,64	3,18	2,66	0,34	1,20

5.3. Discriminación de ambiente tectónico

En el diagrama A/CNK/SiO₂ de Frost *et al.*, (2001), la muestra IGM900946 de las Riolitas El Uvo, cuya composición química parece no estar modificada por alteración, grafica en el campo de los magmas tipo I, aunque muy cerca del límite con el campo de los magmas tipo S (figura 8A). En el diagrama Th/Yb vs. Nb/Yb (Pearce, 2008) (figura 8B), las rocas corresponden a granitos de arco.

En el diagrama de discriminación de granitos de Maniar y Piccoli (1989) (figura 9A) las rocas de las Riolitas El Uvo grafican en el campo de los granitos posorogénicos (POG), y en el diagrama de Thiéblemont y Tegyey (1994) las dos muestras se ubican en el campo de los leucogranitos peraluminosos (figura 9B), próxima al campo de las rocas de colisión, campo que también es interpretado como representativo de magmatismo calcoalcalino derivado de la corteza o rocas de arcos generados en cortezas engrosadas (Thiéblemont, 1999).

Figura 8. A) Diagrama de Frost *et al.* (2001) de discriminación de granitoides tipo I y S. B) Diagrama Nb/Yb-Th/Yb (Pearce, 2008).

Figura 9. Diagramas discriminantes del ambiente tectónico. A) Diagrama de discriminación de granitos de Maniar y Piccoli (1989). B) Diagrama Nb/Zr vs. Zr de Thiéblemont y Tegyey (1994).

6. Posición estratigráfica y edad

Las Riolitas El Uvo intruyen el Batolito de Mogotes, cuyas edades U/Pb van de 202,5±1,3 a 188,9±1,3 Ma (Correa Martínez *et al.*, 2020). De las Riolitas El Uvo, otros autores no han presentado edades. En este trabajo se realizó la datación de una muestra colectada sobre la carretera Macanal-El Uvo, plancha 136, Málaga, a escala 1:100.000. La muestra tiene descripción petrográfica y análisis litogeoquímico. Su localización se presenta en la figura 1 y en la tabla 5. La separación de los circones se realizó en el Laboratorio Químico del Servicio Geológico Colombiano, sede Medellín, utilizando separación hidrodinámica, magnética y lupa binocular para el montaje de los circones sobre una cinta de doble faz adherida a un vidrio de 5 x 5 cm.

La datación se hizo a partir de un concentrado de circones obtenido del saprolito de la muestra MIA 641, de la cual se extrajeron 52 circones. Los análisis isotópicos se llevaron a cabo en el Laboratorio de Geocronología del Servicio Geológico Colombiano, en Bogotá, mediante el método de ablación laser acoplada a espectrometría de masas con fuente de plasmas de acoplamiento inductivo (LA-ICP-MS, por sus siglas en inglés). A la muestra se le realizó un análisis estadístico para mejorar el rango de confiabilidad de la edad. Para ello se tuvo en cuenta la relación $[(^{207}Pb/^{235}U)-(^{206}Pb/^{238}U)/^{206}Pb/^{238}U)]$ y se eliminaron los datos con valores discordantes >5% y con discordancia inversa <-5%. El gráfico de concordia e histogramas se elaboraron en el software de Isoplot/Ex vers. 3.75-4.15 (Ludwig, 2008). Los resultados se presentan en el anexo 1.

Tabla 5. Resultado de geocronología U/Pb correspondiente a la muestra MIA-641 de Riolitas El Uvo

IGM	N.° campo	Ν	Е	Plancha	Clasificación	Edad
900946	MIA-641	1206200	1141207	136	Riolita porfídica	197,5±1,5

Los circones de la muestra MIA 641 son cristales con formas prismáticas euhedrales, transparentes y de color pardo, con inclusiones de opacos, presentan tamaños entre 30 μ m y 200 μ m. En imágenes de catodoluminiscencia (CL) se observan zonamientos oscilatorios. La ablación en esta muestra se hizo en los extremos y, en algunos cristales, en el límite entre el núcleo zonado y los bordes (figura 10), para explorar posibles sobrecrecimientos y edades heredadas.

Figura 10. Imágenes de catodoluminiscencia de circones de la muestra MIA 641. En el círculo, los puntos de análisis de las edades U/Pb y el número del punto. Los números externos corresponden a la edad de los cristales

En la muestra se halla una edad heredada antigua del Mesoproterozoico (1168±26 Ma). El resto de datos corresponden a edades que oscilan entre ~220 Ma Triásico tardío (Noriense) y ~187 Ma Jurásico temprano (Pliensbachiense). En el gráfico de densidad de probabilidad y en el diagrama de concordia (figura 11 A y B) se observan dos poblaciones de datos, la principal con la mayoría de ellos, con edades de entre 198 y 200 Ma; las otras dos corresponden a edades de 216 a 219 Ma.

El cálculo de la edad media ponderada a partir de 38 datos con edades entre 184,4 y 205,41 Ma arroja una edad de 197,5±1,5 Ma con MSWD 4,0 (figura 11 C), que se interpreta como la posible edad de cristalización de la roca.

Figura 11. A) Diagrama de probabilidad en circones de la muestra MIA-641 (IGM 900946). B) Diagrama de concordia. C) Cálculo de la edad media ponderada.

7. Correlaciones

Las Riolitas El Uvo se correlacionan composicionalmente con las Riolitas del Alto de Los Cacaos y tienen semejanza, aunque también algunas diferencias, con la Riolita de San Joaquín y los granófidos del Granito de Pescadero (figura 12). En cuanto a la edad (197,5±1,5 Ma), la máxima casi se traslapa con la mínima de las Riolitas del Alto Los Cacaos (201,6±2,1, Correa Martínez *et al.*, 2020B) y de San Joaquín (201±2,1) (Rodríguez, Arango *et al.*, 2018a), y su edad mínima casi se traslapa con la máxima de los granófidos del Granito de Pescadero (192,9±2,0 Ma) (Zapata *et al.*, 2020). Las Riolitas de El Uvo también se pueden correlacionar con diques que intruyen granodioritas de la unidad Monzogranito de Rionegro (196,6±1,8 Ma) (Arango *et al.*, 2016), y en edad, con algunos pulsos magmáticos del Batolito de Mogotes (202,5±1,3 a 193,7±1,3 Ma) (Correa Martínez *et al.*, 2020a), Monzogranito de Santa Bárbara (196,8±2,0 a 192,0±1,1 Ma) (Rodríguez *et al.*, 2018b) y Monzogranito de La Corcova (199,5±4,6 a 192,5±2,6 Ma) (Rodríguez *et al.*, 2016).

Figura 12. Comparación de los patrones de REE de muestras de las unidades Riolitas de El Uvo, Riolitas del Alto Los Cacaos, Granito de Pescadero y Riolita de San Joaquín, normalizados a los valores de Boynton (1984).

Fuente de datos: este trabajo; Correa Martínez et al. (2020B); Zapata et al. (2020); Rodríguez et al. (2018a)

8. Localidad tipo

Se propone como localidad tipo para las Riolitas El Uvo la carretera vereda Santa Fe-El Uvo, municipio de San Joaquín, en las planchas 136, Málaga, y 152, Soatá, a escala 1:100.000 del Ingeominas. En este sector la unidad presenta esporádicos afloramientos de fácil acceso.

9. Génesis

Las características macroscópicas y microscópicas de las Riolitas El Uvo, tales como textura porfídica con matriz microcristalina felsítica a micrográfica, indican un emplazamiento subvolcánico poco profundo del cuerpo, que se dio en rocas plutónicas del Batolito de Mogotes. Las Riolitas El Uvo presentan valores de SiO₂ entre 75,8% y 76,8%,%; presentan un alto contenido de álcalis (Na₂O+K₂O >7%) y relaciones K₂O/Na₂O >1, por lo que químicamente se clasifican como riolitas de la serie calcoalcalina alta en K. Los contenidos altos de K₂O de una de las muestras se deben a alteración hidrotermal que modificó su composición química.

Las Riolitas El Uvo muestran enriquecimiento en tierras raras livianas (LREE) con valores diez veces mayores que los del condrito, empobrecidas en tierras raras pesadas (HREE) y con anomalía negativa Eu. Las Riolitas El Uvo tienen un patrón semejante al de arco continental, con anomalías positivas de Rb, Th, U, Pb, y negativas de Ba, Nb, Sr, P y Ti. Los valores altos de los elementos Cs y Th indican afinidad con corteza continental (márgenes convergentes), donde abundan estos elementos altamente incompatibles. Son granitos en la transición tipo I a tipo S, peraluminosos, posiblemente posorogénicos.

Las Riolitas El Uvo están relacionadas genéticamente con otros cuerpos subvolcánicos de la región, tales como las Rilitas del Alto Los Cacaos, la Riolita de San Joaquín y los granófidos presentes en el Granito de Pescadero, y deben hacer parte del mismo complejo volcánico, donde posiblemente se cristalizaron primero las unidades Riolitas del Alto Los Cacaos y Riolita de San Joaquín, después las Riolitas El Uvo y finalmente los granófidos del Granito de Pescadero.

10. Recursos minerales

Las rocas porfídicas y su alteración potásica, identificada químicamente en una de las muestras (IGM-900945), sugieren que la unidad tiene potencial de minerales metálicos. Para evaluar si las rocas pueden estar mineralizadas se graficaron las dos muestras en el diagrama de Rb vs. Ba (figura 13), adaptado por El-Sheshtawi *et al.*, 1999) del diagrama original de Mason (1966). En dicho diagrama solo se visualiza una de las muestras, la IGM-900945, porque la otra queda por fuera de este, pero si se extendiese el eje de las abscisas, la muestra IGM900946 graficaría en el campo de los granitos mineralizados (Rb: 323 ppm; Ba: 160 ppm). Así que las muestras de las Riolitas El Uvo corresponden a rocas fértiles (potencialmente mineralizadas con minerales metálicos).

Figura 13. Diagrama de variación de Rb versus Ba en roca total (Mason, 1966, adaptado por El-Sheshtawi *et al.*, 1999).

Fuente de datos: este trabajo

Otro potencial de las Riolitas El Uvo sería como material para agregados o piedra ornamental. Sin embargo, para definir este potencial son necesarios estudios de caracterización de los materiales.

Conclusiones

La unidad Riolitas El Uvo se define como una nueva unidad geológica del Macizo de Santander, que contiene riolitas hipoabisales con textura porfídica, lo que sugiere que pudieron haber cristalizado a niveles poco profundos de la corteza terrestre.

Las Riolitas El Uvo son subalcalinas de la serie calcoalcalina alta en K, con alteración local hidrotermal, y se generaron a partir de magmas tipo I, quizá en la transición hacia tipo S, peraluminoso. Las rocas de esta unidad exhiben características geoquímicas propias de ambientes relacionados con subducción y con potencial mineral de ser un cuerpo mineralizado probablemente con minerales metálicos.

La edad U/Pb en circones obtenida en una de las muestras de las Riolitas El Uvo es de 197,5±1,5 Ma, que se interpreta como la edad de cristalización de la roca.

La unidad se puede correlacionar con otros cuerpos subvolcánicos de la región, tales como las Riolitas del Alto Los Cacaos, la Riolita de San Joaquín y los granófidos del Granito de Pescadero, donde, según las edades, la cristalización de las Riolitas El Uvo siguió la cristalización de los dos primeros cuerpos y antecedió a la de los granófidos de Pescadero.

Referencias

- Arango, M. I., Rodríguez, G., Zapata, G. y Correa M., A. M. (2016). Catálogo de unidades litoestratigráficas de Colombia. Monzogranito de Rionegro, cordillera Oriental, Departamento Santander. Bogotá: Servicio Geológico Colombiano.
- Boynton, W. V. (1984). Cosmochemistry of the rare earth elements: Meteorite studies. En *Developments in geochemistry* (vol. 2, pp. 63-114). Elsevier.
- Clavijo, J., Mantilla, F. L. C., Pinto, J., Bernal, L. y Pérez, A. (2008). Evolución geológica de la serranía de San Lucas, norte del valle medio del Magdalena y noroeste de la cordillera Oriental. *Boletín de Geología*, 30 (1), 45-62.
- Correa Martínez, A. M., Rodríguez, G., Arango, M. I., Zapata, G. y Bermúdez, J. G. 2020a. Batolito de Mogotes. En *Catálogo de las unidades litoestratigráficas de*

Colombia: Macizo de Santander. Vol. 1. Bogotá: Servicio Geológico Colombiano.

- Correa Martínez, A. M., Rodríguez, G., Bermúdez, J. G., Arango, M. I. y Zapata, G. 2020b. Riolitas del Alto Los Cacaos. En Catálogo de las unidades litoestratigráficas de Colombia: Macizo de Santander. Vol. 1.Bogotá: Servicio Geológico Colombiano.
- El-Sheshtawi, Y. A., Youssef, F., Ammar, F. A., Hassaan, M. M., Sakr, S. M. (1999). Petrography and geochemistry of some granites and their metavolcanic country rocks in the Central Eastern Desert, Egypt. The proceeding of 1st Seminar of Nuclear Raw Material and their Technology, Cairo, Egypt, 1-3.
- Forero, A. (1990). The basement of the Eastern Cordillera, Colombia: An allochthonous terrane in Northwestern South America. *Journal of South American Earth Sciences*, 3 (2-3), 141-151. https://doi. org/10.1016/0895-9811(90)90026-W
- Frost, R. B., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. y Frost, C. D. (2001). A geochemical classification for granitic rocks. *Journal of Petrology*, 42 (11), 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
- García, C., Ríos, C. (1999). Metamorfismo y metalogenia asociada del Macizo de Santander, cordillera Oriental, Colombia. Informe final, Proyecto de Investigación 1102-05-083-95 Colciencias-Universidad Industrial de Santander, Bucaramanga.
- Goldsmith, R., Marvin, R. F. y Mehnert, H. H. (1971). Radiometric ages in the Santander Massif, Eastern Cordillera, and Colombian Andes. U.S. Geological Survey Professional Paper, 750-D, D44-D49.
- Hughes, C. J. (1972). Spilites, keratophyres and the igneous spectrum. *Geological Magazine*, 109 (6), 513-527. https://doi.org/10.1017/S0016756800042795
- International Subcommission on Stratigraphic Classification. (1987). Stratigraphic classification and nomenclature of igneous and metamorphic rock bodies. *GSA Bulletin*, 99 (3), 440-442. https://doi.org/10.1130/0016-7606(1987)99<440:SCANOI>2.0. CO;2
- International Subcommission on Stratigraphic Classification. (1994). *International Stratigraphic Guide*. A *guide to stratigraphic classification, terminology and procedure*. (2.ª ed.) A. Salvador (ed.). Boulder: International Union of Geological Sciences y Geological Society of America.

- Irvine, T. N. y Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. *Canadian Journal of Earth Sciences*, 8 (5), 523-548. https://doi.org/10.1139/e71-055
- Janoušek, V., Farrow, C. M. y Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing geochemical data toolkit (GCDkit). *Journal of Petrology*, 47 (6), 1255-1259. https://doi.org/10.1093/petrology/egl013
- Le Bas, M. J., Le Maitre, R. N., Streckeisen, A. y Zanettin, B. (1986). A chemical classification of volcanic rock based on total silica diagram. *Journal of Petrology*, 27 (3), 745-750. https://doi.org/10.1093/petrology/27.3.745
- Leal Mejía, H. (2011). *Phanerozoic gold metallogeny in the Colombian Andes: A tectono-magmatic approach*. (Ph. D. thesis). Universitat de Barcelona.
- Ludwig, K. (2008). *Isoplot version 4.15: A geochronological toolkit for Microsoft Excel*. Berkeley Geochronology Center, special publication n.° 4.
- Maniar, P.D.yPiccoli, P.M. (1989). Tectonic discrimination of granitoids. *GSA Bulletin*, 101 (5), 635-643. https:// doi.org/10.1130/0016-7606(1989)101<0635:T-DOG>2.3.CO;2
- Mantilla, L. C., Bissig, T., Valencia, V. y Hart, C. (2013). The magmatic history of the Vetas-California mining district, Santander Massif Eastern Cordillera, Colombia. *Journal of South American Earth Sciences*, 45, 235-249. https://doi.org/10.1016/j.jsames.2013.03.006
- Mason, B. (1966). *Principles of geochemistry* (3.^a ed.). New York: John Wileys & Sons.
- Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. *Geochimica et Cosmochimica Acta*, 38 (5), 757-775. https://doi.org/10.1016/0016-7037(74)90149-5
- Nesbitt, H. W. y Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. *Geochimica et Cosmochimica Acta*, 48 (7), 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
- Ordóñez Cardona, O., Restrepo Álvarez, J. J. y Pimentel, M. M. (2006). Geochronological and isotopical review of pre-Devonian crustal basement of the Colombian Andes. *Journal of South American Earth Sciences*, 21 (4), 372 y 382. https://doi.org/10.1016/j. jsames.2006.07.005

- Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. *Lithos*, 100 (1-4), 14-48. https://doi.org/10.1016/j. lithos.2007.06.016
- Peccerillo, A. y Taylor, T. S. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey. *Contributions to Mineralogy and Petrology*, 58, 63-81. https://doi.org/10.1007/BF00384745
- Ríos, C., García, C. y Takusa, A. (2003). Tectono-metamorphic evolution of the Silgara Formation metamorphic rocks in the Southwestern Santander Massif, Colombian Andes. *Journal of South American Earth Sciences*, 16 (2), 133-154. https://doi. org/10.1016/S0895-9811(03)00025-7
- Rodríguez, G., Correa M., A. M., Zapata, G. y Arango, M. I. (2016). *Catálogo de unidades litoestratigráficas de Colombia. Monzogranito de La Corcova*. Medellín: Servicio Geológico Colombiano.
- Rodríguez, G., Zapata, G., Correa M., A. M. y Arango, M. I. (2017). Caracterización petrográfica, química y geocronológica del magmatismo triásico-jurásico del Macizo de Santander, Colombia. Resumen XVI Congreso Colombiano de Geología y III Simposio de Exploradores. Santa Marta.
- Rodríguez, G., Arango, M. I., Correa, M., A. M. y Zapata, G. (2018a). Catálogo de unidades litoestratigráficas de Colombia. Riolita de San Joaquín. Medellín: Servicio Geológico Colombiano.
- Rodríguez, G., Zapata, G., Arango, M. I. y Correa M., A. M. (2018b). *Catálogo de unidades litoestratigráficas de Colombia. Monzogranito de Santa Bárbara*. Medellín: Servicio Geológico Colombiano.
- Shand, S. J. (1943). Eruptive rocks: Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. New York: John Wiley & Sons.
- Streckeisen, A. L. (1978). IUGS Subcommission on the Systematics of Igneous Rocks. Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilite rocks. Recommendations and suggestions. *Neues Jahrbuch für Mineralogie, Abhandlungen* (141), 1-14.
- Sun, S.y Mcdonough, W. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society of London,

Special Publication, 42, 313-345. https://doi.org/ 10.1144/GSL.SP.1989.042.01.19

- Thiéblemont, D. (1999). Discrimination entre magmatismes calco-alcalins mantellique et crustal: l'exemple des Andes. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 329 (4), 243-250. https://doi.org/10.1016/S1251-8050(99)80242-0
- Thiéblemont, D. y Tegyey, M. (1994). Une discrimination géochimique des roches différenciées témoin de la diversité d'origine et de situation tectonique des magmas calco-alcalins. *Comptes Rendus Academic Scientific du Paris*, 319, serie II, 87-94.
- Van der Lelij, R. (2013). Reconstructing North-Western Gondwana with implications for the evolution of the lapetus and Rheic Oceans: A geochronological, thermochronological and geochemical study. (Thése de doctorat). Univ. Genéve, n.º 4581.
- Van der Lelij, R., Spikings, R. y Mora, A. (2016). Thermochronology and tectonics of the Mérida Andes and the Santander Massif, NW South America. *Lithos*, 248-251, 220-239. https://doi.org/10.1016/j.lithos.2016.01.006
- Vargas, R., Arias, A., Jaramillo, L. y Téllez, N. (1987). Geología de la plancha 152, Soatá. Escala 1:100.000, mapa, versión digital 2009. Bogotá: Ingeominas.
- Vargas, R., Arias, A., Jaramillo, L. y Téllez, N. (1981). Geología de las planchas 136, Málaga, y 152, Soatá, cuadrángulo I-13. Escala 1:100.000, Memoria explicativa. Boletín Geológico, 24 (3).
- Vargas, R., Arias, A., Jaramillo, L. y Téllez, N. (1984). Geología de la plancha 136, Málaga. Mapa, escala: 1:100.000. Versión digital 2009. Bogotá: Ingeominas.
- Ward, D., Goldsmith, R., Cruz, J. y Restrepo, H. (1973). Geología de los cuadrángulos H-12, Bucaramanga, y H-13, Pamplona. *Boletín Geológico*, 21 (1-3), 132.
- Zapata, G., Correa Martínez, A.M., Rodríguez, G. y Arango, M.I. 2020. *Catálogo de unidades litoestratigráficas de Colombia. Granito de Pescadero*. Bogotá: Servicio Geológico Colombiano.
- Zuluaga, C. A., Amaya, S., Urueña, C. y Bernet, M. (2017). Migmatization and low-pressure overprinting metamorphism as record of two pre-Cretaceous tectonic episodes in the Santander Massif of the Andean basement in Northern Colombia (NW South America). *Lithos*, 274-275, 123-146. https:// doi.org/10.1016/j.lithos.2016.12.036

ANEXO A

Resultados isotópicos U/Pb en circón de la muestra MIA-641 de las Riolitas El Uvo

Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Correlación errores	²⁰⁶ Pb/ ²³⁸ U edad (Ma)	±2σ	²⁰⁷ Pb/ ²³⁵ U edad (Ma)	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb edad (Ma)	±2σ
MIA_641_46	658	371	0,6	0,05310	0,00190	0,21480	0,00780	0,02914	0,0004	0,11542	184,4	4,5	199,1	6,5	319,0	76,0
MIA_641_50	302	119,1	0,4	0,04870	0,00290	0,20200	0,01100	0,02942	0,00041	0,10000	187,2	4,6	184,6	9,2	150,0	100,0
MIA_641_2	634	256	0,4	0,05410	0,00240	0,22400	0,01100	0,02981	0,00058	0,33463	188,4	5,3	202,1	8,7	330,0	85,0
MIA_641_40	3.230	7.140	2,2	0,04958	0,00085	0,20230	0,00330	0,02987	0,00021	0,18596	189,8	4,0	186,8	2,8	174,0	38,0
MIA_641_7	219	232	1,1	0,04860	0,00300	0,20200	0,01300	0,02985	0,0005	0,05909	189,9	5,0	184,0	11,0	110,0	110,0
MIA_641_45	247	423	1,7	0,05300	0,00330	0,21800	0,01300	0,03014	0,00046	0,07354	190,7	4,8	199,0	11,0	300,0	120,0
MIA_641_1	688	842	1,2	0,05080	0,00160	0,21360	0,00680	0,03019	0,00029	0,13259	191,5	4,2	197,5	5,5	216,0	63,0
MIA_641_22	1.304	3.570	2,7	0,04990	0,00140	0,20800	0,00610	0,0303	0,00041	0,26945	192,4	4,6	192,3	5,2	188,0	56,0
MIA_641_13	424	314	0,7	0,05070	0,00210	0,21160	0,00880	0,03041	0,00032	0,06350	192,9	4,4	194,1	7,3	230,0	82,0
MIA_641_14	542	505	0,9	0,05070	0,00200	0,21470	0,00820	0,03043	0,0003	0,12047	193,1	4,3	196,3	6,8	228,0	78,0
MIA_641_21	1.270	2.570	2,0	0,04880	0,00130	0,20490	0,00550	0,03047	0,00026	0,21958	193,8	4,2	188,8	4,7	138,0	55,0
MIA_641_30	483	516	1,1	0,04720	0,00220	0,19510	0,00900	0,03051	0,00035	0,08628	194,4	4,5	180,2	7,6	71,0	85,0
MIA_641_29	803	962	1,2	0,05110	0,00170	0,21260	0,00690	0,03069	0,0003	0,04561	194,6	4,3	195,8	5,8	240,0	69,0
MIA_641_23	903	1.350	1,5	0,05130	0,00170	0,21530	0,00690	0,03073	0,00027	0,02419	194,8	4,3	197,2	5,8	226,0	66,0
MIA_641_28	582	672	1,2	0,05120	0,00200	0,21520	0,00870	0,03075	0,0003	0,16742	195,0	4,3	196,6	7,3	241,0	78,0
MIA 641 38	853	848	1,0	0,04960	0,00160	0,20920	0,00660	0,03077	0,00032	0,10171	195,5	4,4	192,1	5,5	189,0	63,0
MIA 641 47	743	492	0,7	0,04950	0,00150	0,21410	0,00660	0,0308	0,00033	0,16701	195,7	4,5	196,7	5,6	175,0	61,0
MIA 641 8	673	691	1,0	0,05050	0,00150	0,21600	0,00600	0,03099	0,00027	0,11387	196,6	4,3	198,4	5,1	208,0	59,0
MIA 641 5	506	575	1,1	0,05210	0,00210	0,22520	0,00860	0,03111	0,00033	0,10000	197,0	4,5	205,5	7,2	261,0	78,0
MIA 641 24	226	371	1,6	0,04800	0,00380	0,20400	0,01600	0,03123	0,0005	0,07667	198,8	5,2	187,0	14,0	140,0	130,0
MIA 641 37	679	764	1,1	0,04930	0,00210	0,20410	0,00810	0,03123	0,00032	0,08089	198,4	4,5	188,7	6,7	160,0	79,0
MIA 641 44	744	688	0,9	0,05020	0,00210	0,22010	0,00960	0,0313	0,00048	0,33815	198,6	5,0	201,5	7,9	212,0	80,0
MIA 641 43	217	151	0,7	0,05000	0,00320	0,21700	0,01400	0,03132	0,00052	0,26159	198,8	5,2	196,0	12,0	210,0	120,0
MIA 641 36	1.061	1.300	1,2	0,05000	0,00160	0,21390	0,00710	0,03139	0,0003	0,12088	199,3	4,4	196,5	5,9	206,0	67,0
MIA_641_25	586	537	0,9	0,05200	0,00220	0,22540	0,00970	0,03141	0,00033	0,04471	198,9	4,5	206,0	8,1	264,0	85,0
MIA_641_35	688	779	1,1	0,04930	0,00190	0,20890	0,00770	0,03146	0,00032	0,10291	199,9	4,5	191,6	6,5	158,0	73,0
MIA_641_49	559	437	0,8	0,04970	0,00210	0,21740	0,00840	0,03152	0,00034	0,10000	200,2	4,6	198,5	7,0	183,0	79,0
MIA_641_20	1.026	1.710	1,7	0,05250	0,00140	0,22830	0,00620	0,03154	0,00028	0,19024	199,6	4,4	208,1	5,1	292,0	57,0
MIA_641_12	475	407	0,9	0,05120	0,00210	0,22400	0,00900	0,03158	0,00035	0,13340	200,2	4,6	204,4	7,4	238,0	80,0
MIA_641_42	621	932	1,5	0,05110	0,00210	0,22150	0,00930	0,03157	0,00036	0,11950	200,1	4,6	202,2	7,7	246,0	81,0
MIA_641_3	1.430	3.620	2,5	0,05070	0,00160	0,22260	0,00790	0,03159	0,00056	0,43028	200,3	5,3	203,4	6,5	219,0	67,0
MIA_641_16	492	359	0,7	0,05040	0,00180	0,22200	0,00780	0,0316	0,00036	0,14768	200,5	4,6	204,1	6,4	228,0	69,0
MIA_641_19	1.000	733	0,7	0,05090	0,00130	0,22340	0,00630	0,03159	0,00037	0,35902	200,3	4,6	204,9	5,1	238,0	55,0
MIA_641_18	602	803	1,3	0,05930	0,00230	0,25800	0,01000	0,03205	0,00034	0,26440	201,1	4,6	232,0	7,9	530,0	79,0
MIA_641_31	819	1.091	1,3	0,05220	0,00190	0,22890	0,00890	0,0321	0,00039	0,29312	203,2	4,8	208,9	7,3	271,0	75,0
MIA_641_6	372	685	1,8	0,08320	0,00760	0,38800	0,04400	0,03217	0,00095	0,71166	195,8	7,0	324,0	30,0	1.190,0	180,0
MIA_641_26	499	547	1,1	0,05300	0,00220	0,23400	0,01000	0,03221	0,00036	0,27914	203,7	4,7	212,9	8,3	298,0	83,0
MIA_641_33	990	788	0,8	0,04920	0,00180	0,21170	0,00780	0,03222	0,00038	0,13888	204,7	4,8	195,0	6,5	165,0	72,0
MIA_641_9	1.152	1.658	1,4	0,05010	0,00120	0,22420	0,00560	0,03225	0,00043	0,40189	204,6	4,9	204,9	4,6	197,0	51,0
MIA_641_39	654	646	1,0	0,05220	0,00250	0,22800	0,01100	0,03236	0,0004	0,40418	204,8	4,9	205,4	8,4	259,0	85,0
MIA_641_4	387	359	0,9	0,05050	0,00200	0,22480	0,00970	0,03238	0,00045	0,33928	205,4	5,0	205,6	7,9	199,0	77,0
MIA_641_27	486	464,2	1,0	0,08100	0,00660	0,37800	0,03900	0,03238	0,0006	0,80806	197,6	5,7	306,0	24,0	1.000,0	140,0
MIA_641_34	866	818	0,9	0,05030	0,00160	0,22290	0,00690	0,03238	0,00035	0,13619	205,4	4,7	204,4	5,8	215,0	64,0
MIA_641_32	1.440	1.200	0,8	0,08010	0,00330	0,35300	0,01500	0,03243	0,00033	0,13952	198,1	4,6	307,0	12,0	1.136,0	80,0
MIA_641_11	450	361	0,8	0,05140	0,00190	0,25000	0,01100	0,03415	0,0007	0,51803	216,2	6,2	225,6	8,6	272,0	74,0
MIA_641_10	726	1.510	2,1	0,05250	0,00190	0,25070	0,00960	0,03475	0,00047	0,38602	219,7	5,3	226,4	7,9	298,0	74,0
MIA_641_15	775	826	1,1	0,06090	0,00160	0,33700	0,01200	0,04037	0,0008	0,67171	252,1	6,9	295,4	9,2	611,0	58,0
MIA_641_48	186	96,7	0,5	0,06670	0,00480	0,58700	0,06900	0,0572	0,0058	0,90747	352,9	35,9	433,0	42,0	770,0	150,0
MIA_641_41	1.311	646	0,5	0,08620	0,00150	1,45200	0,03500	0,1228	0,0019	0,73492	727,3	18,3	909,0	15,0	1.335,0	34,0
MIA_641_17	259	80,7	0,3	0,08020	0,00130	2,20100	0,04000	0,199	0,0019	0,38408	1.168,2	25,6	1.179,0	13,0	1.205,0	34,0
																_

RIOLITA DE SAN JOAQUÍN

»Cordillera Oriental Departamento de Santander

Gabriel Rodríguez, María Isabel Arango, Ana María Correa Martínez y Gilberto Zapata

Catálogo de las unidades litoestratigráficas de Colombia / Triásico - Jurásico

Citación: Rodríguez, G., Arango, M. I., Correa Martínez, A. M. y Zapata, G. (2020). Riolita de San Joaquín. En *Catálogos de las unidades litoestratigráficas de Colombia: Macizo de Santander.* Vol. 1. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585279445.8 La actividad magmática en el Macizo de Santander en el límite entre el Triásico y el Jurásico está evidenciada por vulcanismo y cuerpos intrusivos graníticos, cuerpos hipoabisales y riolítico-riodacítico que se emplazaron en un basamento metamórfico del Paleozoico. Los cuerpos magmáticos plutónicos son alargados y se orientan preferencialmente en dirección norte-noroeste, lo que concuerda con el rumbo de las fallas regionales, que marcan la tectónica del Macizo de Santander y delimitan las diferentes unidades.

La Riolita de San Joaquín es un cuerpo que surge como consecuencia del magmatismo de arco entre el Triásico y el Jurásico. En el catálogo de la Riolita de San Joaquín se incluyen los análisis petrográficos, químicos y una edad radiométrica U/Pb de este plutón, lo que constituye un aporte al desarrollo del conocimiento geológico del país.

Los catálogos estratigráficos de Colombia tienen por objeto definir y describir unidades litológicas de la geología colombiana que han sido reconocidas mediante trabajos de cartografía y exponer el conocimiento geológico que se tiene de cada una de ellas.

1. Proponente del nombre

El nombre propuesto se atiene a las recomendaciones de la International Subcommission on Stratigraphic Classification of IUGS (1987, 1994).

La denominación *Riolita de San Joaquín* tiene en cuenta la litología dominante y el nombre geográfico, y es propuesto por los autores.

2. Origen del nombre, distribución geográfica y reseña histórica

El nombre de este cuerpo ígneo subvolcánico proviene de su composición modal dominante y de su localización geográfica, cerca de la cabecera municipal de San Joaquín (Santander), a unos 3 km al norte de esta localidad.

Aflora sobre la carretera que comunica a San Joaquín con la vereda La Aurora, en la plancha 136, Málaga, a escala 1:100.000. Se presenta como un cuerpo con un área aproximada de 20,9 km², de forma tabular irregular, alongada, con dirección N-S (figura 1).

Este pequeño plutón no aparece en la cartografía regional de la plancha 136, Málaga. En el presente trabajo no solo se describe, sino que se cartografía y se define a partir de la composición química predominante, conservando el nombre del lugar geográfico más importante del área de afloramiento, de acuerdo con las recomendaciones de la International Subcommission on Stratigraphic Classification, ISSC (1987, 1994).

3. Descripción geológica

3.1. Marco geológico

El Macizo de Santander hace parte de un bloque regional triangular formado por las fallas de Santa Marta-Bucaramanga, en el lado occidental, la falla de Oca-Ancón, en el lado norte, y la falla de Boconó, en el lado oriental.

Las rocas más antiguas del Macizo de Santander comprenden unidades metamórficas como el Neis de Bucaramanga (Ward *et al.*, 1973), también denominado Complejo Bucaramanga (Clavijo, 1994), constituido por paragneises migmatíticos de alto grado, considerados de edad proterozoica (García y Ríos, 1999; Ordóñez *et al.*, 2006), con un pico de metamorfismo de edad 1057±28 Ma U/Pb-Shrimp en circón, relacionada con la orogenia Grenvilliana. Sin embargo, estudios recientes reportan edades de metamorfismo de aproximadamente 477 Ma, relacionadas con la orogenia Caledoniana (Van der Lelij, 2013; Van der Lelij *et al.*, 2016).

El Neis de Bucaramanga está cubierto por la Formación Silgará. Se compone de rocas del Proterozoico tardío al Paleozoico temprano, como ortoanfibolitas, esquistos, filitas, metalodolitas, metaareniscas y escasos mármoles (Ward *et al.*, 1973; García y Ríos, 1999; Ríos *et al.*, 2003; Mantilla *et al.*, 2013). El metamorfismo presenta edades del Ordovícico inferior-medio relacionadas con la orogenia Caledoniana (Ríos *et al.*, 2003; Ordóñez Cardona *et al.*, 2006; Clavijo *et al.*, 2008; Mantilla *et al.*, 2013).

Figura 1. Mapa de localización de la Riolita de San Joaquín y del muestreo de rocas

Algunas edades U/Pb en circón indican un evento de magmatismo posterior al metamorfismo, representado por metavulcanitas y plutones que intruyen el basamento metamórfico, con edades U/Pb en circón del Silúrico, Devónico inferior, Carbonífero y límite Triásico-Jurásico.

Los plutones triásico-jurásicos del Macizo de Santander se encuentran emplazados en rocas metamórficas paleozoicas, consideradas parte del Terreno Chibcha (Restrepo y Toussaint, 1988; Restrepo *et al.*, 2011), o del Terreno Santander-Norte de Santander (Etayo *et al.*, 1983).

Durante el límite Triásico-Jurásico se desarrolló un importante magmatismo hacia la margen occidental del Macizo de Santander, con el emplazamiento de grandes batolitos, *stocks* graníticos y cuerpos riolíticos subvolcánicos localizados dentro del basamento metamórfico, con desarrollo de contactos netos intrusivos.

Las unidades sedimentarias cretácicas reposan discordantemente sobre el basamento metamórfico y los plutones. Después de la sedimentación cretácica, durante el Mioceno se generó un escaso magmatismo que permitió el emplazamiento de pequeños cuerpos de pórfidos con mineralización de oro (Leal, 2011; Mantilla *et al.*, 2013).

3.2. Características macroscópicas

La Riolita de San Joaquín corresponde a una roca masiva de color entre anaranjado y rosado, moteada de blanco y negro, porfirítica, constituida por fenocristales de plagioclasa de hasta 5 mm, feldespato alcalino en cristales euhedrales rosados, cuarzo bipiramidal y biotita de 1 a 3 mm, flotando en una matriz afanítica de color anaranjado claro a gris (figura 2).

Son comunes los afloramientos con desarrollo de saprolito de color anaranjado con parches de tonalidades blancas y verdosas y textura arenosa, con espesores de alteración de hasta 10 m. Localmente desarrolla meteorización esferoidal con bolos métricos sobre la superficie del suelo y está atravesada por diques aplíticos con textura granular fina sacaroidal (figura 3).

Figura 2. Aspecto macroscópico de rocas de la Riolita de San Joaquín A) IGM-900890 (GR-6729) y B) IGM-900892 (GR_6731).

3.3. Características microscópicas

Se analizaron tres secciones delgadas mediante conteo modal de 300 puntos. La clasificación de la roca obtenida por este método fue riolita, dacita y andesita, que presentan una textura porfídica y matriz felsítica a micrográfica; están constituidas por fenocristales de plagioclasa, feldespato alcalino, cuarzo y biotita, y como minerales accesorios, opacos, apatito, circón y epidota (tabla 1, figura 4).

El cuarzo se encuentra como fenocristales y como microcristales en la matriz, y en algunas rocas forma coronas con intercrecimientos gráficos. Los fenocristales son euhedrales a subhedrales inequigranulares de tamaños entre 0,25 y 4 mm, limpios, con inclusiones de polvo a manera de líneas, incoloros, con birrefringencia máxima amarilla del primer orden. Pueden tener bahías de corrosión de la matriz, así como inclusiones de gotas de la matriz. Algunos cristales son bipiramidales, con los contornos corroídos por la matriz. En la matriz, el cuarzo desarrolla cristales esferulíticos que pueden estar inter-

Figura 3. Aspecto macroscópico del saprolito de la Riolita de San Joaquín

crecidos con feldespato, formando texturas micrográficas (granofíricas) y coronas micrográficas alrededor de cristales de plagioclasa y feldespato. Con menos frecuencia, el cuarzo se presenta en cristales anhedrales intersticiales entre los esferulitos radiales micrográficos.

Tabla 1. Composición modal de rocas de la Riolita de San Joaquín

IGM	N.° campo	х	Y	Qtz	PI	Kfs	Bt	Ор	Ар	Zrn	Ep	Matriz	Clasificación petrográfica
900890	GR-6729	1135094	1204469	10,4	11,9	4,0	4,7	0,5	Tr	Tr		68,9	Fenodacita
900891	GR-6730	1136800	1207641	7,8	26,6	13,0	3,9	TR	Tr	Tr		48,7	Fenoandesita
900892	GR-6731	1137810	1210177	48,5	15,2	34,0	1,5	0,7	Tr	Tr	Tr		Riolita micrográfica

Figura 4. Clasificación modal de rocas de la Riolita de San Joaquín en el triángulo de Streckeisen (1978)

La plagioclasa se presenta en fenocristales y como microcristales en la matriz. Los fenocristales son euhedrales a subhedrales inequigranulares de tamaños entre 0,5 y 2,5 mm, con maclas de albita, albita-Carlsbad, con los contornos corroídos por la matriz; los fenocristales pueden ser seriados, presentan los núcleos alterados, por lo general a arcilla, sericita y saussurita, y los bordes inalterados. En algunas rocas, los cristales microfracturados tienen alteración a gibbsita, presentan extinción zonada oscilatoria, pueden formar localmente glómero-fenocristales con cuarzo y biotita. El relieve de la plagioclasa es mayor que el del bálsamo y puede aparecer incluida en el feldespato alcalino.

El feldespato alcalino se clasificó como ortosa. Se presenta en fenocristales y como microcristales en la matriz. Los fenocristales son euhedrales a subhedrales inequigranulares de tamaños entre 0,5 y 5 mm, con bordes corroídos por la matriz. Algunos cristales tienen maclas de tipo Carlsbad, con desmezclas pertíticas en parches, relieve menor que el del bálsamo; pueden tener bahías de corrosión, se alteran levemente (5%) a caolín, con inclusiones de biotita, cuarzo y plagioclasa. Algunos cristales presentan crecimiento oscilatorio concéntrico y desmezclas pertíticas en filoncillos. En la matriz, el feldespato se presenta en algunas rocas como esferulitos radiales y plumosos micrográficos, de tamaños menores de 1,3 mm, con extinción en ojo de pájaro. Algunos cristales tienen formas irregulares y coronas micrográficas alrededor de microfenocristales y fenocristales.

La biotita se encuentra en fenocristales a manera de láminas euhedrales a subhedrales de tamaños que oscilan entre 0,20 y 1,4 mm, y como esqueletos de fenocristales alterados a clorita, con pleocroísmo X: amarillo pálido, Y-Z: pardo oscuro. Se altera levemente a clorita y titanita a lo largo del clivaje (5% a 10%). Algunos cristales están flexionados, con los contornos corroídos por la matriz, y presentan extinción paralela; tienen inclusiones de cuarzo, circón y apatitos.

Los opacos corresponden a magnetita e ilmenita. La magnetita aparece en microcristales anhedrales en la matriz, que le imprimen un aspecto moteado; también en microfenocristales anhedrales de entre 0,1 y 0,2 mm, con bordes irregulares dispersos en la pasta, donde se altera a hematita. Con luz reflejada presenta color gris con reflectancia baja. Puede formar agrupaciones de cristales y tiene microfracturas internas y bordes rectos cristalinos.

La ilmenita se encuentra en microfenocristales anhedrales con bordes rectos, tamaños entre 0,1 y 0,2 mm, textura local esquelética. A la luz reflejada es de color gris con reflectancia baja, tiene bordes rectos cristalinos y buen desarrollo de clivaje.

Los microcristales de circón son euhedrales a subhedrales, aparecen incluidos en fenocristales de biotita y junto a opacos, con birrefringencia del límite entre el segundo y el tercer orden; algunos son prismáticos y su tamaño es menor de 0,1 mm.

El apatito se encuentra como microcristales euhedrales a subhedrales, incluidos principalmente en biotita y en los fenocristales. Es incoloro, de relieve alto y tiene birrefringencia gris de la parte baja del primer orden, en cortes basales hexagonales y longitudinales alargados, de hasta 0,25 mm en el eje mayor, y ancho de hasta 0,2 mm.

La allanita puede estar presente en algunas rocas en cristales euhedrales finos de entre 0,1 y 0,2 mm, de for-

mas hexagonales, con bordes rectos. Su color es marrón y presenta un pleocroísmo de tonos marrones de claro a medio.

Algunas rocas contienen amígdalas de formas irregulares rellenas de cristales de cuarzo y epidota de color amarillo pálido.

Figura 5. Aspecto general de la Riolita de San Joaquín

A y B) IGM-900890 (GR-6729), dacita. Nícoles cruzados. Fenocristales de biotita (Bt), feldespato (Kfs) y cuarzo (Qtz) en matriz felsítica microcristalina (M). C) IGM-900892 (GR-6731), riolita micrográfica. Nícoles cruzados. Fenocristales de feldespato alcalino (Kfs) y biotita (Bt) en matriz micrográfica (M). D) IGM-900891, fenoandesita. Nícoles cruzados. Fenocristales de plagioclasa (PI) y biotita (Bt) flotando en matriz vítrea con esferulitos de feldespato (M).

La matriz puede ser felsítica, micrográfica o vítrea desvitrificada. En el primer caso está constituida por un mosaico microcristalino anhedral felsítico de microcristales de cuarzo y feldespato, junto a microcristales de opacos de igual tamaño y escasas láminas de biotita dispersas en la matriz. En el segundo caso, la matriz está constituida por intercrecimientos micrográficos de cuarzo y feldespatos que localmente forman esferulitos radiales y coronas alrededor de fenocristales. Los intercrecimientos ocupan los espacios entre los cristales y fenocristales. La matriz vítrea, constituida por vidrio incoloro, se desvitrifica a agregados o microcristales anhedrales de cuarzo y feldespatos.

3.4. Química mineral

Para este análisis se seleccionó la muestra IGM-900890 (GR-6729), clasificada petrográficamente como dacita. Se realizó análisis químico en feldespato alcalino, plagioclasa y biotita. Los resultados de la química mineral en feldespato y plagioclasa se muestran en la figura 6 y la tabla 2.

De la muestra GR-6729 se analizó un cristal de feldespato alcalino (figura 7C); los resultados se resumen en la figura 6. El feldespato potásico de la muestra GR-6729 exhibe micropertitas en filoncillo que se pueden apreciar en la imagen del cristal analizado (figura 7C), y corresponden al límite entre pertita y ortosa pertítica. En el campo C3 la composición es Or 55-85,5, Ab 14-14,8, An 0,23-0,50.

De la muestra GR-6729 se analizaron dos cristales de plagioclasa (figura 7 A y B), con cuatro y cinco puntos distribuidos en cada cristal. Del campo C2 se obtuvo una composición de plagioclasa de tipo oligoclasa a andesina sódica (Ab 64,8-70,8, An 24,6-31,9, Or 3,3-4,6), y del campo C4, una composición de andesina (Ab 52,4-62,7, An 34-45,3, Or 2,3-3,2), con una notable variación interna dentro del mismo cristal.

Figura 6. Composición del feldespato potásico y plagioclasas de la Riolita de San Joaquín

Diagrama de Smith-Brown (1988).

Tabla 2. Análisis de cristales de feldespato alcalino y plagioclasa de la muestra GR-6729

	GR-6729- C3-Kfs-1	GR-6729- C3-Kfs-2	GR-6729- C3-Kfs-3	GR-6729- C4-PI-1	GR-6729- C4-PI-2	GR-6729- C4-PI-3	GR-6729- C4-PI-4	GR-6729- C2-PI1	GR-6729- C2-Pl2	GR-6729- C2-Pl3	GR-6729- C2-Pl4	GR-6729- C2-PI5
SiO ₂	1,64	1,59	1,54	58,11	56,58	55,73	58,19	61,38	60,46	59,56	60,69	60,35
TiO ₂	0,00	0,00	0,00	0,02	0,01	0,02	0,01	0,00	0,01	0,00	0,00	0,02
AI_2O_3	18,53	18,53	18,49	26,42	27,33	28,06	26,32	24,82	25,66	26,04	24,92	25,22
FeO	66,01	65,35	65,60	0,28	0,39	0,32	0,27	0,43	0,52	0,54	0,50	0,54
MgO	0,06	0,05	0,10	0,00	0,00	0,00	0,00	0,00	0,04	0,00	0,03	0,00
CaO	-0,01	0,02	-0,03	7,47	8,37	8,87	6,97	4,81	6,06	6,49	5,99	6,15
Na ₂ O	14,36	14,48	14,31	6,90	6,01	5,67	7,09	7,67	7,13	7,29	7,32	7,58
K ₂ O	0,20	0,25	0,17	0,53	0,40	0,38	0,55	0,75	0,66	0,56	0,77	0,74
Total	100,79	100,24	100,16	99,72	99,08	99,06	99,40	99,87	100,53	100,48	100,22	100,60
Si	12,02	11,98	12,01	10,43	10,24	10,10	10,47	10,91	10,71	10,59	10,79	10,72
AI	3,98	4,00	3,99	5,59	5,83	5,99	5,58	5,20	5,36	5,46	5,22	5,28
Ti	0,00	0,00	0,00	0,03	0,04	0,03	0,03	0,04	0,05	0,05	0,05	0,05
Fe ²⁺	0,02	0,03	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,01	0,00
Na	0,58	0,57	0,55	2,40	2,11	1,99	2,47	2,64	2,45	2,51	2,52	2,61
Ca	0,01	0,01	0,02	1,44	1,62	1,72	1,34	0,92	1,15	1,24	1,14	1,17
К	3,34	3,39	3,34	0,12	0,09	0,09	0,13	0,17	0,15	0,13	0,17	0,17
Total	19,94	19,98	19,93	20,02	19,93	19,93	20,02	19,88	19,88	19,97	19,92	20,00
Z	15,99	15,99	16,00	16,06	16,11	16,12	16,08	16,15	16,12	16,10	16,07	16,05
х	3,95	3,99	3,93	3,96	3,82	3,81	3,94	3,73	3,76	3,87	3,85	3,95
Or	84,96	85,50	85,53	3,06	2,39	2,32	3,22	4,57	3,96	3,27	4,53	4,26
Ab	14,76	14,27	13,97	60,66	55,15	52,40	62,71	70,85	65,34	64,84	65,73	66,09
An	0,28	0,23	0,50	36,28	42,47	45,29	34,07	24,58	30,70	31,89	29,74	29,65
Total	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Figura 7. Imagen de electrones retrodispersados

A y B) Cristales de plagioclasa en los campos C4 y C2. C) cristal de feldespato alcalino en el campo C3. D) cristal de biotita de la muestra GR-6729.

4. Litogeoquímica

La caracterización litogeoquímica de la Riolita de San Joaquín se realizó a partir de tres (3) muestras clasificadas como riolita, dacita y andesita (GR-6729, GR-6730 y GR-6731). Los análisis químicos se hicieron en el laboratorio del Servicio Geológico Colombiano, sede Bogotá. En los óxidos mayores se utilizó el método de fluorescencia de rayos X y se incluyeron los elementos traza V, Mo, Nb, Ta, W, Zr y Hf, y en el resto de elementos traza y tierras raras se utilizó el equipo de espectrometría de masas con plasma acoplado inductivamente (ICP-MS). Para la interpretación de los óxidos mayores se hizo el recalculo, teniendo en cuenta los valores de LOI (pérdidas por ignición). Los resultados de óxidos mayores se muestran en la tabla 3.

Los análisis se realizaron con un espectrómetro de fluorescencia de rayos X, FRX, Panalytical AXIOS Mine-

ral para análisis elemental, configurado con software especializado para materiales geológicos. La cuantificación de los óxidos mayores se realizó en muestra fundida con metaborato y tetraborate de litio, y la cuantificación de elementos menores se realiza en muestra prensada. En el análisis de elementos traza de interés geoquímico en rocas se usó un espectrómetro de masas con plasma inductivamente acoplado, ICP-MS, Perkin Elmer Nexion. Para la disolución de la muestra se realiza un ataque por pasos utilizando ácidos inorgánicos fuertes (HF, HNO₃, HClO₄ y HCl). El proceso se realiza en sistema abierto, empleando distintas rampas de temperatura y tiempos de calentamiento. Gran parte de los diagramas geoquímicos se generaron con el uso del GCDKit versión 4.0 (Janoušek *et al.*, 2006).

IGM	N.° campo	w	N	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O	MnO	LOI	Suma
900890	GR-6729	1135098	1204469	68,54	0,63	16,54	2,46	0,20	1,58	4,41	4,25	0,10	0,38	99,15
900891	GR-6730	1136804	1207641	69,56	0,62	17,23	2,13	0,18	1,03	2,39	4,97	0,07	1,14	99,36
900892	GR-6731	1137814	1210177	65,40	0,28	18,16	3,10	0,55	1,79	4,16	4,37	0,13	0,78	98,80

Tabla 3. Composición de óxidos mayores en rocas de la Riolita de San Joaquín

4.1. Óxidos mayores

Los valores de SiO₂ en rocas de la Riolita de San Joaquín varían entre 65,40% y 69,6%; los valores de Al_2O_3 , Fe_2O_3 , MgO, Na₂O y CaO disminuyen con el aumento de SiO₂; el K₂O varía entre 4,3% y 4,97%; el CaO varía entre 1,03 y 1,6%, MgO < 1% y TiO₂ < 0,65%; el contenido de Al_2O_3 es de 16,5 a 18,2%; los valores de Fe_2O_3 son bajos, y varían entre 2,13% y 3,10%, algo acorde con el bajo contenido de minerales ferromagnesianos; presentan contenido de álcalis (Na₂O + K₂O) entre 7,4 y 8,7%.

En los diagramas K_2O versus SiO_2 (Peccerillo y Taylor, 1976; Hastie *et al.*, 2007), las rocas de la Riolita de San Joaquín se encuentran en la serie calcoalcalina alta en K y shoshonítica. La muestra IGM-900890 (GR-6729) se inscribe en la serie calcoalcalina alta en K, y se separa de las otras dos muestras (IGM-900891, GR-6731 y IGM-900892, 6Z-6732), que pertenecen al campo de la serie shoshonítica (figura 8 A y B).

Las rocas de la Riolita de San Joaquín son subalcalinas, químicamente se clasifican en los campos de riolita y dacita en el diagrama TAS de Le Bas *et al.*, (1986) (figura 8 C), con buena concordancia con la clasificación petrográfica.

Las riolitas y dacitas grafican en el campo peraluminoso del gráfico de Shand (1943), con valores de A/NK > 1 y valores de A/CNK > 1, lo que sugiere aporte al magma de material de corteza continental, con valores altos de $SiO_2 > 65\%$ (figura 8 D). En el diagrama de Debon y Le Fort (1983) modificado por Villaseca *et al.*, (1998) (figura 8E), las rocas se agrupan en el campo altamente y medianamente peraluminoso (h-P y m-P). El índice de saturación de alúmina en la mayoría de rocas oscila entre 1 y 2; en la relación A/CNK>1, tienen valores de A/NK entre 1 y 2; la relación K₂O/Na₂O presenta una variación de 0,48 a 1,04, y el Al₂O₃>Cao+Na₂O+K₂O. De acuerdo con el diagrama AFM de Irvine y Baragar (1971) (figura 8 F), las rocas hacen parte de las series calcoalcalinas.

4.2. Elementos traza y tierras raras

En la tabla 4 se resumen los resultados de los análisis químicos de elementos traza y tierras raras correspondientes a las rocas de la Riolita de San Joaquín.

El diagrama de elementos de las tierras raras (REE) normalizado a condrito según los valores de Nakamura (1974) (figura 9A) muestra un enriquecimiento en tierras raras livianas (LREE) de más de cien veces respecto al valor del condrito, con un patrón paralelo y homogéneo que se va empobreciendo progresivamente hacia las tierras raras pesadas (HREE); un tren subhorizontal entre disprosio (Dy) y lutecio (Lu), comportamiento normal de las rocas generadas en ambientes de subducción (Wilson, 1991).

Figura 8. Diagramas de clasificación química de rocas de la Riolita de San Joaquín

A) Diagrama K₂O vs. SiO₂ (Peccerillo y Taylor, 1976). B) Diagrama de clasificación Th-Co (Hastie *et al.*, 2007). C) Diagrama TAS de Le Bas *et al.* (1986). D) Diagrama de Shand (1943). E) Diagrama de Debon y Le Fort (1983) modificado por Villaseca *et al.* (1998), donde f-P granitoides peraluminosos félsicos, h-P granitoides altamente peraluminoso, m-P granitoides medianamente peraluminosos. F) Diagrama AFM de Irvine y Baragar (1971).

IGM	N.° campo	Li	Ве	Sc	v	Cr	Co	Ni	Cu	Zn	Ga	As	Rb	Sr	Cd	In	Cs	Ва	La	Ce	Pr
900890	GR-6729	21	6	11	15	6,6	21	3,1	4,9	36	18	3	192	172	0,1	0	1,7	1.025	49	98	12
900891	GR-6730	29	3	9,7	13	3,2	13	3,9	4,9	32	17	3	186	124	0,1	0	2,1	916	67	122	15
900892	GR-6731	44	4	12	27	5,6	17	4	8,7	59	18	2,5	167	213	0,1	0,1	2,5	1.409	59	115	14
	mitoo	ppm	ppm	ppm	(mg/kg)	ppm	ppm	ppm		ppm	ppm	ppm	ppm	ppm							
LI	miles	0,5	0,1	0,1	0,2	0,5	0,8	0,5	1	4	0,2	0,4	0,2	1	0,08		0,1	1	0,1	0,1	0,1
IGM	N.° campo	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	TI	Pb	Bi	Th	U	Zr	Nb	W	
900890	GR-6729	42	8	1,3	6	1,1	6	1,2	3,8	0,5	3,6	0,5	1,1	25	0,1	22	4,6	169	18	80	
900891	GR-6730	52	10	1,6	7	1,3	6,1	1,2	3,8	0,5	2,9	0,4	1,1	21	0,5	19	3,5	178	15	45	
900892	GR-6731	45	9	1,6	6	1,2	5,6	1,1	3,3	0,5	3	0,5	1	19	0,1	19	4,3	226	16	53	
1.5	mitoo	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	(mg/kg)	(mg/kg)	(mg/kg)	
LI	miles	0,1	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	2	0,1	0,1	0	2	2	8	

Tabla 4. Resultados de elementos traza y tierras raras en rocas de la Riolita de San Joaquín

El comportamiento general de las tres muestras es comparable con rocas generadas en ambientes de subducción por encima de la placa subducida (arco), con enriquecimiento en tierras raras livianas (LREE) de alrededor de doscientas veces el condrito, y empobrecimiento hacia las tierras raras pesadas (HREE) por encima de diez veces el condrito, con anomalía negativa de Eu, probablemente debido a fraccionamiento de la plagioclasa en el magma, lo que permite que Eu⁺³ cambie su estado de oxidación a Eu⁺² (figura 9A). Las relaciones Eu/Eu^{*} <1 y (La/Sm)_N>2 evidencian un enriquecimiento de tierras raras ligeras (LREE) con relación a las HREE en todas las muestras (tabla 5), y notable nucleación previa de la plagioclasa.

El diagrama multielemental de tierras raras (Sun y McDonough, 1989) muestra empobrecimiento de los elementos inmóviles Nb, Sr, Zr y Ti, que puede corresponder a separación de fases minerales accesorias, como titanita, rutilo, circón y apatito, reflejo de la evolución magmática (Winter, 2001), donde el Nb se comporta geoquímicamente de manera similar al Ti (figura 9B). Los mayores valores de los elementos litófilos de alto radio iónico (LILE) Cs, Ba y Th indican una afinidad de corteza continental (márgenes convergentes), donde abundan estos elementos altamente incompatibles. Valores mayores en K, Ba y Rb se deben a su movilización desde fluidos que interactúan en la zona de subducción hacia el magma (figura 9B), y las anomalías negativas de Nb y Ti son características de arcos magmáticos relacionados con ambientes de subducción, con empobrecimiento progresivo hacia los elementos pesados. Además, presentan anomalía negativa de Nb con respecto al Th y Ce, que es la firma geoquímica típica de magmas originados en ambientes tectónicos relacionados con arcos, con patrón subparalelo en la mayoría de las muestras en cada grupo de rocas.

Figura 9. A) Diagrama de REE normalizado respecto al condrito (Nakamura, 1974). B) Diagrama multielemental normalizado al NMORB (Sun y McDonough, 1989)

Muestra	Eu/Eu*	LaN/YbN	LaN/SmN	CeN/YbN	CeN/SmN	EuN/YbN	Suma_REE
900890	0,58	8,93	3,77	6,83	2,89	0,99	232,69
900891	0,58	15,71	4,24	10,86	2,93	1,55	291,01
900892	0,66	12,89	4,14	9,64	3,1	1,5	264,35

Tabla 5. Valores normalizados de REE según el condrito de Nakamura (1974) correspondientes a rocas de la Riolita de San Joaquín

4.3. Discriminación de ambiente tectónico

Según los diagramas Th/Yb vs. Nb/Yb, Rb/Zr vs. Nb y Rb/Sr vs. SiO₂ (Harris *et al.*, 1986; Martin, 1994; Pearce, 2008) (figura 10), las rocas de la Riolita de San Joaquín tienen como equivalentes intrusivos los granitos de arco magmático normal, donde la corteza continental pudo

jugar un papel importante en la composición del magma. Además, los diagramas de elementos traza y REE (figura 9) exhiben anomalías negativas de Ba, Nb, Ti y P, y anomalía positiva de Pb. Este patrón es similar al de rocas generadas en un ambiente de arco.

Figura 10. Gráficos de discriminación de ambiente geotectónico correspondientes a rocas de la Riolita de San Joaquín

Figura 11. Diagramas de ambientes geotectónicos de la Riolita de San Joaquín

Las rocas de la Riolita de San Joaquín se inscriben en el campo de los granitos tipo S en el diagrama A/CNK-SiO2 de Frost et al. (2001) y en el gráfico de CaO vs. FeOt (modificado de Chappell y White, 2001) (figuras 11 A y B). En el diagrama de Frost *et al.* (2001) (figura 11 C) las muestras se localizan en el campo de magmas magnesianos, que presentan una composición general calcoalcalina en rocas de composición riolítica de afinidad peraluminosa, que presentan patrón de REE vs. el condrito de Nakamura (1974) y de tierras raras vs. NMORB, que las asocia a un ambiente de arco de margen continental. Según Frost y Frost (2008), los granitos tipo S se relacionan con un origen derivado de la fusión parcial de la corteza continental bajo condiciones oxidantes. Otros granitoides del Triásico y Jurásico del Macizo de Santander muestran una considerable herencia de núcleos y xenocristales de circones que indican un aporte cortical sobre las unidades metamórficas en las que se encajaron, como es el caso del Monzogranito de La Corcova (Rodríguez et al., 2016).

5. Posición estratigráfica y edad

La Riolita de San Joaquín se emplazó en el Neis de Bucaramanga; al suroeste está en contacto fallado con la Riolita del Alto de Los Cacaos y está intruida por el Batolito de Mogotes; en el extremo norte aparece en contacto con esquistos cuarzo-sericíticos, probablemente de la Formación Silgará, sobre los cuales reposa un cuerpo pequeño de areniscas de posible edad cretácica; además, se encuentra atravesada por diques y pequeños cuerpos de monzogranitos aplíticos.

En este trabajo se realizó la datación de la muestra GR-6729 (IGM-900890). Los resultados y localización de la datación se presentan en la figura 1, y las coordenadas se pueden consultar en la tabla 3.

La separación de minerales densos se realizó en el Laboratorio Químico del Servicio Geológico Colombiano, sede Medellín, utilizando separación hidrodinámica, magnética y, por último, el montaje de los circones sobre una cinta de doble faz pegada a un vidrio de 5 x 5 cm. La muestra GR-6729 fue enviada al Laboratorio de Estudios Isotópicos (LEI) del Centro de Geociencias de la Universidad Nacional Autónoma de México (UNAM), campus Juriquilla, donde se analizó con la siguiente metodología: las concentraciones de U y Th fueron calculadas empleando un circón estándar externo, de acuerdo con Paton *et al.* (2010). Las incertidumbres de sigma 2 propagadas se lograron según Paton *et al.* (2010). Las proporciones²⁰⁷Pb/²⁰⁶Pb, edades y errores se calcularon según Petrus y Kamber (2012). Los puntos estudiados son de 23 micrómetros, y se analizaron utilizando un protocolo modificado de Solari *et al.* (2010). Los datos se midieron empleando un Thermo X series QI-CPMS acoplado a un Resonetics, estación de trabajo láser Excimer Resolución M050. Se realizó un análisis estadístico con el fin de mejorar el rango de confiabilidad de la edad proporcionada por el laboratorio, teniendo en cuenta la relación $[(^{207}Pb/^{235}U)-(^{206}Pb/^{238}U)/^{206}Pb/^{238}U)$, eliminando los datos de circones con valores discordantes que estuvieran, en general, por encima del 15%, y errores de más del 5,5%, trabajando en la muestra GR-6729 con n=24 de un total de 35 circones (anexo A).

Los gráficos de concordia e histogramas se elaboraron en el software de Isoplot/Ex vers. 4,15 (Ludwig, 2008) (figura 12).

Los circones de las muestras GR-6729 son euhedrales a subhedrales, prismáticos, alargados, tabulares, con forma de tallos, de tamaño variable, con una morfología entre acicular y corta prismática. En catodoluminiscencia (CL) muestran zonamientos concéntricos, así como bordes luminiscentes, algunos de ellos. Los análisis realizados arrojan edades concordantes de ca. 200 Ma (figura 12B), con algunos cristales heredados del Paleozoico inferior (390 Ma n=1; 446,2 Ma (n=1)) (figura 12A), del Neoproterozoico (874 Ma, n=1) concordante y del Proterozoico (1630, n=1 discordante).

La muestra GR-6729 se localiza en el sur del cuerpo. Las edades varían entre 191 y 209 Ma, con una edad promedio ponderada de 201, $0\pm2,1$, con un MSWD=3,2, edad que se interpreta como la de cristalización de esta roca (figura 12C).

Las razones Th/U de los circones de la muestra GR-6729 son mayores de 0,1, y están alrededor de 1 en aquellos circones que definen la edad promedio ponderada, relación que sugiere cristalización ígnea (Rubatto, 2002). Los circones heredados tienen razones Th/U>0,1, y probablemente son magmáticos (figura 12D).

5.1. Geoquímica de elementos traza en circones

El análisis de ICP-MS permitió determinar la abundancia de los elementos traza de cada circón de la muestra GR-6729 (tabla 6). Los valores de REE se normalizaron al condrito (McDonough y Sun, 1995) y se calcularon las relaciones Pm* y Tm* en cada uno de ellos. En la figura 13 se observa un comportamiento paralelo y homogéneo en la mayoría de circones con edades entre 191 y 209 Ma, con un patrón de REE con anomalía positiva de Ce y negativa de Eu poco pronunciada, semejante a la de granitos tipo I (figura 13), y tres circones que cruzan el patrón general con menor anomalía de Ce (Zr-26, Zr-28 y Zr-29). Los circones que arrojaron edades del Paleozoico muestran anomalía positiva de Ce y negativa poco pronunciada de Eu, con la anomalía positiva de Ce alta.

Figura 12. Muestra GR-6729: A) gráfico de concordia, B) gráfico Tera-Wasserburg, C) edad promedio ponderada y D) gráfico de la relación Th/U vs. edad

Figura 13. Patrones de los elementos de las tierras raras REE normalizados según el condrito de McDonough y Sun (1995) en circones de la muestra GR-6729

Para discriminar entre granitoides de tipos I, A y S, Wang *et al.* (2012) consideran las diferencias en los contenidos de Pb y Th en circones. Los valores de Pb obtenidos en los circones de la muestra GR-6729 están entre 2,1 y 11,3 ppm; los de Th, entre 50,6 y 590 ppm; la relación Th/Pb está entre 24,2 y 44; las concentraciones de Y (620-2.560 ppm) son parcialmente comparables a las de circones de granitoides (500-4.534), y los valores de (Lu)_N se encuentran entre 1.967 y 8.170 (normalizado al condrito de Sun y McDonough, 1989).

Tabla 6. Elementos traza de cada circón de la muestra GR-6729

(ppm)	Р	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
Circón-003	-3.400	9,4	510	1,4	0	17	0	1,3	2,5	0,5	12	4	50	17	74	149	30	6.600	10	38	56
Circón-004	-710	9,9	311	2,1	0,2	13	0,1	0,8	1	0,4	5,4	2,2	28	11	49	107	23	6.400	1,7	33,1	46
Circón-011	-3.200	93	1.290	10	0,1	44	0,1	2,1	4,5	1,3	27	9,6	117	46	206	391	80	9.000	8,4	186	256
Circón-013	-4.300	10	1.670	6	0,4	49	0,5	3,5	5,8	1,9	35	12	151	59	263	500	101	11.100	9,5	223	330
Circón-016	-2.000	17	1.050	2,7	0	26	0,1	2	3,6	1,4	20	6,8	86	35	159	336	71	10.100	2,5	77	85
Circón-017	-2.300	15	1.540	3,8	0,1	38	0,2	3,4	5,8	2,3	33	11	137	53	239	460	97	7.400	3,6	149	117
Circón-022	600	9,4	940	1,2	0,5	20	0,3	3,7	6,2	1,7	28	8,2	87	33	140	250	54	6.100	1,8	76	53
Circón-023	-1.100	23	2.670	4,2	0,7	55	0,9	12	20	7,2	84	25	242	96	363	630	137	8.800	5,9	279	166
Circón-024	-10.500	11	1.640	8,4	0,3	29	0,1	1,3	3,1	0,7	24	9,8	135	57	260	505	105	9.900	18	233	483
Circón-030	-10.300	8,3	1.310	7,3	1,2	51	0,6	7,1	8,3	2,8	38	12	133	50	196	375	74	8.600	6,9	203	196
Circón-033	-1E+06	11	1.350	3,4	138	98	39	143	40	8,9	59	14	140	47	199	380	80	8.400	6,7	690	201
Circón-002	-3.100	13	1.470	3,9	1	46	0,6	5,9	7,3	2,4	37	12	138	51	222	416	85	6.900	4,1	184	131
Circón-005	-1.900	6,8	1.300	5,9	0	40	0,1	1,2	4,6	1,4	27	9,7	111	47	202	391	78	8.000	6	146	191
Circón-006	-1.100	18	2.270	2,3	0,5	33	0,8	10	15	4,9	58	20	228	81	344	610	123	9.300	4,3	198	133
Circón-007	-1.000	13	1.460	7,4	0,1	69	0,1	2,8	5,6	1,6	28	11	128	50	230	460	96	14.300	9,8	270	300
Circón-008	-1.200	18	2.280	4,3	0	52	0,4	7,1	15	4,1	55	18	210	80	340	640	133	10.400	5,9	240	178
Circón-009	-4.700	14	2.190	5,9	0	65	0,3	5,4	9,8	3,7	54	18	207	77	330	600	120	10.800	6,8	271	234
Circón-010	-8.200	17	2.160	12	8,3	137	3,7	19	11	3	59	17	203	78	340	650	129	12.400	18	770	520
Circón-012	-2.100	17	620	1,3	0	17	0,1	1,7	3,4	1,3	17	5,8	65	22	100	181	37	7.900	1,5	50,6	44
Circón-014	-5.700	9,1	2.060	8	0,3	77	0,3	4	8,4	2,6	48	16	193	74	320	560	115	10.500	10	400	310
Circón-015	-5.100	15	1.630	2,5	4,6	49	2,2	16	14	4,4	55	16	171	58	234	390	77	6.800	4,5	184	135
Circón-018	-4.800	22	2.600	5	0,1	69	0,7	8,3	15	4,8	72	21	250	92	390	700	139	10.800	6,3	300	194
Circón-019	-7.300	13	4.100	6,6	0,3	122	1,2	16	28	8,9	124	38	420	146	590	1.020	201	9.700	11	590	335
Circón-020	-3.300	12	2.550	4,5	1,6	71	0,9	10	15	5,3	71	23	254	93	380	670	132	11.400	8,5	339	250
Circón-021	-3.100	16	970	2,1	0	21	0,1	2	4,3	1,8	23	7,6	92	34	154	285	58	8.200	2,1	66	64
Circón-025	-1.100	10	1.000	2,7	0,4	27	0,3	1,9	4	1,2	20	7	87	33	152	309	61	8.200	3,6	107	116
Circón-026	-14.200	14	1.340	2,6	7,3	56	2,5	14	9,2	3,1	38	11	128	47	201	367	74	8.400	3,6	137	107
Circón-027	-6.400	9,3	770	1,9	0	23	0,1	2,1	3,5	1,3	18	5,9	69	26	119	230	48	7.410	2,8	86	82
Circón-028	-25.000	26	1.830	8,2	8,3	59	3	19	8,7	2,6	39	14	167	64	290	510	103	9.700	12	290	340
Circón-029	-22.000	13	2.270	5,5	7,1	101	3,3	23	14	3,7	55	18	211	81	340	610	124	9.200	8,2	297	260
Circón-031	-12.000	12	930	2,8	0	30	0,1	2	3,9	1,5	21	7,3	83	29	144	278	59	7.100	2,6	82	87
Circón-032	-1E+05	11	6.610	26	0,2	399	1,6	26	44	11	186	58	645	236	980	1.710	328	7.180	41	3.220	1.260
Circón-034	380.000	9,1	1.690	4,7	0	7,1	0,1	2,1	6,7	0,9	34	13	148	56	242	450	90	10.500	27	118	354
Circón-035	24.000	12	1.940	7,9	0,5	31	0,4	4,1	7,6	2	43	15	178	68	289	510	104	10.500	39	452	640

Los granitos de tipo I, según Wang *et al.* (2012), presentan contenidos de Pb <25 ppm, Th entre 34 y 1.746 ppm, Th/Pb de 14 a 130, (Lu)_N entre 1.330 y 5.574, y concentraciones de Y entre 493 y 7.833 ppm. Los granitos de tipo S, según Wang *et al.* (2012), presentan contenidos de Pb de 4 a 161 ppm, Th de 25 a 1.183 ppm (principalmente entre 30 y 700 ppm), relaciones Th/Pb entre (0,4 y 21), concentraciones de Nb entre 1 y 5 ppm, comparable con las de circones de granitos tipo I. El $(Lu)_N$ varía entre 609 y 7.376, Y de 214 a 5.503 ppm.

Al comparar los valores de elementos traza en circones con los valores propuestos por Wang *et al.* (2012) para granitoides de tipos I y S, no se distingue con claridad el tipo de granito al que corresponde la Riolita de San Joaquín, lo que puede deberse al avanzado grado de fraccionamiento de los granitos (monzogranitos y sienogranitos), ya que, según Wang *et al.* (2012), hay dificultad para distinguir, a partir de los elementos traza en circones, entre los granitos tipos I y S altamente evolucionados.

6. Correlaciones

La Riolita de San Joaquín hace parte del magmatismo ocurrido entre el Triásico y el Jurásico, que se emplazó en el basamento metamórfico del Macizo de Santander y cuya correlación se extiende tanto a los cuerpos subvolcánicos porfídicos como a cuerpos plutónicos de composición granítica, entre los que se encuentra el Monzogranito de La Corcova, la Tonalita y Granodiorita de Páramo Rico, el Batolito de Mogotes, el Granito de Pescadero, el Monzogranito de Rionegro y pequeños plutones subvolcánicos como la Riolita de El Uvo.

Al comparar la edad de la Riolita de San Joaquín y las edades de diques y cuerpos menores asociados a otros plutones triásico-jurásicos del Macizo de Santander, al menos por edad, este cuerpo es comparable con algunos de los pulsos de los otros plutones.

Al comparar la clasificación química de las rocas de la Riolita de San Joaquín con la clasificación química de las rocas de las Riolitas El Uvo y la Riolita del Alto de Los Cacaos (figura 14A), que serían las unidades más próximas y correlacionables, se encuentran algunas diferencias: las rocas de la Riolita de San Joaquín pertenecen al campo de las riodacitas, mientras las rocas de El Uvo y Los Cacaos se inscriben en el campo de las riolitas (en el diagrama de Winchester y Floyd, 1977). En el diagrama multielemental normalizado al condrito de Nakamura (1974) se observa que los patrones de las REE se separan entre los cuerpos de riolita, y en algunos casos se cruzan localmente (figura 14B). Además, en las rocas de la Riolita de San Joaquín, la Σ varía entre 232 y 291 > Σ Riolita de Los Cacaos (124 a 146) > Σ Riolita de El Uvo (86 a 96).

La edad de cristalización de las rocas de la Riolita de San Joaquín y de la Riolita del Alto de Los Cacaos es comparable, y es anterior a la de la Riolita de El Uvo, lo que sugiere que se trata de cuerpos de pórfidos generados en el mismo arco, a partir de diferentes pulsos magmáticos.

7. Localidad tipo

Se propone como sección tipo la carretera San Joaquín-vereda La Aurora, donde se puede observar la unidad y algunos de los contactos intrusivos con el Neis de Bucaramanga, en el sector de la Boca del Cedro.

Figura 14. Comparación química de rocas de la Riolita de San Joaquín con rocas de la Riolita de El Uvo y del Alto de Los Cacaos Negro: Riolita de San Joaquín; rojo: Riolita de El Uvo; verde: Riolita del Alto Los Cacaos.

Εu

Ġd

D'

É

Υb

8. Génesis

MIA-641 (197,5 ± 1,5)

Ċe

Pm

Nd

Muestra/REE Condrito

100

Las características macroscópicas y microscópicas de la Riolita de San Joaquín, como textura porfídica y matriz microcristalina felsítica a micrográfica, evidencian un emplazamiento subvolcánico poco profundo del cuerpo, que ocurrió en un basamento metamórfico (Neis de Bucaramanga).

Dicha riolita presenta valores de SiO₂ entre 65,40% y 69,6%, que corresponde a rocas ácidas, con alto contenido de álcalis (Na₂O + K₂O entre 7,4 y 8,7%); relación K₂O/ Na₂O entre 0,48 y 1,04, y Al₂O₃> Cao+Na₂O+K₂O, de la serie calcoalcalina alta en K; grafica en el campo peraluminoso, lo que sugiere aporte al magma de material de corteza continental. Muestra un enriquecimiento en tierras raras livianas (LREE) de más de cien veces el valor del condrito, si bien se va empobreciendo progresivamente hacia las tierras raras pesadas (HREE); además, presenta un comportamiento normal en rocas generadas en ambientes de subducción (arco).

La Riolita de San Joaquín muestra anomalías negativas y empobrecimiento de los elementos inmóviles Nb, Sr, Zr, Ti. Los mayores valores de los elementos litófilos de alto radio iónico (LILE) Cs, Ba y Th indican una afinidad de corteza continental (márgenes convergentes). Las anomalías negativas de Nb y Ti son características de arcos magmáticos relacionados con ambientes de subducción.

Las rocas de la Riolita de San Joaquín son granitos tipo S, que, de acuerdo con Frost y Frost (2008), se relacionan con un origen derivado de la fusión parcial de la corteza continental en condiciones oxidantes.

9. Recursos minerales

No se conocen mineralizaciones asociadas a la Riolita de San Joaquín. La alteración meteórica de este cuerpo intrusivo es profunda y desarrolla perfiles de suelo y saprolito espesos. La Riolita de San Joaquín presenta abundantes diaclasas y fracturas que hacen de este un cuerpo poco atractivo para explotarlo como piedra ornamental. Los saprolitos arenosos formados a partir de la Riolita de San Joaquín son útiles como material arenoso, pero este tipo de material abunda en otros cuerpos de los alrededores, como el Batolito de Mogotes, que tienen mejor acceso y son más cercanos a centros urbanos, lo que le resta importancia a este cuerpo intrusivo.

La unidad Riolita de San Joaquín no exhibe características petrográficas y geoquímicas que evidencien una alteración hidrotermal. Con el fin de evaluar el potencial mineral de la unidad, se interpretaron algunos datos químicos a partir de los resultados de química de roca total de tres muestras y de la química de los circones de la muestra datada por U/Pb (GR-6729), utilizando diagramas que son reconocidos como indicadores de fertilidad de las rocas. En el diagrama de Rb versus Ba (figura 15), adaptado por El-Sheshtawi *et al.* (1999) del diagrama original de Mason (1966), se aprecia que dos de las muestras de riolitas corresponden a rocas fértiles (GR-6729 y GR-6730, potencialmente mineralizadas), mientras que la muestra GR-6731 grafica en el campo de las rocas no fértiles.

Figura 15. Diagrama de variación de Rb versus Ba (Mason, 1966 adaptado por El-Sheshtawi *et al.*, 1999)

La composición de los circones permite distinguir entre suites magmáticas fértiles e infértiles, siendo la relación Eu/Eu*uno de los mejores indicadores de fertilidad. Específicamente, cuando esta relación es mayor de 0,3, indica una roca potencialmente fértil (Lu *et al.*, 2016). Según el diagrama (Ce/Nd)/Y versus Eu/Eu* (figura 16), los circones de la muestra GR-6729 de la Riolita de San Joaquín grafican en el campo de suites fértiles de sistemas de pórfidos Cu±Mo±Au.

Figura 16. Composición de los circones de la Riolita de San Joaquín (muestra GR-6729), en diagrama de Lu *et al.* (2016), con campos de suites fértiles en verde claro, e infértiles, en gris. Los valores de normalización usados para calcular Eu/Eu* son los de Sun y McDonough (1989)

Conclusiones

Este catálogo presenta un cuerpo intrusivo que no había sido relacionado en la bibliografía, e incorpora el conocimiento petrográfico, litogeoquímico y geocronológico al magmatismo del Triásico y Jurásico del Macizo de Santander.

Petrográficamente, las rocas de la Riolita de San Joaquín corresponden a riolita, dacita y andesita, presentan textura porfídica y matriz entre felsítica y micrográfica, constituida por fenocristales de plagioclasa, feldespato alcalino, cuarzo y biotita, y como minerales accesorios, opacos, apatito, circón y epidota.

Químicamente, muestra composición ácida con valores de SiO₂ que varían entre 65,40% y 69,6%; el K₂O varía entre 4,3% y 4,97%; el CaO varía entre 1,03% y 1,6%, MgO < 1% y TiO₂ < 0,65%; el contenido de Al₂O₃ oscila entre 16,5% y 18,2%; los valores de Fe₂O₃ son bajos, entre 2,13% y 3,10%, acordes con el bajo contenido de minerales ferromagnesianos. Las rocas analizadas se clasifican como riolitas y traquidacitas en el diagrama TAS, y como riodacitas en el diagrama de Winchester y Floyd (1977).

La Riolita de San Joaquín corresponde a un plutón peraluminoso con valores de A/NK>1 y valores de A/CNK>1, con valores de Al_2O_3 >Cao+Na $_2O+K_2O$; subalca-lino, de la serie calcoalcalina alta en K y shoshonítica. En general, la tendencia corresponde a rocas generadas en ambientes de subducción por encima de la placa subducida (arco).

Según la química de roca total, la Riolita de San Joaquín se clasifica como un granito tipo S formado en un ambiente de arco continental. Las características mineralógicas, como feldespato alcalino de color rosado, biotita parda y altos contenidos de Na₂O, junto con la química del circón, sugieren que es un granito tipo I.

Se obtuvo una edad U/Pb en circones de 201, $0\pm2,1$ Ma (Rheatiano), que se interpreta como la edad de cristalización del plutón, con escasos núcleos heredados del Paleozoico inferior, 390 Ma (n=1); 446,2 Ma (n=1), y del Neoproterozoico, 874 Ma (n=1), que sugieren aporte al magma del basamento metamórfico.

Se correlaciona con todos los batolitos del Triásico y del Jurásico del Macizo de Santander y con cuerpos hipoabisales, como la Riolita de El Uvo y la del Alto de Los Cacaos, pero debido a las diferencias químicas y edad, se considera formada a partir de un pulso diferente en el mismo arco.

Referencias

- Chappell, B. W. y White, A. J. R. (2001). Two contrasting granite types: 25 years later. *Australian Journal* of Earth Sciences, 48 (4), 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
- Clavijo, J. (1994). Mapa geológico generalizado del departamento de Norte de Santander. Memoria explicativa. Escala 1:250.000. Informe. Ingeominas.
- Clavijo, J., Mantilla, F. L. C., Pinto, J., Bernal, L. y Pérez, A. (2008). Evolución geológica de la serranía de San Lucas, norte del valle medio del Magdalena y noroeste de la cordillera Oriental. *Boletín de Geología*, 30 (1), 45-62.
- Debon, F. y Le Fort, P. (1983). A chemical mineralogical classification of common plutonic rocks and associations. *Earth and Environmental Science Transactions* of The Royal Society of Edinburgh, 73 (3), 153-149. https://doi.org/10.1017/S0263593300010117
- El-Sheshtawi, Y. A., Youssef, F., Ammar, F. A., Hassaan, M. M. y Sakr, S. M. (1999). Petrography and geochemistry of some granites and their metavolcanic country rocks in the Central Eastern Desert, Egypt. The proceeding of 1st Seminar of nuclear raw material and their technology. Cairo, Egypt, 1-3.
- Etayo, F., Barrero, D., Lozano, H., Espinosa, A., González,
 H., Orrego, A., Ballesteros, I., Forero, H. y Ramírez,
 C. (1983). *Mapa de terrenos geológicos de Colombia*.
 Publicaciones Geológicas Especiales del Ingeominas,
 n.º 14, 235.
- Frost, B. R., y Frost, C. D. (2008). A geochemical classification for feldespathic igneous rocks. *Journal of Petrology*, 49 (11), 1955-1969. https://doi.org/10.1093/ petrology/egn054
- Frost, R. B., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. y Frost, C. D. (2001). A geochemical classification for granitic rocks. *Journal of Petrology*, 42 (11), 2033-2043. https://doi.org/10.1093/petrology/42.11.2033
- García, C. y Ríos, C. (1999). Metamorfismo y metalogenia asociada del Macizo de Santander, cordillera Oriental, Colombia. Informe final, Proyecto de Investigación 1102-05-083-95. Colciencias y Universidad Industrial de Santander.
- Harris, N. W., Pearce, J. A. y Tindle, A. (1986). Geochemical characteristics of collision zone magmatism. En M. P. Coward y A. C. Ries (eds.), *Collision tectonics*.

Special publication n.º 19. Geological Society. https://doi.org/10.1144/GSL.SP.1986.019.01.04

- Hastie, A. R., Kerr, A. C., Pearce, J. A. y Mitchell, S. F. (2007). Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. *Journal of Petrology*, 48 (12), 2341-2357. https://doi. org/10.1093/petrology/egm062
- International Subcommision on Stratigraphic Classification. (1987). Stratigraphic classification and nomenclature of igneous and metamorphic rock bodies. *GSA Bulletin*, 99 (3), 440-442. https://doi.org/10.1130/0016-7606(1987)99<440:SCANOI>2.0. CO;2
- International Subcommision on Stratigraphic Classification. (1994). International Stratigraphic Guide: A guide to stratigraphic classification, terminology and procedure. Boulder: Geological Society of America. https://doi.org/10.1130/9780813774022
- Irvine, T. N. y Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rock. *Canadian Journal of Earth Sciences*, 8 (5), 523-548. https://doi.org/10.1139/e71-055
- Janoušek, V., Farrow, C. M. y Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing Geochemical Data Toolkit (GCDkit). *Journal of Petrology*, 47 (6), 1255-1259. https://doi.org/10.1093/petrology/egl013
- Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. y Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. *Journal of Petrology*, 27 (3), 745-750. https://doi.org/10.1093/ petrology/27.3.745
- Leal Mejía, H. (2011). *Phanerozoic gold metallogeny in the Colombian Andes: A tectono- magmatic approach* [Ph. D. thesis]. Universitat de Barcelona.
- Lu, Y. J., Loucks, R. R., Fiorentini, M., Mccuaig, T. C., Evans, N. J., Yang, Z. M., Hou, Z. Q., Kirkland, C. L., Parra Ávila, L. A. y Kobussen, A. (2016). Zircon compositions as a pathfinder for porphyry Cu±Mo±Au deposits. En *Tectonics and Metallogeny of the Tethyan Orogenic Belt* (pp. 329-347). Special publication vol. 19. Society of Economic Geologists.
- Ludwig, K. R. (2008). Isoplot version 4.15: A geochronological toolkit for Microsoft Excel. Special Publication n.°
 4. Berkeley Geochronology Center.

- Mantilla, L. C., Bissig, T., Valencia. V. y Hart , C. (2013). The magmatic history of the Vetas-California mining district, Santander Massif Eastern Cordillera, Colombia. *Journal of South American Earth Sciences*, 45, 235-249. https://doi.org/10.1016/j.jsames. 2013.03.006
- Martin, H. (1994). Archean grey gneisses and the genesis of the continental crust. En K. Codie (ed.), *Archean crustal evolution* (pp. 205-260). Netherland: Elsevier Scientific Publishers.
- Mason, B. (1966). *Principles of geochemistry*. New York: John Wileys & Sons.
- McDonough, W. F. y Sun S. S. (1995). The composition of the Earth. *Chemical Geology*, 120 (1-3), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
- Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. *Geochimica et Cosmochimica Acta*, 38 (5), 757-775. https://doi.org/10.1016/0016-7037(74)90149-5
- Ordóñez Cardona, O., Restrepo Álvarez, J. J. y Pimentel, M. M. (2006). Geochronological and isotopical review of pre-Devonian crustal basement of the Colombian Andes. *Journal of South American Earth Sciences*, 21 (4), 372-382. https://doi.org/10.1016/j. jsames.2006.07.005
- Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A. y Maas, R. (2010). Improved laser ablation U/Pb zircon geochronology through robust downhole fractionation correction. *Geochemistry Geophysics Geosystems*, 11 (3). https://doi.org/10.1029/ 2009GC002618
- Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. *Lithos*, 100 (1-4), 14-48. https://doi.org/10.1016/j. lithos.2007.06.016
- Peccerillo, A. y Taylor, T. S. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey. *Contributions to Mineralogy and Petrology*, 58 (1), 63-81. https://doi.org/10.1007/BF00384745
- Petrus, J. A. y Kamber, B. S. (2012). VizualAge: A novel approach to laser ablation ICP-MS U/Pb geochronology data reduction. *Geostandards and Geoanalytical Research*, 36 (3), 247-270. https://doi.org/10.1111/ j.1751-908X.2012.00158.x

- Restrepo, J. J. y Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. *Episodes*, 11 (3), 189-193. https://doi.org/10.18814/epiiugs/1988/v11i3/006
- Restrepo, J. J., Ordóñez Carmona, O., Armstrong, R. y Pimentel, M. M. (2011). Triassic metamorphism in the northern part of the Tahamí Terrane of the Central Cordillera of Colombia. *Journal of South American Earth Sciences*, 32 (4), 497-507. https://doi.org/10.1016/j.jsames.2011.04.009
- Ríos, C., García, C. y Takusa, A. (2003). Tectono-metamorphic evolution of the Silgara Formation metamorphic rocks in the Southwestern Santander Massif, Colombian Andes. *Journal of South American Earth Sciences*, 16 (2), 133-154. https://doi. org/10.1016/S0895-9811(03)00025-7
- Rodríguez, G., Correa, A. M., Zapata, G. y Arango, M. I. (2016). *Catálogo de unidades litoestratigráficas de Colombia. Monzogranito de La Corcova*. Medellín: Servicio Geológico Colombiano.
- Rubatto, D. (2002). Zircon trace element geochemistry: Partitioning with garnet and the link between U/ Pb ages and metamorphism. *Chemical Geology*, 184 (1-2), 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2
- Shand, S. J. (1943). Eruptive rocks: Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. New York: John Wiley & Sons.
- Smith, J. V. y Brown, W. L. (1988). Feldspar minerals. I. crystal structures, physical, chemical and microtextural properties. Berlin: Springer-Verlag. https://doi. org/10.1007/978-3-642-72594-4
- Solari, L., Gómez Tuena, A., Bernal, J., Pérez Arvizu, O. y Tanner, M. (2010). U/Pb zircon geochronology with an integrated LA-ICP-MS microanalytical workstation: Achievements in precision and accuracy. *Geostandards and Geoanalytical Research*, 34 (1), 5-18. https://doi.org/10.1111/j.1751-908X.2009.00027.x
- Streckeisen, A. L. (1978). Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilite rocks: Recommendations and suggestions. *Neues Jahrbuch für Mineralogie, Abhandlungen*, 141, 1-14.

- Sun, S. y Mcdonough, W. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. En A. Sanders y M. Norry (eds.), *Magmatism in oceanic basins*, vol. 42. Londres: The Geological Society. https://doi.org/10.1144/GSLSP.1989.042.01.19
- Van der Lelij, R. (2013). Reconstructing North-Western Gondwana with implications for the evolution of the lapetus and Rheic Oceans: A geochronological, thermochronological and geochemical study [Tesis de doctorado]. Université de Genéve.
- Van der Lelij, R., Spikings, R. y Mora, A. (2016). Thermochronology and tectonics of the Mérida Andes and the Santander Massif, NW South America. *Lithos*, 248-251, 220-239. https://doi.org/10.1016/j. lithos.2016.01.006
- Villaseca, C., Barbero, L. y Herreros. V. (1998). A reexamination of the typology of peraluminous granite types in intracontinental orogenic belts. *Earth* and Environmental Science Transactions of The Royal Society of Edinburgh, 89 (2), 113-119. https://doi. org/10.1017/S0263593300007045
- Wang, Q., Zhu, D. C., Zhao, Z. D., Guan, Q., Zhang, X. Q., Sui, Q. L., Chu Hu, Z. y Mo, X. X. (2012). Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. *Journal of Asian Earth Sciences*, 53, 59-66. https://doi.org/10.1016/j. jseaes.2011.07.027
- Ward, D., Goldsmith, R., Cruz, J. y Restrepo, A. (1973).
 Geología de los cuadrángulos H-12 Bucaramanga y H-13 Pamplona, departamento de Santander. *Boletín Geológico*, 21 (1-3), 1-132.
- Wilson, M. (1991). *Igneous petrogénesis: A global tectonic approach*. London: Harper Collins Academic.
- Winchester, J. A. y Floyd, P. A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. *Chemical Geology*, 20, 325-343. https://doi. org/10.1016/0009-2541(77)90057-2
- Winter, J. (2001). An introduction to igneous and metamorphic petrology. New Jersey: Prentice Hall.

	±2s	6,3	9,6	17,0	9,2	16,0	5,4	5,3	4,9	4,8	3,5	5,9	9,1	11,0	4,5	6,8	27,0	4,8	4,9	5,0	4,7	5,9	7,8	6,1	4,0	5,6	5,7	5,9	4,5	5,2	7,0	6,1	3,3	5,8	8,1	20,0	6,3	9.6
	²⁰⁶ Pb/ ²³⁸ U	202,7	196,2	1.009,0	226,0	206,0	199,4	199,5	202,6	196,1	198,5	205,1	207,5	194,0	199,0	195,3	196,0	196,2	191,9	209,4	206,8	200,5	195,6	201,5	220,6	193,4	204,6	207,0	207,7	200,8	220,7	202,7	200,8	193,3	446,2	390,0	202,7	196,2
	Error	3,1	4,9	1,7	4,1	7,8	2,7	2,7	2,4	2,4	1,8	2,9	4,4	5,7	2,3	3,5	13,8	2,4	2,6	2,4	2,3	2,9	4,0	3,0	1,8	2,9	2,8	2,9	2,2	2,6	3,2	3,0	1,6	3,0	1,8	5,1	3,1	4.9
	Disc. %	1,60	10,00	-3,17	35,80	00'0	3,20	2,68	2,60	3,87	1,19	38,41	0,72	13,00	2,45	6,11	5,31	11,22	7,74	1,23	-1,87	3,61	13,07	33,50	16,44	6,12	3,03	4,61	2,03	3,18	18,26	1,12	1,28	48,73	0,40	1,76	1,60	10,00
	±2s	6,3	9,6	17,0	9,2	16,0	5,4	5,3	4,9	4,8	3,5	5,9	9,1	11,0	4,5	6,8	27,0	4,8	4,9	5,0	4,7	5,9	7,8	6,1	4,0	5,6	5,7	5,9	4,5	5,2	7,0	6,1	3,3	5,8	8,1	20,0	6,3	9,6
Doot ooo	Dest age (Ma)	202,7	196,2	1009,0	226,0	206,0	199,4	199,5	202,6	196,1	198,5	205,1	207,5	194,0	199,0	195,3	196,0	196,2	191,9	209,4	206,8	200,5	195,6	201,5	220,6	193,4	204,6	207,0	207,7	200,8	220,7	202,7	200,8	193,3	446,2	390,0	202,7	196,2
	±2s	190,0	360,0	95,0	190,0	220,0	180,0	140,0	210,0	140,0	120,0	190,0	280,0	120,0	150,0	180,0	180,0	170,0	180,0	140,0	170,0	280,0	230,0	220,0	120,0	170,0	200,0	230,0	150,0	120,0	160,0	210,0	100,0	170,0	110,0	110,0	190,0	360,0
	²⁰⁷ Pb/ ²⁰⁶ Pb	220,0	460,0	874,0	1.340,0	190,0	290,0	270,0	250,0	340,0	220,0	1.380,0	210,0	630,0	250,0	340,0	380,0	490,0	390,0	220,0	140,0	230,0	540,0	1.150,0	640,0	360,0	290,0	250,0	230,0	290,0	780,0	220,0	210,0	1.630,0	450,0	420,0	220,0	460,0
	±2s	15,0	65,0	28,0	32,0	42,0	16,0	11,0	18,0	12,0	9,4	40,0	26,0	14,0	12,0	17,0	31,0	15,0	15,0	12,0	14,0	25,0	24,0	29,0	10,0	14,0	20,0	21,0	13,0	9,7	14,0	18,0	7,3	33,0	18,0	19,0	15,0	65,0
	²⁰⁷ Pb/ ²³⁵ U	206,0	218,0	978,0	352,0	206,0	206,0	205,0	208,0	204,0	200,9	333,0	209,0	223,0	204,0	208,0	207,0	221,0	208,0	212,0	203,0	208,0	225,0	303,0	264,0	206,0	211,0	217,0	212,0	207,4	270,0	205,0	203,4	377,0	448,0	397,0	206,0	218,0
Countratión	de errores	0,23	-0,08	0,04	-0,08	0,38	0,27	0,25	-0,11	0,22	0,38	0,47	-0,04	0,09	-0,07	0,35	-0,09	-0,30	-0,02	0,18	0,06	-0,01	-0,04	0,27	0,05	0,21	0,11	-0,06	0,14	-0,02	-0,13	-0,03	0,22	0,37	0,16	0,55	0,23	-0,08
	±2s abs	0,0010	0,0015	0,0032	0,0015	0,0026	0,0009	0,0009	0,0008	0,0008	0,0006	0,0009	0,0015	0,0018	0,0007	0,0011	0,0044	0,0008	0,0008	0,0008	0,0008	0,0010	0,0012	0,0010	0,0006	0,0009	0,0009	0,0009	0,0007	0,0008	0,0011	0,0010	0,0005	0,0009	0,0014	0,0033	0,0010	0,0015
	²⁰⁶ Pb/ ²³⁸ U	0,0319	0,0309	0,1694	0,0357	0,0325	0,0314	0,0314	0,0319	0,0309	0,0313	0,0323	0,0327	0,0306	0,0314	0,0306	0,0309	0,0309	0,0302	0,0330	0,0326	0,0316	0,0308	0,0318	0,0348	0,0305	0,0323	0,0326	0,0327	0,0317	0,0348	0,0319	0,0317	0,0304	0,0717	0,0624	0,0319	0,0309
	±2s abs	0,0170	0,1100	0,0760	0,0440	0,0610	0,0200	0,0140	0,0220	0,0140	0,0110	0,0640	0,0320	0,0170	0,0150	0,0210	0,0420	0,0180	0,0180	0,0140	0,0170	0,0310	0,0310	0,0390	0,0140	0,0160	0,0230	0,0260	0,0160	0,0120	0,0190	0,0220	0,0092	0,0480	0,0270	0,0260	0,0170	0,1100
	²⁰⁷ Pb/ ²³⁵ U	0,2240	0,2400	1,6280	0,4190	0,2260	0,2260	0,2220	0,2300	0,2240	0,2190	0,3890	0,2330	0,2470	0,2220	0,2260	0,2290	0,2450	0,2250	0,2320	0,2230	0,2320	0,2510	0,3540	0,2970	0,2220	0,2330	0,2330	0,2330	0,2270	0,3050	0,2260	0,2220	0,4470	0,5550	0,4800	0,2240	0,2400
	±2s abs	0,0043	0,0170	0,0034	0,0091	0,0066	0,0046	0,0034	0,0052	0,0033	0,0027	0,0120	0,0080	0,0033	0,0036	0,0043	0,0046	0,0047	0,0049	0,0033	0,0038	0,0069	0,0068	0,0080	0,0035	0,0043	0,0055	0,0062	0,0034	0,0027	0,0047	0,0057	0,0022	0,0100	0,0027	0,0031	0,0043	0,0170
	²⁰⁷ Pb/ ²⁰⁶ Pb	0,0506	0,0550	0,0689	0,0880	0,0504	0,0527	0,0523	0,0526	0,0529	0,0509	0,0880	0,0544	0,0607	0,0510	0,0510	0,0568	0,0584	0,0545	0,0506	0,0489	0,0511	0,0594	0,0800	0,0601	0,0543	0,0529	0,0520	0,0509	0,0528	0,0646	0,0516	0,0506	0,1050	0,0559	0,0554	0,0506	0,0550
5	Th/U	0,83	1,40	0,68	0,72	0,76	1,49	0,90	1,35	1,16	1,48	0,73	1,14	0,68	1,29	1,36	0,91	1,27	1,55	1,76	1,36	1,03	1,43	1,68	0,48	0,92	1,28	1,05	0,85	1,14	1,04	0,94	2,56	3,43	0,33	0,71	0,83	1,40
	Th (ppm) ¹	60	184	38	33,1	146	198	270	240	271	770	186	50,6	223	400	184	77	149	300	590	339	66	76	279	233	107	137	86	290	297	203	82	3.220	069	118	452	60	184
	, (mqq) l	72	131	56	46	191	133	300	178	234	520	256	44,2	330	310	135	85	117	194	335	250	64	53	166	483	116	107	82	340	260	196	87	1.260	201	354	640	72	131
2		Circón-001	Circón-002	Circón-003	Circón-004	Circón-005	Circón-006	Circón-007	Circón-008	Circón-009	Circón-010	Circón-011	Circón-012	Circón-013	Circón-014	Circón-015	Circón-016	Circón-017	Circón-018	Circón-019	Circón-020	Circón-021	Circón-022	Circón-023	Circón-024	Circón-025	Circón-026	Circón-027	Circón-028	Circón-029	Circón-030	Circón-031	Circón-032	Circón-033	Circón-034	Circón-035	Circón-001	Circón-002

Edad U/Pb de la Riolita de San Joaquín. muestra GR-6729

ANEXO A

		i								Correlación	1000	4			Best age				000	
	n (mqq)	Th (ppm)	Th/U		±2s abs		±2s abs		±2s abs	de errores		±2s		±2s	(Ma)	±2s	Disc. %	Error		±2s
Circón-003	56	38	0,68	0,0689	0,0034	1,6280	0,0760	0,1694	0,0032	0,04	978,0	28,0	874,0	95,0	1.009,0	17,0	-3,17	1,7	1009,0	17,0
Circón-004	46	33,1	0,72	0,0880	0,0091	0,4190	0,0440	0,0357	0,0015	-0,08	352,0	32,0	1.340,0	190,0	226,0	9,2	35,80	4,1	226,0	9,2
Circón-005	191	146	0,76	0,0504	0,0066	0,2260	0,0610	0,0325	0,0026	0,38	206,0	42,0	190,0	220,0	206,0	16,0	00'0	7,8	206,0	16,0
Circón-006	133	198	1,49	0,0527	0,0046	0,2260	0,0200	0,0314	0,0009	0,27	206,0	16,0	290,0	180,0	199,4	5,4	3,20	2,7	199,4	5,4
Circón-007	300	270	06'0	0,0523	0,0034	0,2220	0,0140	0,0314	0,0009	0,25	205,0	11,0	270,0	140,0	199,5	5,3	2,68	2,7	199,5	5,3
Circón-008	178	240	1,35	0,0526	0,0052	0,2300	0,0220	0,0319	0,0008	-0,11	208,0	18,0	250,0	210,0	202,6	4,9	2,60	2,4	202,6	4,9
Circón-009	234	271	1,16	0,0529	0,0033	0,2240	0,0140	0,0309	0,0008	0,22	204,0	12,0	340,0	140,0	196,1	4,8	3,87	2,4	196,1	4,8
Circón-010	520	2770	1,48	0,0509	0,0027	0,2190	0,0110	0,0313	0,0006	0,38	200,9	9,4	220,0	120,0	198,5	3,5	1,19	1,8	198,5	3,5
Circón-011	256	186	0,73	0,0880	0,0120	0,3890	0,0640	0,0323	0,0009	0,47	333,0	40,0	1.380,0	190,0	205,1	5,9	38,41	2,9	205,1	5,9
Circón-012	44,2	50,6	1,14	0,0544	0,0080	0,2330	0,0320	0,0327	0,0015	-0,04	209,0	26,0	210,0	280,0	207,5	9,1	0,72	4,4	207,5	9,1
Circón-013	330	223	0,68	0,0607	0,0033	0,2470	0,0170	0,0306	0,0018	0'0	223,0	14,0	630,0	120,0	194,0	11,0	13,00	5,7	194,0	11,0
Circón-014	310	400	1,29	0,0510	0,0036	0,2220	0,0150	0,0314	0,0007	-0,07	204,0	12,0	250,0	150,0	199,0	4,5	2,45	2,3	199,0	4,5
Circón-015	135	184	1,36	0,0510	0,0043	0,2260	0,0210	0,0306	0,0011	0,35	208,0	17,0	340,0	180,0	195,3	6,8	6,11	3,5	195,3	6,8
Circón-016	85	77	0,91	0,0568	0,0046	0,2290	0,0420	0,0309	0,0044	-0,09	207,0	31,0	380,0	180,0	196,0	27,0	5,31	13,8	196,0	27,0
Circón-017	117	149	1,27	0,0584	0,0047	0,2450	0,0180	0,0309	0,0008	-0,30	221,0	15,0	490,0	170,0	196,2	4,8	11,22	2,4	196,2	4,8
Circón-018	194	300	1,55	0,0545	0,0049	0,2250	0,0180	0,0302	0,0008	-0,02	208,0	15,0	390,0	180,0	191,9	4,9	7,74	2,6	191,9	4,9
Circón-019	335	590	1,76	0,0506	0,0033	0,2320	0,0140	0,0330	0,0008	0,18	212,0	12,0	220,0	140,0	209,4	5,0	1,23	2,4	209,4	5,0
Circón-020	250	339	1,36	0,0489	0,0038	0,2230	0,0170	0,0326	0,0008	0,06	203,0	14,0	140,0	170,0	206,8	4,7	-1,87	2,3	206,8	4,7
Circón-021	64	66	1,03	0,0511	0,0069	0,2320	0,0310	0,0316	0,0010	-0,01	208,0	25,0	230,0	280,0	200,5	5,9	3,61	2,9	200,5	5,9
Circón-022	53	76	1,43	0,0594	0,0068	0,2510	0,0310	0,0308	0,0012	-0,04	225,0	24,0	540,0	230,0	195,6	7,8	13,07	4,0	195,6	7,8
Circón-023	166	279	1,68	0,0800	0,0080	0,3540	0,0390	0,0318	0,0010	0,27	303,0	29,0	1.150,0	220,0	201,5	6,1	33,50	3,0	201,5	6,1
Circón-024	483	233	0,48	0,0601	0,0035	0,2970	0,0140	0,0348	0,0006	0,05	264,0	10,0	640,0	120,0	220,6	4,0	16,44	1,8	220,6	4,0
Circón-025	116	107	0,92	0,0543	0,0043	0,2220	0,0160	0,0305	0,0009	0,21	206,0	14,0	360,0	170,0	193,4	5,6	6,12	2,9	193,4	5,6
Circón-026	107	137	1,28	0,0529	0,0055	0,2330	0,0230	0,0323	0,0009	0,11	211,0	20,0	290,0	200,0	204,6	5,7	3,03	2,8	204,6	5,7
Circón-027	82	86	1,05	0,0520	0,0062	0,2330	0,0260	0,0326	0,0009	-0,06	217,0	21,0	250,0	230,0	207,0	5,9	4,61	2,9	207,0	5,9
Circón-028	340	290	0,85	0,0509	0,0034	0,2330	0,0160	0,0327	0,0007	0,14	212,0	13,0	230,0	150,0	207,7	4,5	2,03	2,2	207,7	4,5
Circón-029	260	297	1,14	0,0528	0,0027	0,2270	0,0120	0,0317	0,0008	-0,02	207,4	9,7	290,0	120,0	200,8	5,2	3,18	2,6	200,8	5,2
Circón-030	196	203	1,04	0,0646	0,0047	0,3050	0,0190	0,0348	0,0011	-0,13	270,0	14,0	780,0	160,0	220,7	7,0	18,26	3,2	220,7	7,0
Circón-031	87	82	0,94	0,0516	0,0057	0,2260	0,0220	0,0319	0,0010	-0,03	205,0	18,0	220,0	210,0	202,7	6,1	1,12	3,0	202,7	6,1
Circón-032	1.260	3.220	2,56	0,0506	0,0022	0,2220	0,0092	0,0317	0,0005	0,22	203,4	7,3	210,0	100,0	200,8	3,3	1,28	1,6	200,8	3,3
Circón-033	201	069	3,43	0,1050	0,0100	0,4470	0,0480	0,0304	0,0009	0,37	377,0	33,0	1.630,0	170,0	193,3	5,8	48,73	3,0	193,3	5,8
Circón-034	354	118	0,33	0,0559	0,0027	0,5550	0,0270	0,0717	0,0014	0,16	448,0	18,0	450,0	110,0	446,2	8,1	0,40	1,8	446,2	8,1
Circón-035	640	452	0,71	0,0554	0,0031	0,4800	0,0260	0,0624	0,0033	0,55	397,0	19,0	420,0	110,0	390,0	20,0	1,76	5,1	390,0	20,0

Geoforma de la Riolita de San Joaquín, vista desde la vereda La Aurora hacia el suroccidente Fotografía de Ana María Correa Martínez

RIOLITAS DEL ALTO LOS CACAOS

» Cordillera Oriental Departamento de Santander

Ana María Correa Martínez, Gabriel Rodríguez, José Gilberto Bermúdez, María Isabel Arango y Gilberto Zapata

Catálogo de las unidades litoestratigráficas de Colombia / Triásico - Jurásico

Citación: Correa Martínez, A. M., Rodríguez, G., Bermúdez, J. G., Arango, M. I. y Zapata, G. (2020). Riolitas del Alto Los Cacaos. En Catálogos de las unidades litoestratigráficas de Colombia: Macizo de Santander. Vol. 1. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585279445.9 La actividad magmática del período Triásico tardío-Jurásico temprano en el Macizo de Santander está representada por cuerpos intrusivos graníticos e hipoabisales (Goldsmith *et al.*, 1971; Ward *et al.*, 1973) emplazados en un basamento metamórfico, una de cuyas partes inicialmente se interpretó como del Precámbrico (Restrepo *et al.*, 1997; Cordani *et al.*, 2005), y otra, del Paleozoico (Ward *et al.*, 1973), si bien en los últimos años se ha reinterpretado todo como originado en el Paleozoico (Van der Lelij *et al.*, 2016). Los estudios del magmatismo triásico-jurásico del Macizo de Santander se han enfocado en los grandes plutones (Ward *et al.*, 1973, Van der Lelij, 2013; Van der Lelij *et al.*, 2016), mientras que los cuerpos volcánicos han sido poco mencionados.

Durante la ejecución del proyecto Magmatismo Jurásico en Colombia en el Macizo de Santander, desarrollado por el Grupo de Estudios Geológicos Especiales de la regional Medellín del Servicio Geológico Colombiano, hacia la parte sursuroccidental del Batolito de Mogotes se estudió un cuerpo riolítico (Riolitas del Alto Los Cacaos) y se hallaron dos cuerpos riolíticos-riodacíticos (Riolita de San Joaquín y Riolitas de El Uvo). El primero corresponde al objeto de este catálogo, y fue descrito por Ward *et al.* (1973) y cartografiado por Ward *et al.* (1977) como continuación, al sur, del Granito de Pescadero.

El objetivo del presente catálogo es mostrar las Riolitas del Alto Los Cacaos como una unidad litoestratigráfica nueva en la bibliografía de la geología colombiana y aportar al conocimiento geológico del Macizo de Santander. En el documento se presentan descripciones generales de campo, análisis petrográficos y de química mineral, resultados litogeoquímicos y edades radiométricas U/Pb en circón de este cuerpo.

1. Proponente del nombre

El nombre Riolitas del Alto Los Cacaos es propuesto por los autores del presente trabajo. Atendiendo a las recomendaciones de la International Subcommission on Stratigraphic Classification de la IUGS (1987, 1994), se propone utilizar la denominación *Riolitas del Alto Los Cacaos*, en consideración a su litología dominante y al nombre geográfico de la localidad tipo.

2. Origen del nombre y distribución geográfica

2.1. Origen del nombre

El componente geográfico del nombre de la unidad proviene del Alto Los Cacaos, que es un sector atravesado por la carretera Mogotes-San Joaquín (figura 1), donde hay buenos afloramientos de esta unidad y se considera la localidad tipo.

2.2. Distribución geográfica

La unidad Riolitas del Alto Los Cacaos aflora en el departamento de Santander, al NW de la cabecera municipal del municipio de San Joaquín, donde ocupa un área aproximada de 22 km².

Los afloramientos se encuentran desde el sector de San Antonio, pasando por Puente Tierra y el Alto Los Cacaos, hasta las proximidades de la cabecera municipal de San Joaquín.

3. Reseña histórica

La primera referencia escrita a este cuerpo hipoabisal fue realizada por Ward et al. (1973), que lo presentaron como una parte del Granito de Pescadero. Vargas et al. (1976) mencionan una intrusión pequeña de la riolita de Onzaga en los alrededores de San Joaquín, que debe corresponder al cuerpo de riolitas objeto de este trabajo. Por otro lado, la primera cartografía del cuerpo se halla en el mapa de Ward et al. (1977), donde también aparece representado con la nomenclatura de Granito de Pescadero, ubicado en el extremo suroccidental del Batolito de Mogotes. En mapas posteriores, como la Plancha 136, Málaga, a escala 1:100.000, de Vargas et al. (1984), este cuerpo no fue representado, y en su lugar aparece el área respectiva cartografiada como JRcm (cuarzomonzonita biotítica blanca a rosada, grano medio, alaskítica) dentro de una unidad mayor denominada Granito de Pescadero (Vargas et al., 1984).

Figura 1. Mapa geológico regional con la localización de las Riolitas del Alto Los Cacaos y de las muestras analizadas. O: Ordovícico. T-J: Triásico tardío-Jurásico temprano. K: Cretácico. Q: Cuaternario

Fuente: cartografía modificada a partir de Ward et al. (1977) y Vargas et al. (1984), con datos de este trabajo

4. Descripción geológica

4.1. Marco geológico

El Macizo de Santander forma parte de un bloque regional de forma triangular formado por las fallas de Santa Marta-Bucaramanga, en el lado occidental, la falla de Oca-Ancón, en el lado norte, y la falla de Boconó, en el lado oriental.

En términos de terrenos, la geología de esta región se ha incluido en el Terreno Chibcha (Restrepo y Toussaint, 1989) o en el Terreno Santander (Etayo Serna *et al.*, 1985).

Las rocas del basamento del Macizo de Santander corresponden a unidades metamórficas, como el Neis de Bucaramanga (Ward *et al.*, 1973), la Formación Silgará (Ward *et al.*, 1973) o Esquistos de Silgará (Urueña, 2014) y el Ortoneis (Ward *et al.*, 1973), cubiertas de manera discordante por rocas sedimentarias de la Formación Floresta, del Devónico.

El Neis de Bucaramanga, denominado también Complejo Bucaramanga (Clavijo, 1994), consiste en neises cuarzo-feldespáticos con andalucita, sillimanita, cordierita y granate, con intercalaciones de neis hornbléndico, anfibolita, mármol y migmatita (Ward et al., 1973), metamorfizados en la facies anfibolita alta. La unidad está cubierta por la Formación Silgará, aunque las relaciones entre ambas unidades no son totalmente claras (Ward et al., 1973, Restrepo Pace, 1995). Esta unidad se había interpretado tradicionalmente como del Proterozoico (Goldsmith et al., 1971; Ward et al., 1973; Restrepo Pace et al., 1997; García y Ríos, 1999; Cardona, 2003 y Cordani et al., 2005); sin embargo, los resultados geocronológicos obtenidos por Van der Lelij (2013) y en este proyecto indican edades en el Neis de Bucaramanga de ca. 465 Ma, que corresponde, al Ordovícico.

La Formación Silgará (Ward *et al.*, 1973) está compuesta por esquistos, filitas, metalodolitas, metaareniscas ortoanfibolitas y escasos mármoles (Ward *et al.*, 1973; García y Ríos, 1999; Ríos *et al.*, 2003; Mantilla *et al.*, 2013). Las rocas fueron metamorfizadas en la facies esquisto verde a anfibolita baja, aunque localmente hay indicios de anfibolita alta (Ward *et al.*, 1973; Schäfer *et al.*, 1998). La Formación Silgará presenta edades de metamorfismo del Ordovícico inferior a medio relacionadas con la orogenia Caledoniana (Forero, 1990; Ríos *et al.*, 2003; Ordóñez *et al.*, 2006; Clavijo *et al.*, 2008; Mantilla *et al.*, 2013). El Ortoneis consiste en neises cuarzo-feldespáticos que varían en composición desde granito hasta tonalita (Ward *et al.*, 1973), con lentes de anfibolita. En muchos lugares exhibe concordancia con estructuras del Neis de Bucaramanga y de la Formación Silgará (Ward *et al.*, 1973). Son rocas de medio a alto grado de metamorfismo, de edad pre-Devónico Inferior-Ordovícico (Ward *et al.*, 1973). Hay varios resultados geocronológicos que indican una edad ordovícica (Mantilla *et al.*, 2012; Van der Lelij, 2013).

Hay evidencias geocronológicas, por edades U/Pb en circón, de magmatismo posterior al metamorfismo, representado por metavulcanitas y plutones que intruyen el basamento metamórfico. Estas tienen edades del Silúrico, Devónico inferior, Carbonífero y límite Triásico-Jurásico (Goldsmith *et al.*, 1971; Mantilla *et al.*, 2012; Van der Lelij, 2013, y este proyecto).

Durante el límite Triásico-Jurásico se desarrolló un importante magmatismo de arco, con el emplazamiento dentro del basamento metamórfico de grandes batolitos, *stocks* graníticos y cuerpos riolíticos subvolcánicos, localizados hacia la margen occidental del Macizo de Santander (Goldsmith *et al.*, 1971; Ward *et al.*, 1973; Van der Lelij, 2013, y este proyecto). La Riolita del Alto Los Cacaos es uno de los cuerpos subvolcánicos que se generó durante dicho magmatismo.

Sobre el basamento metamórfico y los plutones se encuentran de manera discordante unidades sedimentarias cretácicas y, finalmente, pórfidos del Mioceno mineralizados con oro (Leal Mejía, 2011; Mantilla *et al.*, 2013) y depósitos cuaternarios.

4.2. Descripción macroscópica y microscópica

La unidad está compuesta por riolitas y traquitas de grano fino y porfídicas de tonalidades rosa y naranja (figura 2A), con variaciones graduales entre una y otra, que desarrollan saprolitos de colores rosa muy claro a naranja, arcillosos (figura 2 B, C). Las riolitas y traquitas están intruidas localmente por diques centimétricos de andesita (figura 2 D, E) e intruyen los esquistos de la Formación Silgará. Las relaciones de la unidad con el Batolito de Mogotes son complejas. En algunos lugares, las riolitas y traquitas parecen ser intrusivas en rocas del batolito (figura 2F), y en otras parece que los monzogranitos del Batolito de Mogotes las intruyen, aunque los datos geocronológicos sugieren que las riolitas son más antiguas que la facies principal del Batolito de Mogotes.

A nivel microscópico se identificaron riolitas, riolitas de feldespato alcalino, traquitas de feldespato alcalino (IGM900876, 900916, 10914) y diques de andesita porfídica (900877). El resumen de la composición modal se presenta en la tabla 1. Las abreviaturas de los minerales fueron tomadas de Siivola y Schmid (2007). La composición modal se obtuvo por conteo de 300 puntos en cada muestra y se presenta una muestra en el triángulo QAP de Streckeisen (1978) en la figura 3. La clasificación se realizó a partir del contenido de fenocristales.

Figura 2. Características macroscópicas de las riolitas, traquitas y de un dique de la unidad Riolitas del Alto Los Cacaos. A) Muestra de mano de traquita de feldespato alcalino levemente microporfídica, colectada en estación AMC-0145 (IGM900976). B) Afloramiento de riolita porfídica saprolitizada. C) Afloramiento de riolita afanítica saprolitizada, con vetillas blancas. D) Imagen mesoscópica del dique de andesita porfídica meteorizado, estación AMC-0146. E) Muestra de mano de dique de andesita colectado en la estación AMC-0146 (IGM900877). F) Cuerpos tabulares de riolita afanítica (en lila) aparentemente cortando un monzogranito

1 Traquita de fedespato alcalino

IGM (n.° de campo)	Coordenada oeste	Coordenada norte	Qtz	PI	Kfs	Bt	Ms	Ор	Ар	Zrn	Ttn	Matriz	Otros	Clasificación
900876 (AMC-0145)	1132810	1203442	13	4	63	Tr		Tr				20		Cuarzotraquita de feldespato alcalino
10914 (HC-26)	1133807	1203953	21	20	35	1	Tr	2		Tr		21		Riolita
900916 (JGB-469)	1133266	1203094	12,7		17,3	0,7		Tr				69,3		Riolita de feldespato alcalino
900877*(AMC-0146)	1132182	1204891	2	15,5	2			0,5	Tr	Tr	Tr	70	10	Andesita porfídica

Tabla 1. Composición modal de las rocas subvolcánicas del cuerpo Riolitas del Alto Los Cacaos

Muestra de dique. Qtz: cuarzo; PI: plagioclasa; Kfs: feldespato potásico, Bt: biotita, Ms: moscovita; Op: opacos; Ap: apatito; Zrn: circón; Tnt: titanita

Figura 3. Triángulo de Streckeisen (1978) en el que se muestra la composición modal de las rocas subvolcánicas de la unidad Riolitas del Alto Los Cacaos. En rojo, riolitas y traquitas; en negro, dique que corta las anteriores

4.2.1 Riolitas y traquitas

Las riolitas y traquitas exhiben texturas esferulítica, porfídica y micrográfica con matriz felsítica (figura 4 A, B, C, D, E). Estas rocas tienen aproximadamente 70% de fenocristales y 20% de matriz, y están compuestas por feldespato potásico (60% a 65%), cuarzo (10% a 15%), plagioclasa (5%), y como accesorios, opacos y trazas de un mineral ferromagnesiano alterado que posiblemente era biotita.

El feldespato potásico se presenta de dos maneras: una es en cristales esferulíticos intercrecidos con cuarzo (figura 4 A, B, C), y la otra en cristales subhedrales tabulares con textura gráfica (figura 4 D, E). En ambos casos exhibe la superficie sucia con un polvillo de color pardo por alteración a caolín de moderada a fuerte. Algunos de los cristales subhedrales exhiben macla de Carlsbad, y otros, crecimientos micrográficos. En las esferulitas se distinguen dos poblaciones: una de 0,3 mm de diámetro, aproximadamente, y la otra de 0,7 mm de diámetro en promedio. Entre los cristales subhedrales predominan los que tienen dimensiones de 0,7 x 1,2 mm. Esporádicamente pueden encontrarse de mayor tamaño.

El cuarzo está en microfenocristales y microcristales, principalmente bipiramidales y, en menor proporción, anhedrales (figura 4 A, C), rodeados por esferulitas y, localmente, por cristales de feldespato potásico. Algunos exhiben rasgos de corrosión en su interior y en pequeñas bahías en sus bordes. El cuarzo forma parte también de los intercrecimientos esferulíticos y micrográficos (figura 4 A, B, D, E). Los cristales de cuarzo presentan extinción levemente ondulante y predominan los menores de 0,5 mm; excepcionalmente alcanzan 1 mm en su dimensión mayor.

La plagioclasa se encuentra en cristales anhedrales y subhedrales tabulares, con macla de albita, con sericitización moderada y argilización muy fuerte, por lo que no es posible estimar su composición a partir del método Michel-Lévy. El tamaño predominante es de 0,4 x 0,5 mm.

Unas láminas anhedrales completamente alteradas a clorita y a opacos, que posiblemente correspondían a biotita, se encuentran en muy poca cantidad, con tamaños menores de 0,3 x 0,75 mm.

Hay varios tipos de opacos. Unos, que parecen ser primarios, tienden a ser equidimensionales o rectangulares, con un tamaño menor o igual a 0,25 mm en su dimensión mayor. Y entre estos se reconocen dos clases: la primera, representada por los que están relativamente bien preservados, de superficie más homogénea, color crema y reflectancia mayor que la que se observa en los de la segunda, que son de tonalidad gris y están poco preservados. Otros son anhedrales y de grano más fino, que son de alteración; se hallan diseminados en la roca y localmente asociados a minerales de alteración, y pueden corresponder a magnetita.

Figura 4. Texturas y composición de las Riolitas del Alto Los Cacaos. A) IGM900876. Microfenocristales de cuarzo y matriz esferulítica. B) IGM900916. Detalle de la matriz esferulítica. C) IGM900916 Microfenocristales de cuarzo y feldespato potásico en matriz felsítica y esferulítica. D) IGM900876. Fenoristal de feldespato potásico con textura gráfica. E) IGM10914. Textura micrográfica

4.2.2. Dique andesítico

El dique de andesita exhibe textura porfídica (figura 5) con matriz felsítica micrográfica y desvitrificada (figura 5), con 30% de cristales y 70% de matriz. Son comunes los glomerocristales de plagioclasa ± cuarzo ± feldespato potásico. Los cristales están representados por plagioclasa (16%), ferromagnesiano alterado (10%), cuarzo (2%), feldespato potásico (2%), accesorios opacos, apatito, circón y titanita.

La plagioclasa se presenta en fenocristales y microfenocristales euhedrales y subhedrales (figura 5), con maclas de albita y combinada de albita-Carlsbad. Está principalmente en glomerocristales, y en menor proporción se presentan aislada. Hay cristales incoloros y otros de centros con superficie parduzca por sericitización muy fuerte y bordes limpios no alterados. Además, pueden exhibir algo de argilización y saussuritización. Algunos presentan zonación. Los tamaños varían desde 0,3 x 0,75 mm hasta 1,7 x 2,5 mm.

El mineral ferromagnesiano alterado, por las formas que preserva, parece haber correspondido en su mayoría a biotita y, en menor cantidad, a anfíbol. Las láminas subhedrales de una posible biotita, con un tamaño de 0,25-0,5 x 1,1-1,75 mm, están completamente alteradas a clorita y epidota. Por otro lado, un fenocristal que parece haber sido anfíbol, por su contorno, está alterado a clorita, epidota y opacos; su tamaño es de 0,75 x 1,1 mm.

El cuarzo aparece en fenocristales y microfenocristales subhedrales bipiramidales, incoloros y limpios. Estos cristales pueden exhibir bahías de corrosión y estar rodeados por matriz con textura micrográfica y esferulí-

Figura 5. Características microscópicas de dique de andesita. IGM900877. Fenocristales de plagioclasa y matriz felsítica

tica. Los tamaños del cuarzo en la muestra del dique analizado van desde 0,3 x 0,4 mm hasta 2,25 x 3,0 mm, pero el promedio es de 1,2 x 1,5 mm.

El feldespato potásico se presenta en fenocristales y microfenocristales subhedrales con argilización moderada, por lo que muestran superficie levemente empolvada. Algunos tienen macla de Carlsbad y exhiben zonación. Los tamaños de los cristales van desde 0,3 x 0,7 mm hasta 1,0 x 1,25 mm.

Los opacos aparecen de dos formas: unos son subhedrales de contornos cuadrados, que posiblemente corresponden a minerales primarios; algunos de ellos tienen apatito en sus bordes. El otro tipo de opaco es anhedral y aparece en agregados menores de 0,25 mm de diámetro; se encuentra principalmente dentro del mineral ferromagnesiano alterado, y posiblemente es secundario.

El apatito se presenta en cristales euhedrales prismáticos y subhedrales asociados a un mineral ferromagnesiano alterado y a opacos primarios. Los hallados son menores de $0,06 \ge 0,1$ mm.

La titanita se encuentra en cristales subhedrales diseminados en la roca, que puede ser primaria. También hay titanita que parece ser de alteración, asociada al mineral ferromagnesiano alterado.

El circón está en cristales euhedrales prismáticos finos diseminados en la roca. Su tamaño promedio es de $0,02 \ge 0,04$ mm.

5. Química mineral

Los análisis de química mineral se llevaron a cabo en la microsonda electrónica de la Universidad Nacional de Colombia, sede Bogotá. El equipo usado es una microsonda JEOL JXA 8230. Estas fueron las condiciones de operación: 1 a 10 µm de diámetro del haz, tiempo en el pico de 20 ms, intensidad de 20 nA y voltaje de aceleración de 15 kV. Los conteos del instrumento son convertidos a porcentajes de óxidos mediante comparaciones con conteos de estándares naturales y sintéticos. Los datos se han tratado mediante la corrección ZAF (Z: número atómico; A: absorción de masas; F: fluorescencia), utilizando el programa de JEOL. La adquisición de los datos consistió en obtener imágenes de electrones retrodispersados de los cristales seleccionados para el análisis y en realizar los análisis puntuales.

En la muestra IGM900876 de las Riolitas del Alto Los Cacaos, los minerales analizados fueron feldespato potásico, plagioclasa y magnetita.

5.1. Feldespato potásico

Los cristales de feldespato potásico de esta muestra se encuentran fuertemente caolinizados, y por tal motivo se analizaron en los bordes, donde no se apreciaba caolinización. Las imágenes de electrones retrodispersados de los cristales analizados se exhiben en la figura 6. Los resultados están en la tabla 2. El feldespato de la muestra AMC-0145 exhibe una composición relativamente homogénea de ortosa ($Or_{96,5-97,5}Ab_{2,5-3,5}$), exceptuando dos resultados con contenido de ortosa un poco más bajos: $Or_{94}Ab_6 y Or_{89}Ab_{11}$ (figura 7).

Figura 6. Imágenes de electrones retrodispersados de los feldespatos potásicos analizados en la muestra AMC-0145

ion quimica de	i leiuespaio pi		070 (ANIC-014	b) de las hiulit	as del Allo Los	Cacaus

cición químico del felderente notócias en la muestra ICM000976 (AMC 0145) de las Dislitas del Alta Las Casasas

Punto analizado	AMC-0145-C3- Kfs-1	AMC-0145-C3- Kfs-2	AMC-0145-C3- Kfs-3	AMC-0145-C3- Kfs-4	AMC-0145-C4- Kfs-1	AMC-0145-C4- Kfs-2	AMC-0145-C4- Kfs-3	AMC-0145-C4- Kfs-4	AMC-0145-C4- Kfs-5
SiO ₂	66,13	65,28	66,05	66,03	65,48	65,21	65,37	65,40	65,05
TiO ₂	0,00	0,00	0,00	0,01	0,01	0,00	0,00	0,00	0,00
Al ₂ O ₃	17,52	17,46	17,27	17,26	17,55 17,37		17,53	17,19	17,57
FeO	0,09	0,03	0,04	0,09	0,00	0,04	0,02	0,02	0,02
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	0,00	0,00	0,00	0,03	0,00	0,01	0,02	0,02	0,00
Na ₂ O	0,32	0,32	0,28	1,16	0,39	0,31	0,66	0,28	0,32
K ₂ O	15,41	16,04	16,12	14,35	15,94	16,11	15,76	16,17	16,19
Total (% en peso)	99,46	99,13	99,76	98,92	99,38	99,05	99,35	99,09	99,14
Si	12,201	12,145	12,203	12,215	12,144	12,150	12,131	12,180	12,115
AI	3,810	3,829	3,759	3,763	3,835	3,814	3,833	3,774	3,857
Fe	0,000	0,000	0,000	0,002	0,002	0,000	0,000	0,000	0,000
Ti	0,009	0,003	0,004	0,009	0,000	0,004	0,002	0,002	0,002
Mg	0	0	0	0	0	0	0	0	0
Na	0,114	0,117	0,101	0,415	0,140	0,111	0,237	0,100	0,115
Ca	0,000	0,000	0,000	0,005	0,000	0,003	0,003	0,004	0,000
К	3,627	3,806	3,800	3,387	3,772	3,829	3,731	3,842	3,847
Total cationes (a.p.f.u.)	19,761	19,900	19,866	19,797	19,893	19,911	19,936	19,903	19,936
0	32	32	32	32	32	32	32	32	32
Z	16,01	15,97	15,96	15,98	15,98	15,96	15,96	15,95	15,97
Х	3,75	3,93	3,90	3,82	3,91	3,95	3,97	3,95	3,96
Or	96,94	97,02	97,41	88,96	96,43 97,13		93,95	97,36	97,08
Ab	3,06	2,98	2,59	10,90	3,57	2,80	5,97	2,54	2,91
An	0,01	0,00	0,00	0,14	0,01	0,07 0,09		0,10	0,01

a.p.f.u.: átomos por fórmula unitaria

Figura 7. Composición de los feldespatos potásicos y las plagioclasas en una muestra de las Riolitas del Alto Los Cacaos. Diagrama de Smith y Brown (1988)

5.2. Plagioclasa

Las plagioclasas también se encuentran fuertemente alteradas a sericita, arcilla y, en menor proporción, a saussurita, por lo que se analizaron en los bordes, donde la superficie se apreciaba aparentemente limpia. En las imágenes de electrones retrodispersados (figura 8) no se observó zonación. La composición obtenida en tres puntos es muy homogénea y corresponde a albita $(Ab_{95,5-97,5}An_{1-1,6}Or_{1,5-3,3})$, como se puede observar en la tabla 3 y en la figura 7.

Figura 8. Cristal de plagioclasa de la muestra AMC-0145 analizado en la microsonda electrónica. Imagen de electrones retrodispersados

Tabla	3.	Composición	química	de	la	plagioclasa	en	la	muestra
IGM90	087	6 (AMC-0145)	de las Ric	olitas	de	Alto Los Ca	caos		

Punto analizado	AMC-0145-C6-PI-1	AMC-0145-C6-PI-2	AMC-0145-C6-PI-4							
SiO ₂	66,90	67,83	67,78							
TiO ₂	0,00	0,00	0,00							
Al ₂ O ₃	20,57	20,31	20,58							
FeO	0,05	0,03	0,00							
MgO	0,00	0,00	0,00							
CaO	0,27	0,35	0,22							
Na ₂ O	11,52	11,84	11,75							
K ₂ O	0,61	0,24	0,27							
Total (% en peso)	99,93	100,60	100,60							
Si	11,759	11,822	11,805							
AI	4,260	4,172	4,224							
Fe	0,000	0,000	0,000							
Ti	0,005	0,003	0,000							
Mg	0,000	0,000	0,000							
Na	3,927	4,001	3,966							
Ca	0,052	0,065	0,042							
К	0,137	0,054	0,059							
Total cationes (a.p.f.u.)	20,140	20,118	20,096							
0	32	32	32							
Z	16,02	16,00	16,03							
х	4,12	4,12	4,07							
Ab	95,42	97,10	97,52							
An	1,25	1,59	1,02							
Or	3,32	1,31	1,46							
a.p.f.u.: átomos por fórmula unitaria										

5.3. Magnetita

Se analizó un cristal de magnetita en la muestra AMC-0145 (figura 9); los resultados obtenidos se presentan en la tabla 4. El cálculo del Fe³⁺ se hizo usando la fórmula de Droop (1987).

La magnetita de esta muestra tiene un contenido de FeO_{total} entre 88,3 % y 89,6 % (10,8 a.p.f.u. de Fe³⁺ y aproximadamente 1 2 a.p.f.u. de Fe²⁺) y es rica en TiO₂ porque presenta valores entre 4,6 % y 4,9 % (1,06 a 1,1 3 a.p.f.u.). Exhibe bajos contenidos de Al, Cr y Mn.

Figura 9. Cristal de magnetita analizado en la muestra AMC-0145

Tabla 4. Composición química de la magnetita en la muestra AMC-0145

analizado	AMC-0145-C2-Mt-1	AMC-0145-C2-Mt-2	AMC-0145-C2-Mt-3
SiO ₂	ND	ND	ND
TiO ₂	4,731	4,617	4,886
Al ₂ O ₃	0,075	0,029	0,06
Cr ₂ O ₃	ND	0,008	ND
FeO	89,619	89,389	88,268
MnO	0,336	0,041	0,372
MgO	0,002	ND	ND
Total (% en peso)	94,763	94,084	93,586
Si	ND	ND	ND
Ti	1,083	1,064	1,133
AI	0,027	0,010	0,022
Cr	ND	0,002	ND
Fe ³⁺	10,829	10,858	10,775
Fe ²⁺	11,974	12,055	11,974
Mg	0,001	ND	ND
Mn	0,087	0,011	0,097
Total cationes (a.p.f.u.)	24,000	24,000	24,000

ND: no detectado

6. Geoquímica

Los análisis geoquímicos se hicieron en el laboratorio del Servicio Geológico Colombiano, en Bogotá. La cuantificación de los óxidos mayores se realizó con un espectrómetro de fluorescencia de rayos X, Panalytical AXIOS Mineral, para análisis elemental, configurado con software especializado para materiales geológicos, en muestra fundida con metaborato y tetraborato de litio, y la de elementos menores se hizo en muestra prensada. Para el análisis de elementos traza se usó un espectrómetro de masas con plasma inductivamente acoplado, ICP-MS, Perkin Elmer Nexion. La disolución de la muestra se ejecutó mediante ataque por pasos utilizando ácidos inorgánicos fuertes (HF, HNO₃, HClO₄ y HCl). El proceso se realizó en sistema abierto, empleando distintas rampas de temperatura y tiempos de calentamiento.

Los valores de óxidos mayores se presentan en porcentaje en peso (% en peso), mientras que los elementos traza se presentan en partes por millón (ppm). Gran parte de los diagramas geoquímicos se generaron con el uso del GCDKit versión 4.0 (Janoušek *et al.*, 2006).

6.1. Elementos mayores

Los resultados analíticos de los elementos mayores se presentan en la tabla 5. La pérdida al fuego (LOI) en las tres muestras es menor del 2%, y este criterio indicaría que las rocas que no están muy alteradas, así como los análisis de elementos mayores, se podrían usar para clasificaciones e interpretaciones geoquímicas petrogenéticas. Sin embargo, dadas las evidencias macroscópicas y microscópicas de alteración de las muestras, se analizan las posibilidades de alteración por meteorización o por alteración hidrotermal. En el diagrama de Nesbitt y Young (1984), que se usa para mostrar tendencias de meteorización de las rocas, se observa que las dos muestras de riolitas están relativamente alteradas por meteorización (figura 10A), mientras que el dique está menos meteorizado. En este diagrama también se aprecia que una de las muestras de riolita (IGM900916_JGB-469) posiblemente sufrió metasomatismo potásico, ya que se ubica por debajo de la línea de tendencia de meteorización de riolitas y más hacia el vértice de K₂O. Según lo observado en el diagrama de Hughes (1972), que muestra los campos de rocas con composiciones ígneas o alteraciones potásica y sódica, las muestras de riolitas presentan alteración potásica (figura 10B), mientras que el dique está en el campo de las composiciones ígneas, pero cerca del límite de la alteración potásica.

Tabla 5. Resultados de óxidos mayores (expresado en porcentaje en peso) de rocas de las Riolitas del Alto Los Cacaos y de un dique en estas

							-			
IGM	SiO ₂	TiO ₂	Al_2O_3	Fe_2O_3	MgO	CaO	Na ₂ O	K ₂ O	MnO	LOI
900876	73,65	0,15	15,98	1,08	0,07	0,20	2,28	4,63	0,02	0,98
900916	76,89	0,02	11,97	1,01	0,02	0,14	1,78	5,72	0,01	1,62
900877°	66,58	0,47	18,01	2,86	0,58	2,28	2,94	4,50	0,08	0,72

* Dique

Figura 10. A) Muestras de riolitas (cuadros rojos) y dique (círculo negro) en el diagrama de Nesbitt y Young (1984), donde se muestran composiciones de rocas frescas y tendencias de meteorización. B) Diagrama de Hughes (1972) para mostrar alteración hidrotermal de rocas volcánicas En la figura 10A. Pl: plagioclasa; Ks: feldespato potásico; Mu: moscovita; Ka: caolinita. 1: Composición promedio de riolita, 2: promedio de adamelita; 6: promedio de basalto, 4: promedio de granito, 5: promedio de adamelita; 6: promedio de granodiorita, 7: promedio de tonalita, 8: promedio de gabro. El CaO* corresponde al total del análisis, porque estas muestras no tenían análisis de P_2O_5 disponible para calcular qué parte del CaO correspondía al apatito.

En el diagrama TAS (figura 11A) las rocas subvolcánicas del cuerpo principal y el dique grafican por debajo del límite de Irvine y Baragar (1971), lo que indica que pertenecen a la serie subalcalina. En este mismo diagrama, las rocas subvolcánicas del cuerpo principal se clasifican como riolitas, clasificación que coincide con la petrográfica, mientras que el dique químicamente se clasifica como dacita, y petrográficamente, como andesita. Dada la alteración potásica de dos de las muestras, también se usó para su clasificación el diagrama de Winchester y Floyd (1977) (figura 11B), que se basa en elementos considerados inmóviles, en vez de los álcalis, que son muy móviles. Se aprecia que hay concordancia en la clasificación de las rocas en los dos diagramas (figura 11 A y B).

Figura 11. A) Diagrama TAS de Le Bas *et al.* (1986), con línea punteada de Irvine y Baragar (1971) de las rocas de las Riolitas del Alto Los Cacaos y de un dique en estas. B) Las mismas muestras en el diagrama de Winchester y Floyd (1977). Riolitas en cuadrados rojos, dique en círculo negro

Tabla 6. Resultados de elementos traza y tierras raras (en ppm) en rocas

de las Riolitas del Alto Los Cacaos y en dique de dacita. Valores de nor-

malización de McDonough y Sun (1995)

6.2. Elementos traza

Los resultados de elementos traza y de las tierras raras de las rocas de la unidad Riolitas del Alto Los Cacaos se presentan en la tabla 6.

Los patrones de elementos de las tierras raras (REE) normalizados al condrito (McDonough y Sun, 1995) se muestran en la figura 12. Las riolitas tienen contenidos de elementos de las tierras raras 7REE entre 126 y 145, con un enriquecimiento en LREE de aproximadamente 100 veces con relación al condrito, mientras que la andesita tiene mayores contenidos de estos con SREE de 255, y muestra un enriquecimiento en LREE de 200 veces los valores del condrito. La razón La/Yb_N es mayor en la dacita (22,88) que en las riolitas (4,77-7,71), e indica un patrón más empinado (figura 12) y mayor fraccionamiento de las tierras raras livianas con relación a las pesadas en la andesita que en las riolitas. De todos modos, las riolitas también exhiben un patrón con pendiente negativa. En las riolitas, la razón Gd/Yb_N próxima de 1 (0,77 y 0,98) refleja la tendencia plana del patrón en los HREE. Por otro lado, la anomalía negativa de Eu es más significativa en las riolitas (0,51 a 0,56) que en la dacita (0,86), lo que indica mayor fraccionamiento de plagioclasa en la fuente de las riolitas.

El patrón de una de las muestras de riolitas (IGM900916_JGB-469) exhibe anomalía negativa de Ce, que puede deberse a intemperismo de las rocas. Malpas *et al.* (2001) demuestran que el aumento del grado de meteorización o intemperismo implica incremento en la anomalía de Ce.

IGM 900876 900916 900877* חו 0,50 Li 15,01 14,44 23,58 Be 3,23 4,91 2,59 0,10 7,77 6,08 Sc 5.89 0.10 v 3,55 5,75 31,10 0.20 Cr < 0.5 0.48 4.56 0.50 0,80 Co 14.00 13.51 21.48 18,67 0.50 Ni 1,91 3.93 1,00 Cu 5.01 4.47 6.37 Zn 16,74 17,27 55,53 4,00 Ga 0,20 13.69 15.33 22,10 2,36 1,45 2,49 0,40 As Rb 187,26 211,04 140.82 0.20 406,63 Sr 64.74 60.02 1.00 Cd 0,12 0,13 0,13 0,08 In 0.01 0.04 0.05 0.01 0,10 Cs 1.59 1.83 1.85 Ва 625,42 706,72 1.762,99 1,00 ΤI 1,29 1,49 0,99 0,01 Pb 13,86 12,08 14,15 2.00 0,43 0.10 Bi 0.34 0.61 Th 22,79 25,67 20,23 0,10 U 4,52 6.34 3,82 0.00 Zr 81,80 77,40 217,80 2.00 Nb 18,80 20,90 16,10 2,00 <7 7,00 Та <7 <7 w 8.00 53.30 40.50 76.10 Hf <8 <8 <8 8.00 La 32,37 29,29 64,49 0,10 Ce 59,60 37,89 116,17 0,10 Pr 7.80 7.95 12,68 0.10 24,88 24,47 39,75 0,10 Nd Sm 4,61 5,54 6,14 0.01 Εu 0 67 0.85 1 50 0.01 Gd 3,45 3,95 4,67 0,01 Tb 0,63 0.88 0,75 0.01 0,01 Dy 3.62 5.26 3.57 0,01 Ho 0,73 1,14 0,67 2,17 0,01 Er 2.55 3.67 Tm 0,39 0,57 0,27 0,01 1,89 0,01 Yb 2,81 4,11 0,43 0,65 0,27 0,01 Lu (La/Yb) 7,71 4,77 22,88 0,51 0.56 0,86 Eu./Eu* (Gd/Yb) 0.98 0,77 1,98

^{*}Dique. LD: límite de detección. Eu_N/Eu*: anomalía de Eu

Figura 12. Patrón de elementos de las tierras raras normalizadas al condrito de McDonough y Sun (1995) correspondiente a las riolitas (cuadrados en rojo) de la unidad Riolitas del Alto Los Cacaos y a un dique de dacita (círculos negros) intrusivo en las riolitas

Figura 13. Diagrama de elementos traza normalizados al NMORB (Sun y McDonough, 1989) correspondiente a las riolitas (cuadrados en rojo) de la unidad Riolitas del Alto Los Cacaos y a un dique de dacita (círculos negros) intrusivo en las riolitas

Los patrones en el diagrama multielemental de las tres muestras (figura 13) exhiben anomalías negativas de Nb y Ti que indican un origen relacionado con subducción. Sin embargo, se aprecian diferencias entre los patrones de las riolitas y del dique dacítico. El patrón de este último no tiene anomalía de Ba, y las anomalías de La-Ce, Sr, Zr y Ti son menos pronunciadas que en las riolitas.

7. Posición estratigráfica y edad

Las Riolitas del Alto Los Cacaos, según Ward *et al.* (1973) y Ward *et al.* (1977) podrían ser parte del Granito de Pescadero. Sin embargo, los resultados geocronológicos obtenidos en esta investigación indican que las riolitas representan un evento magmático anterior al que dio origen al Granito de Pescadero. El cuerpo de riolitas es posterior a la Formación Floresta.

De esta unidad no hay edades presentadas por autores anteriores. En este proyecto se analizaron por U/Pb los circones de la muestra AMC-0145, en el Laboratorio de Estudios Isotópicos del Centro de Geociencias de la Universidad Autónoma de México (UNAM), según metodología descrita en Solari et al. (2010). Con el fin de mejorar el rango de confiabilidad de la edad se realizó un filtro de los datos para descartar los circones con discordancias mavores al 10%, de acuerdo con la relación [(207Pb/235U)-(206P $b^{/238}U)^{/206}Pb^{/238}U)]\,y\,se\,des cartaron\,dos\,análisis\,que\,fueron$ rechazados desde el laboratorio. El cálculo de las edades se llevó a cabo usando el programa Isoplot/Ex 3.75-4.15 (Ludwig, 2012). Las edades reportadas <800 corresponden a las edades 206Pb/238UMa, mientras que las >800Ma son las edades ²⁰⁷Pb/²⁰⁶Pb. Los resultados se resumen en la tabla 7 y se hallan completos en el anexo A, y los datos de elementos de las tierras raras de los circones están en el anexo B.

Tabla 7. Resumen de las edades obtenidas en la muestra AMC-0145

IGM	N.° Campo	Coordenada N	Coordenada W	Clasificación	Edad U/Pb (Ma)	Edades heredadas					
900876	AMC-0145	1203442	1132810	Traquita de feldespato alcalino	201,6±2,1	(1681±67, n=1; 464±4,2, n=1; 454±7,5, n=1; 429±8,3, n=1; 410±4,4, n=1; 279±2,8, n=1)					

La muestra AMC-0145 fue colectada en la vía Mogotes-San Joaquín, al sur del Alto de Los Cacaos. Los circones de esta muestra son euhedrales prismáticos, principalmente cortos, aunque también los hay tabulares, muchos fracturados, de tonalidad rosa pálido. En general, son pequeños, menores de 50 μ m, unos cuantos entre 50 y 100 μ m en su dimensión mayor, y solamente se observó un cristal de 400 μ m en su dimensión mayor, con pirámides bien desarrolladas, diferente de los otros cristales. En imágenes de catodoluminiscencia exhiben zonación entre sectorial y oscilatoria (figura 14). La muestra presenta circones heredados de ~1700 Ma, 464, 454, 429, 410 y 279 Ma, y en el cristal mayor, que es diferente del resto de cristales, se obtuvo una edad de 150 Ma concordante, que no es representativa, ya que este cristal puede deberse a contaminación de la muestra en alguna de las etapas del proceso de montaje, y por lo tanto dicha edad no se considera en la interpretación. Solamente se analizó un punto por cristal; por lo tanto, no es posible establecer si los componentes heredados en los circones corresponden a núcleos heredados o a cristales completos (xenocristales). El grupo más abundante de resultados se ubica en el Triásico tardío-Jurásico temprano, entre 213 y 190 Ma (figuras 14 y 15), los cuales arrojan una edad promedio ponderada de 205,2 ± 2,6 (figura 15B), con un MSWD=6,6. Este valor de MSWD es alto y sugiere la existencia de varias poblaciones de edades en la muestra analizada. En la misma figura 15B es posible identificar que hay por lo menos dos poblaciones de edades: una integrada por la barra horizontal de color azul y la otra por la barra de color verde, que arrojaron las siguientes edades promedio ponderadas: la primera población arrojó una edad de 210,6±2,7 Ma, con un MSWD de 1,8 (figura 16A), que puede corresponder a la edad de antecristales, es decir, a las primeras etapas de cristalización de los circones en la cámara magmática (Miller *et al.*, 2007). La segunda población reveló una edad de 201,6±2,1 Ma, con un MSWD de 2,3 (figura 16B), que corresponde a la de cristalización final de los circones en la roca.

Figura 14. Imágenes de catodoluminiscencia de circones representativos de la muestra AMC-0145 y diagrama de la concordia Tera-Wasserburg de todos los resultados de la muestra

En imágenes de CL: los números adyacentes a los círculos naranja representan edades en millones de años. En el diagrama de la concordia, las elipses rojas representan resultados descartados; las elipses verdes, análisis aceptados.

Figura 15. A). Concordia Tera-Wasserburg con resultados U/Pb en circón de entre 213 y 190 Ma de la muestra AMC-0145. B). Edad promedio ponderada de la muestra AMC-0145, barra negra: edad descartada del cálculo

Figura 16. A). Edad promedio ponderada de antecristales en circones de la muestra AMC-0145. B) Edad promedio ponderada de cristalización final de circones en la muestra AMC-0145

Figura 17. A). Diagramas de relación Th/U vs. edad en circones de la muestra AMC-0145. B). Patrones de REE de circones de la muestra AMC-0145 normalizados contra el condrito de McDonough y Sun (1995)

Figura 18. Diagramas de Wang *et al.* (2012) para inferir afinidad con tipo de fuentes magmáticas a partir de datos de circones de la muestra AMC-0145. A. Pb vs. Th. B. Eu/Eu* vs. (Nb/Pb)_{NP} donde N indica que fueron normalizados. Se usaron valores de normalización de Sun y McDonough (1989)

Los circones del Triásico tardío-Jurásico temprano presentan razones Th/U por encima de 0,5 (figura 17A), comúnmente por encima de 1, característica de circones ígneos (Rubatto, 2002). Sus patrones de REE son paralelos (figura 17B), con anomalía positiva de Ce y negativa de Eu, típicas de circones ígneos (Hoskin y Schaltegger, 2003). Aunque la anomalía de Eu no es muy pronunciada, origina un patrón semejante al de granitos tipo I (Wang *et al.*, 2012).

Las concentraciones de Pb y Th en los circones (figura 18A) y las relaciones entre la anomalía de europio y la razón (Nb/Pb) normalizada (figura 18B) indican que la fuente de los circones fueron magmas tipo I.

8. Correlación

Las Riolitas del Alto Los Cacaos exhiben semejanzas geoquímicas (figuras 19 y 20) con las Riolitas de El Uvo (Zapata *et al.*, 2018) y los granófidos del Granito de Pescadero (Zapata *et al.*, 2017), y son más ácidas que las rocas de la Riolita de San Joaquín (Rodríguez *et al.*, 2018) (figura 19). Con relación a los contenidos de elementos de las tierras raras, los patrones de las riolitas de la unidad Alto de Los Cacaos son paralelos con los de las Riolitas de El Uvo, mientras que son subparalelos con los patrones de los granófidos del Granito de Pescadero y con la Riolita de San Joaquín, ya que se cruza con los patrones de estas últimas en los HREE (figura 20). La composición de las Riolitas del Alto Los Cacaos es muy parecida a la de las Riolitas de El Uvo. Desde el punto de vista geocronológico, las Riolitas del Alto Los Cacaos tienen la misma edad de la Riolita de San Joaquín: 201,6±2,1 Ma las primeras, y 201,0 ± 2,1 Ma las segundas. La edad mínima de las Riolitas de Los Cacaos (199,5 Ma) casi se traslapa con la máxima de las Riolitas de El Uvo (199 Ma). Ward et al. (1973) habían planteado que las rocas que en este trabajo se definieron como Riolitas del Alto de Los Cacaos hacían parte del Granito de Pescadero; no obstante, según los datos geocronológicos, las Riolitas del Alto Los Cacaos son más antiguas que las rocas subvolcánicas (granófidos) del Granito de Pescadero, las cuales arrojaron una edad de 192,9±2 Ma, por lo tanto, las dos unidades no serían correlacionables en el tiempo.

Los tres cuerpos de riolitas —Alto de Los cacaos, San Joaquín y El Uvo— hacen parte del mismo arco magmático; el cuerpo de las Riolitas de El Uvo fue el último en formarse.

Las Riolitas del Alto de Los Cacaos son correlacionables en edad y composición con rocas de los plutones triásico-jurásicos del Macizo de Santander, principalmente con el Batolito de Mogotes, y con diques y cuerpos menores granofídicos que existen en los plutones.

Figura 19. Diagrama de clasificación de Winchester y Floyd (1977) de las muestras de Riolitas del Alto Los Cacaos (cuadrados rojos rellenos), granófidos del Granito de Pescadero (cuadros magentas sin relleno), Riolitas de El Uvo (triángulos verdes) y Riolita de San Joaquín (círculos azules rellenos) Fuente de los datos: este trabajo; Zapata *et al.* (2017 y 2018); Rodríguez *et al.* (2018)

Figura 20. Comparación de los patrones de REE de muestras de las unidades Riolitas del Alto Los Cacaos, Granito de Pescadero, Riolitas de El Uvo y Riolita de San Joaquín. Gráfico normalizado a los valores de Boynton (1984) Fuente de los datos: este trabajo; Zapata *et al.* (2017 y 2018); Rodríguez *et al.* (2018)

El patrón de REE del dique de dacita es similar al de las granodioritas y de algunos monzogranitos del Batolito de Mogotes, lo cual podría indicar que el dique se originó en un pulso cogenético con los monzogranitos o granodioritas del plutón Batolito de Mogotes. En la figura 21 se presentan los patrones de algunas muestras del Batolito de Mogotes, cuyos datos fueron tomados de Correa Martínez *et al.* (2020) (muestras: IGM900874, 900917, 900900, 900902) y Van der Lelij (2013) (muestras 10DVL28 y 10DVL32).

Figura 21. Patrones de REE del dique de dacita (IGM900877) intrusivo en las Riolitas del Alto Los Cacaos (cuadrado negro) y granodioritas y monzogranitos del Batolito de Mogotes (triángulos amarillos) Fuente de los datos de las muestras del Batolito de Mogotes: Correa Martínez *et al.* (2020); Van der Lelij (2013)

9. Génesis

La unidad Riolitas del Alto Los Cacaos corresponde a un cuerpo magmático hipoabisal generado en un ambiente relacionado a subducción, específicamente de arco continental (figuras 22 y 23), entre el Triásico tardío y el Jurásico temprano (ca. 203,7-199,5 Ma).

El dique que corta las riolitas también es de arco volcánico (figura 22) y posiblemente está relacionado con el emplazamiento de algunas rocas del Batolito de Mogotes, con las que guarda semejanzas químicas (figura 21).

Figura 22. Diagrama de Pearce (2008) para discriminar el ambiente tectónico entre rocas de arco y rocas de corteza oceánica, correspondiente a muestras de las Riolitas del Alto Los Cacaos (cuadrados rojos) y del dique andesítico (círculo negro)

Figura 23. Diagramas de variación de SiO₂ vs. elemento mayor (A) y elemento traza (B). Comparación de las Riolitas del Alto Los Cacaos con riolitas de diversos ambientes, según datos recopilados y presentados por Ayalew e Ishiwatari (2011)

10. Recursos minerales

La unidad Riolitas del Alto de Los Cacaos exhibe características petrográficas y geoquímicas que indican una alteración hidrotermal potásica que es corroborada por una anomalía de potasio detectada mediante gamaespectrometría (figura 24) en un estudio de exploración regional de minerales energéticos (Moreno *et al.*, 2011), llevado a cabo en el Macizo de Santander. La alteración potásica sugiere que la unidad tiene potencial de minerales metálicos.

Figura 24. A). Distribución espacial de potasio en porcentaje. El recuadro blanco delimita el área de las Riolitas del Alto Los Cacaos, con anomalía de potasio en color gris

Con el fin de evaluar el potencial mineral de la unidad se interpretaron algunos datos químicos, de las muestras de roca total y de los circones, que son reconocidos indicadores de fertilidad de las rocas. En el diagrama de Rb versus Ba (figura 25), adaptado por El-Sheshtawi *et al.*, 1999) del diagrama original de Mason (1966) se aprecia que las muestras de riolitas corresponden a rocas fértiles (potencialmente mineralizadas), mientras que el dique que corta las riolitas grafica en el campo de los granitos estériles (no fértiles).

La composición de los circones permite distinguir entre suites magmáticas fértiles e infértiles, siendo la relación Eu/Eu* uno de los mejores indicadores de fertilidad. Específicamente, cuando esta relación es mayor de 0,3, indica una roca potencialmente fértil (Lu *et al.*, 2016). Según el diagrama (Ce/Nd)/Y versus Eu/Eu* (figura 26), los circones de la muestra AMC-0145 de las Riolitas del Alto de Los Cacaos, grafican en el campo de suites fértiles de sistemas de pórfidos Cu±Mo±Au.

Conclusiones

La unidad Riolitas del Alto Los Cacaos es nombrada y definida en este trabajo como una nueva unidad en la geología del Macizo de Santander. Esta unidad está compuesta por riolitas y traquitas con texturas esferulítica, microporfídica y micrográfica con matriz felsítica, que afloran en el borde suroccidental del Batolito de Mogotes. Las rocas contienen feldespato potásico (ortosa), plagioclasa (albita), cuarzo y magnetita rica en titanio, y exhiben rasgos texturales y composicionales de meteorización y alteración hidrotermal.

Las Riolitas del Alto de Los Cacaos corresponden a un cuerpo ígneo subvolcánico generado a partir de un magma tipo I, potencialmente mineralizado, como un sistema de pórfido Cu±Mo±Au.

El cuerpo Riolitas del Alto Los Cacaos se emplazó en el límite Triásico tardío-Jurásico temprano y tiene herencia del Paleoproterozoico, del Ordovícico, del Silúrico, del Devónico y del Pérmico.

La unidad Riolitas del alto Los Cacaos es más antigua que el Granito de Pescadero, y por lo tanto las dos unidades no son correlacionables. Es muy semejante geoquímicamente a las Riolitas de El Uvo y tiene igual edad que la Riolita de San Joaquín. Puede ser correlacionable con plutones, diques y cuerpos menores del Macizo de Santander, que se generaron al mismo tiempo.

Figura 25. Diagrama de variación de Rb versus Ba en roca total (Mason, 1966, adaptado por El-Sheshtawi *et al.*, 1999)

Figura 26. Composición de los circones de las Riolitas del Alto Los Cacaos (muestra AMC-0145) en diagrama de Lu *et al.* (2016), con campos de suites fértiles en verde claro, e infértiles en gris. Los valores de normalización usados para calcular Eu/Eu* son los de Sun y McDonough (1989)

Referencias

- Ayalew, D. y Ishiwatari, A. (2011). Comparison of rhyolites from continental rift, continental arc and oceanic island arc: Implication for the mechanism of silicic magma generation. *Island Arc*, 20 (1), 78-93. https:// doi.org/10.1111/j.1440-1738.2010.00746.x
- Batchelor, R. A. y Bowden, P. (1985). Petrogenetic interpretation of granitoid rock series using multicationic parameters. *Chemical Geology*, 48 (1-4), 43-55. https://doi.org/10.1016/0009-2541(85)90034-8
- Boynton, W. V. (1984). Cosmochemistry of the rare earth elements: Meteorite studies. En *Developments in geochemistry* (vol. 2, pp. 63-114). Elsevier.

- Cardona, A. (2003). Correlações entre fragmentos do embasamento pre-Mesozoíco da terminação setentrional dos Andes colombianos, com base em dados isotópicos e geocronológicos (dissertação de mestrado). Universidade de São Paulo, Brazil.
- Clavijo, J. (1994). Mapa geológico generalizado del departamento de Norte de Santander. Escala 1: 250.000. Memoria explicativa. Bucaramanga: Ingeominas.
- Clavijo, J., Mantilla, F. L. C., Pinto, J., Bernal, L., Pérez, A. (2008). Evolución geológica de la serranía de San Lucas, norte del valle medio del Magdalena y noroeste de la cordillera Oriental. *Boletín de Geología*, 30 (1), 45-62.
- Cordani, U. G., Cardona, A., Jiménez, D. M., Liu, D. y Nutman, A. P. (2005). Geochronology of Proterozoic basement inliers in the Colombian Andes: Tectonic history of remnants of a fragmented Grenville belt. Geological Society, London, Special Publications, 246, 329-346. https://doi.org/10.1144/GSL.SP.2005.246.01.13
- Correa Martínez, A. M., Rodríguez, G., Arango, M. I., Zapata, G. y Bermúdez J. G. (2020). Batolito de Mogotes. *En Catálogo de las unidades litoestratigráfi cas de Colombia: Macizo de Santander*. Vol. 1. Bogotá: Servicio Geológico Colombiano.
- Droop, G. (1987). A general equation for estimating Fe³⁺ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. *Mineralogical Magazine*, 51 (361), 431-435. https://doi.org/10.1180/minmag.1987.051.361.10
- El-Sheshtawi, Y. A., Youssef, F., Ammar, F. A., Hassaan, M. M. y Sakr, S. M. (1999). Petrography and geochemistry of some granites and their metavolcanic country rocks in the Central Eastern Desert, Egypt. The proceeding of 1st Seminar of Nuclear Raw Material and their Technology, Cairo, Egypt, 1-3.
- Etayo Serna, F., Barrero, D., Lozano, H., Espinosa, A., González, H., Orrego, A., Ballesteros, I., Forero, H., Ramírez, C., Zambrano Ortiz, F., Duque Caro, H., Vargas, R., Núñez, A., Álvarez, J., Ropaín, C., Cardozo, E., Galvis, N., Sarmiento, L., Alberts, J. P., Case, J. E. *et al.* (1985). *Mapa de terrenos geológicos de Colombia*. Publicaciones Geológicas Especiales 14. Bogotá: Ingeominas.
- Forero, A. (1990). The basement of the Eastern Cordillera, Colombia: An allochthonous terrane in northwestern South America. *Journal of South American Earth Sciences*, 3 (2-3), 141-151. https://doi. org/10.1016/0895-9811(90)90026-W

- García, C. y Ríos, C. (1999). *Metamorfismo y metalogenia asociada del Macizo de Santander, cordillera Oriental, Colombia.* Informe final Proyecto de investigación 1102-05-083-95. Bucaramanga: Colciencias y Universidad Industrial de Santander.
- Goldsmith, R., Marvin, R. F. y Mehnert, H. H. (1971). Radiometric ages in the Santander Massif, Eastern Cordillera, Colombian Andes. U. S. Geological Survey Professional Paper 750-D, D44-D49.
- Hoskin, P. W. y Schaltegger, U. (2003). The composition of zircon and igneous and metamorphic petrogenesis. *Reviews in Mineralogy and Geochemistry*, 53 (1), 27-62. https://doi.org/10.2113/0530027
- Hughes, C. J. (1972). Spilites, keratophyres and the igneous spectrum. *Geological Magazine*, 109 (6), 513-527. https://doi.org/10.1017/S0016756800042795
- International Subcommision on Stratigraphic Classification. (1987). Stratigraphic classification and nomenclature of igneous and metamorphic rock bodies. *GSA Bulletin*, 99 (3), 440-442. https://doi. org/10.1130/0016-7606(1987)99<440:SCANOI>2.0. CO;2
- International Subcommision on Stratigraphic Classification. (1994). International Stratigraphic Guide: A guide to stratigraphic classification, terminology and procedure (2.ª ed.). Amos Salvador (ed.). Internat. Union Geol. Sci. Trondheim & Geol. Soc. Am. Boulder.
- Irvine, T. N. y Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. *Canadian Journal of Earth Sciences*, 8 (5), 523-548. https://doi.org/10.1139/e71-055.
- Janoušek, V., Farrow, C. M. y Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing Geochemical Data Toolkit (GCDkit). *Journal of Petrology*, 47 (6), 1255-1259. https://doi.org/10.1093/petrology/egl013
- Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. y Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. *Journal of Petrology*, 27 (3), 745-750. https://doi.org/10.1093/ petrology/27.3.745
- Leal Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes: A tectono-magmatic approach (Ph. D. thesis). Universitat de Barcelona.
- Lu, Y. J., Loucks, R. R., Fiorentini, M., Mccuaig, T. C., Evans, N. J., Yang, Z. M., Hou, Z. Q., Kirkland, C. L., Parra

Ávila, L. A. y Kobussen, A. (2016). Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au deposits. *Society of Economic Geologists Special Publication*, 19, 329-347. https://doi.org/10.5382/SP.19.13

- Ludwig, K. R. (2012). User's manual for Isoplot 3.75-4.15: A geochronological toolkit Microsoft Excel. Berkeley Geochronology Center, special publication, 5.
- Malpas, J., Duzgoren Aydin, N. S. y Aydin, A. (2001). Behaviour of chemical elements during weathering of pyroclastic rocks, Hong Kong. *Environment International*, 26 (5-6), 359-368. https://doi.org/10.1016/ S0160-4120(01)00013-7
- Mantilla, L. C., Bissig, T., Cottle, J. M. y Hart, C. J. (2012). Remains of early Ordovician mantle-derived magmatism in the Santander Massif (Colombian Eastern Cordillera). *Journal of South American Earth Sciences*, 38, 1-12. https://doi.org/10.1016/j. jsames.2012.03.001
- Mantilla, L. C., Bissig, T., Valencia, V. y Hart, C. (2013). The magmatic history of the Vetas-California mining district, Santander Massif Eastern Cordillera, Colombia. *Journal of South American Earth Sciences*, 45, 235-249. https://doi.org/10.1016/j. jsames.2013.03.006
- Mason, B. (1966). *Principles of Geochemistry* (3.^a ed.). New York: John Wileys & Sons.
- McDonough, W. F. y Sun, S. S. (1995). The composition of the Earth. *Chemical Geology*, 120 (3-4), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
- Miller, J. S., Matzel, J. E., Miller, C. F., Burgess, S. D. y Miller, R. B. (2007). Zircon growth and recycling during the assembly of large, composite arc plutons. *Journal of Volcanology and Geothermal Research*, 167 (1-4), 282-299. https://doi.org/10.1016/j.jvolgeores.2007.04.019
- Moreno S., G., Díaz T., J. F. y Quintero O., F. A. (2011). Exploración de minerales energéticos a partir de mediciones gamaespectrométricas para potasio, uranio y torio en el sector central del Macizo de Santander, Colombia. Informe del Proyecto Exploración de Minerales Energéticos (Sub09-24). Bogotá: Servicio Geológico Colombiano,
- Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. *Geochimical et Cosmochimical Acta*, 38 (5), 757-775. https://doi.org/10.1016/0016-7037(74)90149-5

- Nesbitt, H. W. y Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. *Geochimica et Cosmochimica Acta*, 48 (7), 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
- Ordóñez Carmona, O., Restrepo Álvarez, J. J. y Pimentel, M. M. (2006). Geochronological and isotopical review of pre-Devonian crustal basement of the Colombian Andes. *Journal of South American Earth Sciences*, 21 (4), 372-382. https://doi.org/10.1016/j. jsames.2006.07.005
- Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. *Lithos*, 100 (1-4), 14-48. https://doi.org/10.1016/j. lithos.2007.06.016
- Peccerillo, A. y Taylor, S. R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. *Contributions* to Mineralogy and Petrology, 58, 63-81. https://doi. org/10.1007/BF00384745
- Restrepo, J. J. y Toussaint, J. F. (1989). Terrenos alóctonos en los Andes colombianos: explicación de algunas paradojas geológicas. *Memorias V Congreso Colombiano de Geología*, tomo I, 92-107. Bucaramanga.
- Restrepo Pace, P., Ruiz, J., Gehrels, G. y Cosca, M. (1997). Geochronology and Nd isotopic data of the Grenville-age rocks in the Colombian Andes: New constraints for Late Proterozoic-early Paleozoic paleocontinental reconstructions of the Americas. *Earth and Planetary Science Letters*, 150 (3-4), 427-441. https://doi.org/10.1016/S0012-821X(97)00091-5
- Restrepo Pace, P. A. (1995). Late Precambrian to early Mesozoic tectonic evolution of the Colombian Andes, based on new geochronological, geochemical and isotopic data (Ph. D. thesis). University of Arizona.
- Ríos, C., García, C. y Takusa, A. (2003). Tectono-metamorphic evolution of the Silgara Formation metamorphic rocks in the southwestern Santander Massif, Colombian Andes. *Journal of South American Earth Sciences*, 16 (2), 133-154. https://doi. org/10.1016/S0895-9811(03)00025-7
- Rodríguez, G., Arango, M. I., Correa Martínez, M., A. M. y Zapata, G. (2020). Riolita de San Joaquín. En Catálogo de las unidades litoestratigráficas de Colombia: Macizo de Santander. Vol. 1. Bogotá: Servicio Geológico Colombiano.

- Rubatto, D. (2002). Zircon trace element geochemistry: Partitioning with garnet and the link between U/Pb ages and metamorphism. *Chemical Geology*, 184 (1-2), 123-138. https://doi.org/10.1016/S0009-2541 (01)00355-2
- Schäfer, J., Grösser, J. y Rodríguez, G. (1998). Proterozoic Formación Silgará, cordillera Oriental, Colombia: Metamorphism and geochemistry of amphibolites. *Zentralblatt für Geologie und Paläontologie, Teil I*, 1997 (3-6), 531-546.
- Shand, S. J. (1943). Eruptive rocks: Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. New York: John Wiley & Sons.
- Siivola, J. y Schmid, R. (2007). List of mineral abbreviations. En D. Fettes y J. Desmons (eds.), Metamorphic rocks: A classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks (pp. 93-110). Cambridge: Cambridge University Press.
- Smith, J. V. y Brown, W. L. (1988). *Feldspar minerals*. I. *Crystal structures, physical, chemical and microtextural properties* (2^{*}ed.). Berlin: Springer-Verlag.
- Solari, L., Gómez Tuena, A., Bernal, J., Pérez Arvizu, O. y Tanner, M. (2010). U/Pb zircon geochronology with an integrated LA-ICP-MS microanalytical workstation: Achievements in precision and accuracy. *Geostandards and Geoanalytical Research*, 34 (1), 5-18. https://doi.org/10.1111/j.1751-908X.2009.00027.x
- Streckeisen, A. (1978). IUGS Subcommission on the Systematics of Igneous Rocks: Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks; recommendation and suggestions. *Neues Jahrbuch für Mineralogie, Abhandlungen*, 134, 1-14.
- Sun, S. S. y McDonough, W. S. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Special Publications 42. London: Geological Society. https://doi. org/10.1144/GSLSP.1989.042.01.19
- Urueña Suárez, C. L. (2014). *Metamorfismo, exhumación y termocronología del Neis de Bucaramanga (Macizo de Santander, Colombia)* (tesis de maestría). Universidad Nacional de Colombia.

- Van der Lelij, R. (2013). *Reconstructing North-Western Gondwana with implications for the evolution of the lapetus and Rheic Oceans: A geochronological, thermochronological and geochemical study* (thése de doctorat). Université de Genève.
- Van der Lelij, R., Spikings, R., Ulianov, A., Chiaradia, M. y Mora, A. (2016). Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. *Gondwana Research*, *31*, 271-294. https://doi.org/10.1016/j.gr.2015.01.011
- Vargas, R., Arias, A., Jaramillo, L. y Téllez, N. (1976). *Geología del cuadrángulo I-13, Málaga.* Bogotá: Ingeominas.
- Vargas, R., Arias, A., Jaramillo, L. y Téllez, N. (1984). *Geología de la plancha 136*, Málaga. Mapa, escala: 1:100.000. Versión digital 2009. Bogotá: Ingeominas.
- Wang, Q., Zhu, D. C., Zhao, Z. D., Guan, Q., Zhang, X. Q., Sui, Q. L., Chu Hu, Z. y Mo, X. X. (2012). Magmatic zircons from I-, S- and A- type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. *Journal of Asian Earth Sciences*, 53, 59-66. https://doi.org/10.1016/j. jseaes.2011.07.027
- Ward, D., Goldsmith, R., Cruz, J. y Restrepo, A. (1973). Geología de los cuadrángulos H-12, Bucaramanga, y H-13, Pamplona, Departamento de Santander. *Bole*tín Geológico, 21 (1-3), 1-132.
- Ward, D. E., Goldsmith, R., Cruz, J., Téllez, N. y Jaramillo, L. (1977). Mapa geológico de San Gil y Málaga (parte de los cuadrángulos I-12 y I-13), Colombia. Escala 1:100.000. Bogotá: Ingeominas.
- Winchester, J. A. y Floyd, P. A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. *Chemical Geology*, 20, 325-343. https://doi. org/10.1016/0009-2541(77)90057-2
- Zapata, G., Correa Martínez, A. M., Rodríguez, G. y Arango, M. I. (2020). Granito de Pescadero. *En Catálogo de las unidades litoestratigráficas de Colombia: Macizo de Santander*. Vol. 1. Bogotá: Servicio Geológico Colombiano.
- Zapata, G., Arango, M. I., Correa Martínez, A. M. y Rodríguez, G. (2020). Riolitas El Uvo. En Catálogo de las unidades litoestratigráficas de Colombia: Macizo de Santander. Vol. 1. Bogotá: Servicio Geológico Colombiano.

ANEXO A.

Resultados isotópicos U/Pb en circón de la muestra AMC-0145

Punto analizado	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	206Pb/238U	±2σ abs	Correlación errores	²⁰⁶ Pb/ ^{238U} Edad (Ma)	±2σ abs	²⁰⁷ Pb/ ²³⁵ U Edad (Ma)	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb Edad (Ma)	±2σ
Zircon-042**	484	183	0,38	0,0583	0,0029	0,3860	0,0290	0,0466	0,0019	0,48			331	21	570	110
Zircon-048*	285	167	0,59	0,0588	0,0047	0,4200	0,1500	0,0512	0,0096	0,37			355	75	570	130
Zircon-054*	8.100	12.100	1,49	0,0928	0,0033	0,1836	0,0070	0,0143	0,0002	0,27			171,2	6	1.481	71
Zircon-056**	138	86	0,62	0,0730	0,0048	0,7420	0,0530	0,0742	0,0013	0,11			569,0	31,0	1.020,0	140,0
Circón-066**	136	121	0,89	0,0569	0,0042	0,2420	0,0200	0,0300	0,0006	0,10			223,0	16,0	470,0	160,0
Zircon-036_ AMC-0145	208	115	0,55	0,0473	0,0042	0,1560	0,0140	0,0237	0,0005	0,23	150,8	3,4	146,0	12,0	40,0	180,0
Zircon-050	178	213	1,20	0,0500	0,0047	0,2070	0,0180	0,0299	0,0005	0,23	189,8	3,1	190,0	15,0	200,0	190,0
Zircon-041	206	181	0,88	0,0495	0,0036	0,2110	0,0150	0,0308	0,0006	0,09	195,2	3,8	196,0	12,0	180,0	150,0
Zircon-040	68,8	73,4	1,07	0,0503	0,0062	0,2160	0,0280	0,0312	0,0009	0,32	198,1	5,8	203,0	24,0	150,0	250,0
Zircon-046	243	266	1,09	0,0484	0,0046	0,2130	0,0190	0,0313	0,0007	0,24	198,5	4,2	195,0	16,0	100,0	190,0
Zircon-065	101,5	118	1,16	0,0486	0,0052	0,2120	0,0220	0,0313	0,0009	0,17	198,8	5,6	196,0	18,0	100,0	220,0
Zircon-053	97	157	1,62	0,0478	0,0058	0,2130	0,0260	0,0315	0,0008	0,10	199,9	5,0	194,0	21,0	20,0	230,0
Zircon-052	142	144	1,01	0,0531	0,0052	0,2330	0,0230	0,0315	0,0008	0,08	200,0	5,1	211,0	19,0	310,0	200,0
Zircon-045	171	273	1,60	0,0571	0,0044	0,2450	0,0180	0,0320	0,0008	0,03	202,8	5,0	222,0	15,0	440,0	170,0
Zircon-038	188	292	1,55	0,0490	0,0032	0,2240	0,0160	0,0321	0,0007	0,07	203,6	4,1	204,0	13,0	170,0	150,0
Zircon-059	297	353	1,19	0,0511	0,0032	0,2300	0,0140	0,0321	0,0005	0,14	203,9	3,1	212,0	12,0	240,0	130,0
Zircon-037	73,3	78,3	1,07	0,0511	0,0050	0,2340	0,0250	0,0322	0,0010	0,26	204,2	6,3	211,0	21,0	200,0	200,0
Zircon-060	270	315	1,17	0,0556	0,0036	0,2450	0,0170	0,0322	0,0007	0,00	204,2	4,2	222,0	14,0	400,0	130,0
Zircon-044	104,1	156	1,50	0,0546	0,0047	0,2400	0,0210	0,0324	0,0008	0,12	205,3	4,7	217,0	18,0	320,0	190,0
Zircon-055	178	274	1,54	0,0526	0,0046	0,2340	0,0200	0,0324	0,0009	0,21	205,6	5,4	212,0	17,0	240,0	180,0
Zircon-051	1.480	820	0,55	0,0498	0,0019	0,2264	0,0096	0,0328	0,0005	0,50	207,8	3,3	207,2	7,6	176,0	87,0
Zircon-058	214	187	0,87	0,0486	0,0038	0,2220	0,0170	0,0328	0,0006	0,10	208,2	3,9	202,0	15,0	120,0	160,0
Zircon-039	97	126	1,30	0,0511	0,0040	0,2350	0,0170	0,0330	0,0008	0,03	209,2	5,0	213,0	14,0	290,0	150,0
Zircon-062	382	218	0,57	0,0509	0,0029	0,2360	0,0140	0,0335	0,0004	0,02	212,4	2,7	215,0	11,0	210,0	120,0
Zircon-049	187	213	1,14	0,0520	0,0038	0,2430	0,0190	0,0337	0,0009	0,11	213,4	5,9	220,0	16,0	300,0	150,0
Zircon-057	234	298	1,27	0,0503	0,0035	0,2340	0,0150	0,0337	0,0007	0,11	213,4	4,2	215,0	13,0	180,0	150,0
Zircon-063	920	122	0,13	0,0531	0,0021	0,3260	0,0140	0,0443	0,0005	0,29	279,1	2,8	287,0	11,0	322,0	88,0
Zircon-067_ AMC-0145	1.680	750	0,45	0,0555	0,0020	0,5670	0,0250	0,0730	0,0013	0,54	454,3	7,5	457,0	16,0	452,0	84,0
Zircon-043	1.570	1.180	0,75	0,0557	0,0021	0,5350	0,0240	0,0690	0,0014	0,37	429,9	8,3	435,0	15,0	436,0	75,0
Zircon-047	485	199	0,41	0,0575	0,0025	0,5250	0,0230	0,0657	0,0007	0,07	410,1	4,4	428,0	15,0	496,0	96,0
Zircon-061	962	175	0,18	0,0552	0,0020	0,5750	0,0230	0,0747	0,0007	0,30	464,1	4,2	461,0	15,0	417,0	81,0
Zircon-064	324	167	0,52	0,1031	0,0036	4,3700	0,1700	0,3043	0,0024	0,20	1.714,0	12,0	1.706,0	31,0	1.681,0	67,0

*Análisis descartados por el laboratorio. **Análisis descartados porque el porcentaje de discordancia es superior a 10 %.

En negrita se destaca la mejor edad de cada análisis: edad 206Pb/238U.

ANEXO B.

Resultados de elementos traza en los circones (en ppm) de la muestra AMC-0145

Punto analizado	Р	Ті	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb
Zircon-036_ AMC-0145	204	6,83	974	2,34	ND	15,8	0,047	0,9	2,05	0,85	14	5,69	75,8	29,6	160	380	86,6	9510	4,77
Zircon-037	53	10,7	879	1,26	0,0114	22,1	0,145	2,64	5,41	1,67	24,1	7,58	91	30,5	142	276	57,1	8.870	2,3
Zircon-038	399	9,74	1.760	3,87	0,046	51,6	0,296	4,57	8,7	3,28	44,9	14,9	175	60,7	281	520	102,3	7.990	6,1
Zircon-039	260	10,2	1.290	1,49	0,034	22,7	0,306	4,58	7,1	2,25	34,3	10,8	122	42,4	203	390	78,4	7.630	3,2
Zircon-040	211	9,3	876	1,45	ND	23,2	0,121	2	4,05	1,32	21,3	6,86	81	28,6	140	275	57,1	8.980	2,13
Zircon-041	393	7,35	1.186	6,92	0,024	56,3	0,063	1,48	3,99	1,39	25,1	9,35	111,5	40,4	193	361	71,6	10.290	6
Zircon-042	530	8,14	1.680	8,08	0,138	27,5	0,148	3,07	5,72	0,84	29,3	10,9	143	54,4	279	634	133	10.800	21
Zircon-043	1.360	21,7	3.480	13	1,97	50,1	1,17	12,3	13,3	1,31	67,9	24,7	313	117	598	1.230	249	8.820	103
Zircon-044	260	10,3	1.640	1,84	0,03	34,6	0,447	7,11	12,1	3,74	52,7	15,7	175	59,2	254	453	87,1	8.480	3,43
Zircon-045	360	10,9	2.010	3,56	1,13	42,7	1,21	10,8	14,2	4,36	59,9	17,4	199	66,3	304	549	112	9.700	5,55
Zircon-046	720	15,2	2.210	7,25	2,4	75	0,85	6,5	7,1	2,5	40,7	14,8	189	72,1	363	732	150	10.000	7,50
Zircon-047	700	10,4	1.600	6	0,096	13,3	0,064	1,43	3,49	0,72	25,5	10,7	137	53,5	276	556	117	11.190	32,25
Zircon-048	224	7,8	1.120	5,8	0,73	38,2	0,43	3,6	4,8	1,28	18,4	7,7	87	35,1	164	347	73	11.300	12,73
Zircon-049	580	11,4	1.630	4,56	0,026	52,7	0,152	2,97	5,9	1,99	31,6	11,3	144	53,4	261	501	102	9.500	6,45
Zircon-050	563	11,81	1.640	5,53	0,086	61,8	0,35	4,66	8,12	3,01	42,1	13,2	156	56,7	267	506	102,6	8.740	5,10
Zircon-051	930	6,8	2.920	32,2	0,096	82,5	0,057	1,2	4,21	1,15	34,4	14,5	217	90,9	500	1.170	255	11.290	47,00
Zircon-052	333	11,1	1.080	3,09	ND	39,4	0,139	2,38	4,6	1,71	23,5	8,27	97,1	36,1	175	344	72,7	10.040	4,45
Zircon-053	308	10,9	1.340	2,04	0,031	35,2	0,32	5,7	9,8	3,6	41	12,3	143	45	215	373	77	9.010	3,00
Zircon-054	1.800	33,9	8.900	169	139	530	72	277	82	31,9	194	67,4	751	269	1330	2.440	475	10.900	119,75
Zircon-055	470	13,5	2.180	3,3	0,102	50,4	0,61	8,8	13,4	5,04	59,5	19,1	214	74,6	343	625	127	9.200	6,30
Zircon-056	20	15,3	890	2,59	0,43	11,3	0,184	2,29	2,66	0,255	17	6,19	81	28,9	144	270	53,1	9.100	10,13
Zircon-057	430	11,2	2.280	4,56	0,026	52,8	0,398	6,44	11,4	3,48	55,3	17,8	217	78,3	366	690	139	9.000	7,78
Zircon-058	330	9,02	1.090	5,04	ND	48,3	0,055	1,79	3,71	1,29	22,4	7,59	96,8	36,3	176	357	71,6	10.690	7,05
Zircon-059	320	8,63	1.150	5,01	ND	49,6	0,1	1,66	3,26	1,53	21,6	8,22	96,8	36,7	180	380	80,1	8.990	9,60
Zircon-060	434	10,7	1.990	5,62	0,21	58,2	0,361	5,56	9,6	2,96	47	16,3	189	69,3	318	617	121	9.070	8,45
Zircon-061	345	5,92	1.250	6,7	0,042	6,39	0,046	0,76	2,34	0,252	20,3	7,87	105,5	40,4	203	413	86,7	9.900	71,25
Zircon-062	520	13,4	1.640	15	0,64	38,5	0,54	6,2	7,9	2,22	36,7	12,7	154	56	265	512	104	10.700	13,35
Zircon-063	680	10	950	29,2	7,7	21,5	2,84	17,9	8,3	1,06	21,6	6,64	82	31,1	159	378	83	11100	43,00
Zircon-064	580	8,9	1180	3,52	17,5	60	6	32	10,7	0,82	31,1	9,5	107,3	40,5	186	344	67,8	9380	99,50
Zircon-065	490	10,2	1320	2,61	ND	41,4	0,188	3,53	6,86	2,76	36,1	11,7	132	46,7	208	369	73,8	9730	3,25
Zircon-066	290	15,4	860	4,45	1,65	40,5	0,46	3,07	3,04	1,04	16,4	5,92	75	29,5	148	309	64,6	10600	4,28
Zircon-067_ AMC-0145	1010	7,4	2900	7,9	0,13	15,5	0,274	4,51	11,4	1,17	66,8	24,2	286	101	445	763	145	11600	122,75

Macizo de Santander Servicio Geológico Colombiano 2020 Este trabajo es la continuación de los catálogos publicados dos décadas atrás. Se han modernizado el contenido y la presentación de acuerdo con las necesidades actuales de información. Se agrupan en un solo volumen las unidades litológicas que definen un evento geológico regional en una provincia particular. Esta versión incorpora nueva información petrográfica, litogeoquímica, química mineral y geocronológica, al tiempo que realiza interpretaciones de los datos según el avance del conocimiento actual. Estas publicaciones constituyen un aporte al conocimiento básico de la geología colombiana y al conocimiento y evolución del Macizo de Santander.

