Estándar geográfico para mapas geológicos de volcanes colombianos

geográfico para mapas geológicos de volcanes colombianos

© Servicio Geológico Colombiano

Julio Fierro Morales Director general

Yenny Paola Casallas Directora de Geociencias Básicas

Bernardo Alonso Pulgarín Alzate Coordinador del Grupo de Geología de Volcanes

ISBN digital: 978-628-95485-0-1 DOI: https://doi. org/10.32685/9786289548501 Bogotá, Colombia Diciembre de 2022

Colección: Guías técnicas y métodos de trabajo en geociencias y asuntos nucleares

© Servicio Geológico Colombiano. (2022).

Esta obra es distribuida bajo licencia internacional Creative CommonsAtribución/Reconocimiento 4.0

Autores

Grupo de Geología de Volcanes Bernardo Alonso Pulgarín Alzate Silvia Camila Castilla Montagut Diego Fernando Palechor Benavídez Mauricio Tamayo Alzate Ana María Correa Tamayo Yeni Patricia Cruz Toro Indira Zuluaga Mazo Lorena del Pilar Rayo Rocha María Fernanda Almanza Meléndez

Otros participantes

Yaneth Montaña Barrera Luis Gerónimo Valencia Ramírez Natalia Pardo Villaveces Julián Andrés Ceballos Hernández Valentina Betancourt Suárez Julián Andrés Mejía Rodríguez

Grupo de Estándares Geográficos Martha Lucía Mahecha Silva Gustavo Alberto Gómez Cristian Orlando Hernández Víctor Andrés Parada Martín Jaime Andrés Moreno

Comité Editorial Presidenta Teresa Duque

Integrantes

Yenny Paola Casallas Marco Rincón John Makario Londoño Hernán Olaya Dávila Juan Manuel Herrera Hernando Camargo Victoria Díaz Acosta Virgilio Amaris Ibáñez Viviana Dionicio Julián Escallón Armando Espinosa Constanza Martínez Juan Guillermo Ramírez

Comité Editorial SGC Diagonal 53 n.º 34-53 Bogotá D. C., Colombia Teléfono: (601) 2200200, ext.: 3048 ceditorial@sgc.gov.co

Corrección de estilo Fernando Carretero Diseño Diana Paola Abadía Diagramación Leonardo Cuéllar Edición general Carolina Hernández

Fotografía de portada: Volcán Nevado del Huila, tomada desde el NE 15 de diciembre de 2009 Observatorio Vulcanológico y Sismológico de Popayán

Citación: Pulgarín, B., Castilla, S., Palechor, D., Tamayo, M., Correa Tamayo, A. M., Cruz, Y., Zuluaga, I., Rayo, L. y Almanza, M. (2022). Estándar geográfico para mapas geológicos de volcanes colombianos. Servicio Geológico Colombiano.

3

Contenido

Introducción

1	Objetivo			
	1.1.	1.1. Objetivos específicos		
2	Alca	Alcance		
3	Base legal			
4	Antecedentes			
5	Conceptos utilizados en la cartografía geológica de áreas volcánicas			
	5.1.	Conceptos estratigráficos para la cartografía de áreas volcánicas	17	
	5.2.	Unidades litoestratigráficas	18	
	5.3.	Litosomas	20	
	5.4.	Inconformidades estratigráficas	22	
	5.5.	Unidades limitadas por inconformidades	25	
6	Descripción de la base de datos			
7	Catálogo de objetos			
8	Catá	ilogo de símbolos	33	
	8.1. Símbolos			
	8.2.	Carta de colores y achurados	35	
9	Estilos de anotaciones		40	
10	Salida gráfica			
	10.1	Mapa geológico	45	
	10.2	2. Rótulo	47	
	10.3	 Mapa de localización e información de referencia 	48	

10.4.	Indice de hojas adyacentes	49
10.5.	Convenciones geológicas y cartográficas	49
10.6.	Referencias	49
10.7.	Inconformidades	52
10.8.	Litosomas	52
10.9.	Unidades litoestratigráficas	52
10.10.	Incertidumbre estratigráfica, intervalo de depositación	53
10.11.	Edad	54
10.12.	Interpretación en términos de unidades eruptivas y de unidades de actividad volcánica	54
10.13.	Mapas esquemáticos de la historia eruptiva	54
10.14.	Mapa morfoestructural	55
10.15.	Diagramas de variabilidad	
	geoquímica	55
10.16	Corte geológico	55
10.17.	Mapa de unidades litoestratigráficas de caídas piroclásticas	57
Agradecim	ientos	59
Referencia	15	60

80

Anexos

Introducción

En los últimos cuarenta años se han realizado múltiples trabajos de cartografía volcánica en Colombia, utilizando diversas metodologías de representación y levantamiento estratigráfico (p. ej., Acevedo y Cepeda, 1982; Cepeda, 1985; Thouret *et al.*, 1985; Cepeda, 1987; Monsalve y Méndez, 1988a; Lescinsky, 1990; Ingeominas, 1992a; Monsalve y Núñez, 1992; Mora *et al.*, 1994; Cortés y Calvache, 1996; Monsalve y Pulgarín, 1999; Torres *et al.*, 1999; Correa Tamayo y Pulgarín, 2002; Cortés y Calvache, 2002; Calvache *et al.*, 2003; Pinilla y Ríos, 2005; Torres *et al.*, 2005; Duque *et al.*, 2010; Navarro *et al.*, 2009; López Castro, 2009; Pulgarín *et al.*, 2010; Zuluaga, 2011; Martínez *et al.*, 2014; Borrero *et al.*, 2016; Pulgarín *et al.*, 2017; Monsalve *et al.*, 2019a; Pardo *et al.*, 2019). Esto ha propiciado que la información de los mapas geológicos de volcanes se registre de manera heterogénea y sin una estandariza-ción formal que aplique de forma uniforme los criterios estratigráficos en cada mapa.

Este también ha sido el caso en otros lugares del mundo (p. ej., Colley y Ash, 1971; Ono y Watanabe, 1985; Easton, 1987; Bailey, 1989; Katsuki *et al.*, 1989; Wirakusumah *et al.*, 1989; Luhr y Carmichael, 1990; Carrasco Núñez y Ban, 1994; Carrasco Núñez, 2000; Hradecky, 2001; García Palomo *et al.*, 2002; Vásconez, 2002; Neal y Lockwood, 2003; García Palomo *et al.*, 2004; Macías, 2005; Cortés *et al.*, 2005; García Palomo *et al.*, 2006; Hora *et al.*, 2007; Lucchi, 2009; Rivera *et al.*, 2009; Bellotti *et al.*, 2010; Donnelly Nolan, 2010; Escobar Wolf *et al.*, 2010; Ishizuka *et al.*, 2010; García Tenorio *et al.*, 2012; Macías y Jiménez Salgado, 2013; Lucchi *et al.*, 2013a; Almeida, 2016; Paolillo *et al.*, 2016; Moles *et al.*, 2018; Avellán *et al.*, 2019; García Sánchez *et al.*, 2019), razón por la cual este trabajo se enfoca principalmente en presentar un estándar para la representación y estructuración de los datos geográficos contenidos en los mapas geológicos de volcanes colombianos.

La elaboración de este estándar coincide con la discusión internacional liderada por la Comisión de Geología de Volcanes de la International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI), encaminada a buscar mejores prácticas de mapeo y representación cartográfica de volcanes

Para tal fin, se consultaron estándares nacionales e internacionales (p. ej., IPGH, 1978; BMRGG, 1989; Mawer, 2002; Ingeominas, 2004; Asch, 2005; FGDC y USGS, 2006; GSE, 2007; Hastings *et al.*, 2007; IGME, 2007; Frye y Day, 2009; Carvajal, 2012; Instituto Geográfico Agustín Codazzi (IGAC), 2012; OGC, 2013; Gómez *et al.*, 2015a; Gómez *et al.*, 2015b) y se construyó un modelo de datos que permite describir los fenómenos geológicos y gestionar la información espacial en sistemas de información geográfica. La elaboración de este estándar coincide con la discu-

sión internacional liderada por la Comisión de Geología de Volcanes de la *International As*sociation of Volcanology and Chemistry of the Earth's Interior (IAVCEI), encaminada a buscar mejores prácticas de mapeo y representación cartográfica de volcanes (Groppelli y Martí, 2018; Groppelli *et al.*, 2019). En el marco de esta discusión, vulcanólogos de todo el mundo han evaluado la utilidad de los conceptos enmarcados en las reglas comunes de la *Guía estratigráfica internacional* (Salvador, 1994) para la cartografía y el levantamiento estratigráfico de áreas volcánicas (Lucchi, 2013).

Por ello se plantea la utilidad del concepto de unidad litoestratigráfica como unidad cartografiable base, y se propone utilizar los conceptos de inconformidad estratigráfica, litosoma y unidad limitada por inconformidades para la correlación de los depósitos y la reconstrucción de la historia eruptiva de un volcán o de un área volcánica en estudio (*cf.* Pasquarè *et al.*, 1992; Gropelli y Viereck Goette, 2010; Lucchi, 2013). Estos son algunos trabajos que reflejan esta tendencia: Easton (1987); Manetti *et al.* (1995a y 1995b); de Rita *et al.* (1998); Calanchi *et al.* (1999); de Rita *et al.* (2002); Giannandrea *et al.* (2006); Lucchi *et al.* (2009a); Bellotti *et al.* (2010); Bonomo y Ricci (2010); Funiciello y Giordano (2010); Lucchi *et al.* (2010); Madeira *et al.* (2013); Francalanci *et al.* (2013); Lucchi *et al.* (2013a, 2013b, 2013c, 2013d y 2013e); Norini *et al.* (2014); Báez *et al.* (2015); Marroni *et al.* (2015); Paolillo *et al.* (2016); Martí *et al.* (2018); Németh y Palmer (2018), y Lucchi (2019), entre otros.

Particularmente en Colombia, a partir del año 2015 el Grupo de Geología de Volcanes del Servicio Geológico Colombiano (SGC) ha trabajado en la construcción de este estándar y en la implementación y adaptación de la metodología propuesta por Lucchi (2013), con las variaciones que implica trabajar en el contexto colombiano. Esta metodología ha sido aplicada de manera parcial en el Complejo volcánico Nevado del Ruiz (Martínez *et al.*, 2014) y en su totalidad en el Complejo volcánico Doña Juana (Pardo *et al.*, 2019), en el Complejo volcánico Paramillo de Santa Rosa (Pulgarín *et al.*, 2017) y, actualmente, en el Complejo volcánico Galeras (Pulgarín *et al.*, 2022). En cada uno de estos trabajos se ha buscado mejorar y estandarizar la representación de las unidades geológicas, las estructuras (volcánicas y tectónicas) y las características de la historia eruptiva del área volcánica en estudio a diferentes escalas.

En este sentido, y atendiendo las políticas y lineamientos de la Infraestructura de Datos Espaciales (IDE) geocientífica del SGC, cuyo objetivo es armonizar, facilitar, poner a disposición y permitir el acceso a la información geográfica, se presenta la estandarización de la información cartográfica relacionada con la geología de volcanes colombianos.

Esto facilita la interoperabilidad y la normalización de la información geoespacial, lo que a su vez permite establecer procesos de generación y actualización de los datos, proporciona herramientas para la evaluación de la calidad y facilita el intercambio de información. De esta manera, se establece la catalogación de los objetos y símbolos geográficos de acuerdo con Mahecha (2019), y se construye una base de datos con la información digital organizada y estructurada para apoyar la producción de los mapas geológicos de volcanes y productos asociados, con el objeto de que sean más consistentes, tanto en su salida gráfica como en sus datos.

En los anexos que acompañan este trabajo se exponen los conceptos básicos utilizados en los mapas geológicos de volcanes (anexo 1), un ejemplo de la plantilla del mapa geológico (anexo 2) y el catálogo de objetos (anexo 3) y la base de datos.

Objetivo

Volcán Nevado del Huila, flanco W, pico central 9 de noviembre de 2011 Observatorio Vulcanológico y Sismológico de Popaván

Generar un estándar geográfico para la elaboración de mapas geológicos digitales de volcanes colombianos que respondan a una estructura de organización y almacenamiento de datos, de modo que permitan mostrar la geología y la historia eruptiva de un volcán o un área volcánica de manera consecuente y uniformemente organizada, con el fin de facilitar su comprensión y lectura, de forma que la simbología y la terminología usadas aseguren el mismo significado para los autores de los mapas como para los usuarios de la información.

1.1. Objetivos específicos

 Proporcionar las definiciones de los conceptos estratigráficos utilizados en la elaboración de los mapas geológicos de volcanes para asegurar una comunicación clara entre quienes realizan los mapas y aquellos que los consultan.

- 2. Organizar una estructura de datos en un sistema de referencia espacial oficial y en un *software* que permita el almacenamiento, el manejo, la actualización y el intercambio de datos entre diferentes entidades y usuarios.
- Elaborar el catálogo específico de simbología de líneas, puntos, polígonos, tramas, colores y tipos de textos utilizados en la representación de los elementos geológicos y geomorfológicos en un mapa geológico de volcanes.
- Proveer una plantilla estándar para la salida gráfica de mapas geológicos digitales a escala 1:25000, 1:50000 y 1:100000, que además pueda ser ajustada a cualquier escala de trabajo.
- Revisar los conceptos utilizados en la bibliografía para seleccionar y unificar una terminología que procure descartar ambigüedades en la clasificación de los depósitos volcánicos primarios y secundarios.

2 Alcance

olcán Sotará, flanco N de octubre de 2009 ernardo Pulgarín

Este trabajo presenta los procedimientos y las especificaciones técnicas que se deben desarrollar e implementar para el uso y el manejo adecuado de la información geográfica asociada a la cartografía geológica de volcanes compuestos colombianos y, eventualmente, a la de otro tipo de volcanes. Esto, de acuerdo con los lineamientos establecidos por la Dirección de Gestión de la Información del SGC, mediante las plantillas propuestas para la catalogación de objetos y de símbolos avaladas por la Infraestructura Colombiana de Datos Espaciales (ICDE) y la plantilla de documentación de un estándar geográfico (Mahecha, 2019). De igual forma, se presenta la información almacenada en una base de datos con una estructura sistemática para su procesamiento y difusión.

En el SGC, los mapas geológicos de volcanes tienen como principales usuarios a los grupos de Exploración de Recursos Geotérmicos, de Cartografía Geológica, de Geología de Volcanes y demás grupos de la Dirección de Geociencias Básicas; además, al Grupo de Evaluación y Monitoreo de Actividad Volcánica, de la Dirección de Geoamenazas, y los diferentes grupos de la Dirección de Recursos Minerales. También, son consultados por las autoridades e instituciones que lo requieran.

Además, estos mapas son insumos útiles en temáticas relacionadas con geopatrimonio, geoturismo, geoconservación y geoeducación (p. ej., Monsalve *et al.*, 2019b). Por otro lado, desde el punto de vista científico, a nivel nacional e internacional, se incluyen las instituciones relacionadas con las ciencias de la Tierra, y en particular a la comunidad científica y académica afines a la vulcanología.

Es importante aclarar que la metodología para realizar el levantamiento estratigráfico en áreas volcánicas está fuera del alcance de este trabajo; no obstante, siguiendo las indicaciones de la ICDE (2001) y de Boutin (2008), se exponen los conceptos generales utilizados en este estándar de mapas geológicos de volcanes o áreas volcánicas para facilitar así su entendimiento por los usuarios de la información.

Finalmente, este estándar es una primera versión de una labor continuada con miras a ser actualizado de acuerdo con los avances de la estratigrafía y cartografía volcánica en los ámbitos nacional e internacional. **Base legal**

Volcán Paramillo de Santa Rosa, flanco NW 9 de junio de 2014 Ana María Tamavo

Entre los decretos y las normas que conforman el marco legal del proyecto de elaboración de un estándar para cartografía geológica de volcanes colombianos se encuentran el Plan Estratégico del Conocimiento Geológico del Territorio Colombiano 2014-2023, del Servicio Geológico Colombiano (SGC, 2014), y la Ley 1712 de 2014 "por medio de la cual se crea la ley de transparencia y del derecho de acceso a la información pública nacional".

Esta propuesta se elaboró siguiendo las directrices institucionales sustentadas en el Decreto 2703 de 2013 del Ministerio de Minas y Energía, en el que se asignan las funciones a la Dirección de Geociencias Básicas del SGC, específicamente en lo referente a "generar estándares, guías y metodologías inherentes a las funciones de esta dirección". De igual forma, en el Acuerdo 008 de diciembre de 2014 se acogió la Política de Gestión de la Información Geocientífica del SGC, cuyo objetivo es "establecer las condiciones de planeación, adquisición, recibo, generación, administración, depuración, archivo, conservación, uso y difusión de la información geocientífica del SGC, para ofrecer mayor calidad y oportunidad de los datos, productos y servicios de información geocientífica".

Para la estructuración de la información geográfica se adoptaron la norma ISO (*International Organization for Standardization*) 19110:2016 (ISO, 2016) y la NTC (Norma Técnica Colombiana) 5661, ratificada por el Instituto Colombiano de Normas Técnicas y Certificación (Icontec, 2010a), que establecen la metodología para la catalogación de objetos geográficos. De igual manera, se consideraron las normas ISO 19117:2011 e ISO 19117:2012, que especifican el esquema conceptual para la catalogación de los símbolos (ISO, 2011, 2012).

Para la elaboración de la plantilla del catálogo de objetos se tuvieron en cuenta las normas de estándares relacionadas con la información geográfica como la NTC 4611, segunda actualización (Icontec, 2011), que establece las pautas para el uso de metadatos geográficos; la NTC 5043, primera actualización, que vela por los lineamientos técnicos de los conceptos básicos de calidad de los datos geográficos para unificar características de la información geográfica (Icontec, 2010b); la NTC 5662, que incluye las especificaciones técnicas de productos geográficos, partiendo de los conceptos establecidos por la norma ISO 19131 (Icontec, 2010c), y la Resolución 68 de 2005 del IGAC, que adopta el Marco Geocéntrico Nacional de Referencia Magna-Sirgas (Marco Geocéntrico Nacional de Referencia, Densificación del Sistema de Referencia Geocéntrico para las Américas) como único *datum* oficial de Colombia.

Igualmente, se consideraron las directrices establecidas por el Consejo de Política Económica y Social (Conpes), en el documento n.º 3585 de 2009, cuyo objetivo central es coordinar la producción, la disponibilidad, el acceso y el uso de la información geográfica en el ámbito de las entidades del Estado (Conpes, 2009); y por el Comité Técnico de Normalización de Información Geográfica n.º 028 (CTN 028) del Icontec, que agrupa un conjunto de componentes estandarizados para la información geográfica en Colombia (CTN 028, 2002).

Por otro lado, ante la necesidad de articulación entre las instituciones productoras y usuarias de la información geográfica en Colombia, es imperiosa la adopción de normas y estándares que garanticen la comunicación entre los distintos actores institucionales. Por ello, los conceptos de interoperabilidad y normalización cobran especial importancia en la conformación de la ICDE, entendiéndose por interoperabilidad la posibilidad de interacción entre sistemas diferentes y, por normalización, la adecuación de procedimientos, datos y servicios a pautas técnicas establecidas a partir de acuerdos interinstitucionales.

Antecedentes

olcán Azufral, domos y laguna Verde l fondo volcanes Chiles (I) y Cumbal (D) de junio de 2012

En la década de los setenta y principios de los ochenta, la cartografía geológica de áreas volcánicas en Colombia hacía parte de las labores de cartografía geológica regional realizada por el SGC (en aquel entonces, Ingeominas), como una de sus tareas misionales. A partir de la tragedia de Armero, ocasionada por la erupción del volcán Nevado del Ruiz, en 1985, el SGC inició la cartografía de las áreas volcánicas como parte de los mapas de amenaza volcánica. Esta cartografía se basaba en la identificación de estadios, término que hace referencia a los distintos edificios volcánicos construidos a lo largo del tiempo en un área volcánica (por ejemplo, estadio Galeras, estadio Coba Negra, estadio Doña Juana Ancestral, entre otros); también se definían unidades informales, que eran nombradas según el tipo de depósito que conforma la unidad (por ejemplo, flujos piroclásticos y lahares, intercalación de flujos piroclásticos y caídas piroclásticas), y, finalmente, también se utilizó el término unidad eruptiva, concepto propuesto originalmente por Fisher v Schmincke (1984).

Algunos ejemplos de esta cartografía son los trabajos de: Grosse (1935), Ingeominas (1979), Jaramillo (1980), Calvache y Monsalve (1982), Herd (1982), Olade et al. (1982), Ramírez (1982), CHEC (1983), Flórez (1983), Murcia y Cepeda (1984), Cepeda et al. (1986a), Acevedo et al. (1987), Cepeda y Murcia (1988), Toro (1988), Cepeda (1989), Toro (1989), Calvache (1990), Thouret et al. (1990), Murcia y Cepeda (1991), Monsalve y Pulgarín (1992), Pulgarín et al. (1993), Calvache (1995), Cepeda et al. (1995), Correa Tamayo y Cepeda (1995), Schaefer (1995), Calvache y Cortés (1996), Ingeominas (1996), Pulgarín et al. (1996), Calvache et al. (1997), Cortés y Calvache (1997), Ingeominas y Río Quieto B. V. (1997a), Ingeominas y Río Quieto B. V. (1997b), Méndez (1997), Monsalve (2000), Marquínez et al. (2003), Rueda (2005), Borrero y Castillo (2006), Pulgarín et al. (2008), Pulgarín et al. (2010), Monsalve et al. (2012), Rayo (2012), Monsalve y Laverde (2016), Monsalve y Serna (2016), Pardo et al. (2016), Bocanegra y Sánchez (2017), Williams *et al.* (2017), Botero Gómez *et al.* (2018), Piedrahita *et al.* (2018), Castilla *et al.* (2019) y García y Sánchez (2019), entre otros. Algunos trabajos cartográficos hacen parte de las memorias de los mapas de amenazas (p. ej., Ingeominas, 1985; Cepeda *et al.*, 1986b; Monsalve y Méndez, 1988b; Monsalve 1991; Monsalve y Pulgarín, 1991; Ingeominas, 1992b, 1992c; Ingeominas, 1993a, 1993b; Monsalve y Pulgarín, 1993; Cepeda, 2000; Monsalve *et al.*, 2014).

La cartografía de unidades eruptivas comprende la unidad como un depósito o conjunto de depósitos resultantes de una erupción, fase eruptiva o pulso eruptivo, separada de otra por paleosuelos o superficies de erosión que representan tiempos considerables de reposo. Así, una sola unidad puede incluir varias capas o conjuntos de capas que, y de acuerdo con Pardo *et al.* (2016), representan:

- Cambios en el mecanismo de transporte o de acumulación (por ejemplo, depósitos de caídas piroclásticas, de corrientes de densidad piroclástica o de lahares).
- Cambios importantes en el régimen de un mismo mecanismo de transporte (evidenciados, por ejemplo, en la transición de gradación normal a inversa, cambios abruptos de tamaño de grano o variaciones significativas en el contenido y tipo de componentes).
- Cambios en el dominio o ambiente, desde depósitos volcánicos hasta depósitos epiclásticos, sin incluir secuencias lacustres que evidencien tiempos de reposo prolongados.

El concepto de unidad eruptiva resulta difícil de aplicar en la cartografía geológica de depósitos volcánicos antiguos (Plioceno-Pleistoceno) por la dificultad para distinguir los productos de diferentes erupciones, fases o pulsos, e incluso para diferenciarlos de aquellos generados por otros centros eruptivos, razones que llevan a plantear interpretaciones que

pueden ser rebatibles, en especial si no se tiene suficiente control geocronológico. Además, tampoco queda claramente definida la presencia de depósitos de lahares, de avalanchas de escombros, de depósitos epiclásticos y de paleosuelos. Asimismo, las inconformidades estratigráficas, que implican tiempos de reposo importantes o la reorganización del sistema volcánico, no son jerarquizadas, por lo que al final se termina estableciendo una gran cantidad de unidades geológicas.

En este sentido, en el año 2015 el ya conformado Grupo de Geología de Volcanes, de la Dirección de Geociencias Básicas del SGC, que tiene como objetivo principal la elaboración de la cartografía geológica y la reconstrucción de la historia eruptiva de los volcanes colombianos, inició el proyecto de crear un estándar para la salida gráfica de sus mapas, teniendo en cuenta las experiencias adquiridas durante el desarrollo de los mapas geológicos de los complejos volcánicos Nevado del Ruiz (Martínez *et al.*, 2014), Doña Juana (Pardo *et al.*, 2016), Paramillo de Santa Rosa (Pulgarín *et al.*, 2017) y Galeras (Pulgarín *et al.*, 2022).

Estos mapas geológicos fueron realizados aplicando la metodología propuesta por autores como Pasquarè *et al.* (1992), Gropelli y Viereck Goette (2010) y Lucchi (2013), adaptando las particularidades del trabajo en latitudes bajas, como es el caso del territorio colombiano, en donde las condiciones de difícil acceso, la abrupta topografía, la extensa y densa cobertura vegetal y la acción imperante de los procesos erosivos enmascaran o borran el registro geológico. Estos avances y particularidades serán ejemplificados en el capítulo seis de este trabajo.

Teniendo en cuenta estos antecedentes, y siguiendo las directrices institucionales que requerían la generación de estándares, guías y metodologías en cada una de las áreas temáticas institucionales, se propone la creación de un estándar de salida gráfica para mapas geológicos de volcanes colombianos realizados por el SGC, y que resulte útil, además, para la comunidad científica no perteneciente a la institución. Para ello se consultaron los estándares internacionales establecidos por la Organización Internacional de Estandarización en las distintas ediciones de la norma ISO 710 (ISO 1974, 1982, 1984 y 1989) y trabajos realizados por diferentes autores desde la década de los años setenta, relacionados con la estandarización de la cartografía geológica y geomorfológica y la gestión de la información geográfica (p. ej., IPGH, 1978; BMRGG, 1989; Mawer, 2002; Ingeominas, 2004; ASCH, 2005; FGDC y USGS, 2006; GSE, 2007; Hastings et al., 2007; IGME, 2007; Frye y Day, 2009; Carvajal, 2012; IGAC, 2012; OGC, 2013; Robertson et al., 2013; Gómez et al., 2015a; Gómez et al., 2015b; IIGE, 2019).

De esta revisión se destaca el FGDC Digital cartographic standard for geologic map symbolization, del Federal Geographic Data Committe y del Servicio Geológico de los Estados Unidos (FGDC y USGS, 2006), que presenta una guía práctica y completa con los símbolos que deben ser usados para representar las diferentes características geológicas, haciendo una subdivisión de estos símbolos según los procesos geológicos. Esta guía y algunos mapas realizados en los últimos años por el Servicio Geológico Italiano (p. ej., Branca et al., 2011; de Astis et al., 2013b; Lucchi et al., 2013a, 2013b, 2013c, 2013d, 2013e, 2013f, entre otros) fueron la base principal para la construcción del catálogo de símbolos presentado en este trabajo. Además, se tomaron en cuenta trabajos realizados en años anteriores por el SGC.

5 Conceptos utilizados en la cartografía geológica de áreas volcánicas

olcán Puracé, cráter tomado desde el NE de mayo de 2009 bservatorio Vulcanológico y Sismológico de opayán

El vulcanismo tiene lugar en extensas áreas geográficas que tienen una relación directa e íntima con la dinámica terrestre. La distribución geográfica del vulcanismo ha sido objeto de estudio de diversos autores que han presentado una categorización de esta distribución (p. ej., Fisher y Schmincke, 1984; Pujadas *et al.*, 1999). La jerarquización de las manifestaciones volcánicas permite dar una explicación coherente al desarrollo y funcionamiento de un área volcánica, así como relacionar y ordenar los diferentes volcanes o estructuras volcánicas que la conforman (*cf.* Pujadas *et al.*, 1999). De igual manera, permite definir la escala de trabajo y facilita plantear una estrategia de ejecución que cumpla el propósito de la cartografía geológica del área volcánica de estudio.

En este trabajo se realiza una breve descripción de los rangos de jerarquización propuestos por Pujadas *et al.* (1999) para la distribución geográfica del vulcanismo que, de mayor a menor tamaño, corresponde a región volcánica, provincia volcánica, campo volcánico, zona volcánica y complejo volcánico.

Región volcánica. Área geográfica de gran tamaño que incluye más de una provincia volcánica, y en la que el vulcanismo se extiende a lo largo de los tiempos geológicos (Fisher y Schmincke, 1984; Pujadas et al., 1999). La mayoría de las regiones volcánicas tiene distribución lineal, en cuyo caso son denominadas cinturones volcánicos o cadenas volcánicas (Fisher y Schmincke, 1984; Pujadas et al., 1999). Ejemplos de regiones volcánicas en el mundo incluyen la Región volcánica de Europa central y del margen ibérico mediterráneo (Pujadas et al., 1999) y la Región volcánica cordillerana (Fisher y Schmincke, 1984) de América; esta última comprende las provincias volcánicas de Alaska, la cordillera de las Cascadas (Cascade Mountains, EE. UU.), la Sierra Nevada (EE. UU.), las Montañas Rocosas (Rocky Mountains, Canadá y EE. UU.), el Cinturón Trans-Mexicano (México) y el occidente de Suramérica (arco volcánico de los Andes). Colombia formaría parte de la región volcánica norte de los Andes, que ha sido denominada tradicionalmente como zona volcánica norte de los Andes (Alvarado *et al.* 1999; Stern, 2004).

Provincia volcánica. Área geográfica que incluye más de un campo volcánico (Pujadas et al. 1999) o distrito volcánico (Fisher y Schmincke, 1984), de la misma o de diferente edad. Las rocas de una provincia volcánica pueden superponerse en tiempo y espacio, formar una zona continua o estar desconectadas debido a la erosión. En un mapa puede tener forma elongada o irregular (Fisher y Schmincke, 1984). Como ejemplos representativos se tienen la Provincia volcánica del Mediterráneo occidental (Europa), y la Cascades Volcanic Province (EE. UU.), que está dividida en dos campos o distritos sobrepuestos, la Western Cascade Range (con edad entre el Eoceno tardío y el Mioceno tardío) y la High Cascade Range (entre el Plioceno y el presente). En Colombia, un ejemplo es la Provincia volcano-tectónica San Diego-Cerro Machín (Martínez et al., 2014).

Campo o distrito volcánico. Asociación de rocas volcánicas en un área geográfica, con un mismo origen, que incluye más de una zona volcánica o centro volcánico. El vulcanismo puede abarcar largos períodos de tiempo. Los centros pueden organizarse en cadenas volcánicas. En Europa, un ejemplo de esta categoría sería el Campo volcánico catalán (Pujadas *et al.* 1999); en Norteamérica sería el Campo volcánico San Juan, en *Rocky Mountains*; y en Colombia, el Campo Villamaría-Termales (Osorio *et al.*, 2018) y el Campo Samaná (Murcia *et al.*, 2019).

El término campo, en la bibliografía especializada, ha sido asociado frecuentemente a la agrupación de volcanes monogenéticos, como el Campo volcánico Michoacán-Guanajuato, en México, compuesto por aproximadamente 1400 conos de ceniza, conos de toba y maares, derivados de un único sistema magmático, que cubren un área de 200 × 250 km (de Silva y Francis, 1991; Simkin y Siebert, 2000). En

Colombia, un ejemplo de ello, es el Campo volcánico monogenético de San Agustín, definido por Zuluaga (2011).

Zona volcánica. Área que incluye uno o varios centros eruptivos (volcanes) relacionados espacialmente. Por ejemplo, Zona volcánica de La Selva (Pujadas *et al.*, 1999), ubicada en la provincia de Girona, en España.

Complejo volcánico. Corresponde a un conjunto de geoformas volcánicas individuales, mayores y menores, relacionadas espacial, temporal y genéticamente, que ha experimentado más de un episodio eruptivo durante su historia. A menudo incluye varios centros eruptivos o focos alineados según direcciones estructurales bien definidas (Short, 1986; van Zuidam, 1986; Cas y Wright, 1987; de Silva y Francis, 1991; Francis, 1993: Schmincke, 2004: Goudie, 2006: Lockwood y Hazlett, 2010). En Colombia se han definido, entre otros, los siguientes complejos volcánicos: Complejo volcánico Galeras (Calvache, 1995), Complejo volcánico Nevado del Huila (Correa Tamayo v Cepeda, 1995), Complejo volcánico Doña Juana (Pulgarín et al., 2008), Complejo volcánico Sotará (Pulgarín et al., 2010), Complejo volcánico Nevado del Ruiz (Martínez et al., 2014) y Complejo volcánico Paramillo de Santa Rosa (Pulgarín et al., 2017).

A continuación, se detallan los conceptos estratigráficos utilizados en este estándar de representación de mapas geológicos de volcanes, para contextualizar al usuario y proveer un marco informativo que complemente las definiciones que contiene el estándar propuesto.

5.1. Conceptos estratigráficos para la cartografía de áreas volcánicas

La clave para el mapeo geológico de cualquier área, sea reciente o antigua, consiste en entender la estratigrafía de la zona de estudio (Németh y Palmer, 2018). Por ello, varios autores, en busca de las mejores prácticas de mapeo de áreas volcánicas, han utilizado una metodología que aplica los conceptos enmarcados en la *Guía estratigráfica internacional* (Salvador, 1994) para el levantamiento estratigráfico de áreas volcánicas (p. ej., Pasquarè *et al.*, 1992; Bellotti *et al.*, 2010; Leonard *et al.*, 2010; Lucchi *et al.*, 2010; Palladino *et al.*, 2010; Branca *et al.*, 2011; Francalanci *et al.*, 2013; Báez *et al.*, 2015; Martí *et al.*, 2018; Németh y Palmer, 2018; Pardo *et al.*, 2019), considerando los diversos aspectos que caracterizan la complejidad de los ambientes volcánicos, como los enunciados por Lucchi (2013):

- 🛆 La gran diversidad litológica.
- La amplia distribución granulométrica y composicional dentro de una misma unidad de acumulación (o erupción).
- El origen de una erupción desde una fuente puntual (un cráter) o lineal (una fisura), que tiene influencia en el patrón de distribución de los productos eruptivos.
- El espectro de sistemas eruptivos, de transporte y de acumulación, que frecuentemente son contrastantes y superpuestos en el espacio y en el tiempo, particularmente si se trata de productos piroclásticos.
- Los cambios abruptos de las litofacies lateral y verticalmente.
- Las variaciones súbitas en la composición química o zonación química (incluso durante una misma erupción).
- La naturaleza episódica de los eventos eruptivos, que resulta en un suministro rápido y frecuentemente catastrófico de productos volcánicos, que a su vez es interrumpido por períodos prolongados de inactividad.
- La generación de colapsos volcano-tectónicos (de tipo caldera o de colapso de un sector del edificio) que condicionan la localización de fuentes de emisión.

Autores como Pasquarè *et al.* (1992), Gropelli y Viereck Goette (2010) y Lucchi (2013) coinciden en el uso de conceptos como los de unidad litoestratigráfica, litosoma, inconformidad estratigráfica y unidad limitada por inconformidades en la cartografía geológica y en el levantamiento estratigráfico de áreas

volcánicas (tabla 1). Estos conceptos están basados en criterios estratigráficos que describen la litología y la posición vertical de un cuerpo rocoso en una sucesión estratigráfica, de tal manera que lo observado en el terreno es representado lo más objetivamente posible en la cartografía.

Dado que estos conceptos fueron planteados originalmente para los ambientes sedimentarios, es necesario acotar aquellos aspectos que difieren en los ambientes volcánicos, y que serán abordados a continuación en cada uno de los subtítulos de este capítulo.

5.2. Unidades litoestratigráficas

Las unidades litoestratigráficas son cuerpos de roca, estratificados o no, que se definen y caracterizan según sus propiedades litológicas fácilmente reconocibles, y sus relaciones estratigráficas. Están delimitadas por una superficie superior y otra inferior, que deben ser distinguibles y siempre demostrables. Las unidades litoestratigráficas son las unidades básicas en la cartografía geológica (Salvador, 1994; Murphy y Salvador, 1999).

	Categoría	Definición	Términos para la unidad	Objetivo del estudio
	Unidades litoestratigráficas	Cuerpos de roca definidos y reconocidos con base en sus propiedades litológicas distinguibles y observables, y con una posición estratigráfica en una sucesión vertical (Salvador, 1994)	Grupo, Formación (unidad primaria), Miembro, Capa y Flujo	Descripción de los tipos de roca y la reconstrucción de sucesiones de rocas. Unidades básicas para el mapeo geológico
	Litofacies	Subdivisiones laterales (o verticales) de una unidad litoestratigráfica basadas en las características litológicas distinguibles (espesor, geometría, estratificación, tamaño de grano, forma de los granos, selección, soporte, composición)	Facies distal, media, proximal	Descripción de las variaciones laterales (o verticales) de los productos piroclásticos ocasionadas por 1) tiempo, 2) paleotopografía o 3) incremento de la distancia a la fuente
Litoestratigrafía (objetiva)	Litosomas	Cuerpos de roca con una geometría tridimensional distinguible que pueden estar interdigitados con uno o más cuerpos adyacentes (Wheeler y Mallory, 1956)	Litosoma	Identificación de edificios volcánicos y centros eruptivos independientes o de otros cuerpos sedimentarios (coluviones o terrazas marinas)
	Inconformidades	Superficie de erosión o de no depositación que separa dos cuerpos de roca y que representa un hiato en la sucesión estratigráfica (Chang, 1975; Salvador, 1994; Howe, 1997)	Disconformidad, no conformidad, discordancia angular, paraconformidad,	Correlación estratigráfica a partir de la identificación de superficies que indiquen tiempos de erosión, inactividad volcánica o procesos externos al volcán
	Unidades limitadas por inconformidades	Cuerpos de roca limitados abajo y arriba por inconformidades significativas y demostrables (Chang 1975; Salvador 1987, 1994)	Supersintema, sintema (unidad primaria), subsintema y subsintema menor	Correlación estratigráfica y síntesis desde la escala local a la escala regional (no mapeable)
Cronoestratigrafía	Unidades eruptivas	Material volcánico emplazado durante un único pulso eruptivo, fase eruptiva o erupción (Fisher y Schmincke, 1984)	Flujo de lava, caída piroclástica, corrientes de densidad piroclástica concentrada o diluida, <i>lahar</i> sineruptivo, avalancha de escombros asociada a colapso de sector, entre otros fenómenos	Información relativa al comportamiento eruptivo (procesos de fragmentación, evolución de los magmas involucrados, etc.) y mecanismos de emplazamiento
(interpretativa, no mapeable)	Unidades de actividad volcánica	Períodos de actividad volcánica relativamente continua, separados por intervalos de inactividad de diferente duración y magnitud (Fisher y Schmincke, 1984)	Período eruptivo (ka-Ma), época eruptiva (decenas de años a ka) que incluyen intervalos de largo tiempo de inactividad volcánica. Erupción (días a años), fase eruptiva (minutos a días), pulso eruptiva (segundos a minutos)	Determinación de los principales eventos de la historia eruptiva

Tabla 1. Resumen de las categorías y	los conceptos estratigráficos adop	tados en la cartografía de áreas volcánicas
		17

Fuente: modificada de Lucchi (2013).

Para denominar y definir formalmente una unidad litoestratigráfica se deben cumplir los criterios anteriores y se deben aplicar los procedimientos especiales descritos en la *Guía estratigráfica internacional*, que incluyen proponer un nombre y un rango de jerarquía, proveer una descripción y caracterización clara y completa de la unidad, y designar un estratotipo (sección tipo) y una localidad tipo (Salvador, 1994).

La jerarquía convencional aplicada a las unidades litoestratigráficas formales incluye las categorías de grupo, formación, miembro y capa/flujo (véase la tabla 1), en las que la letra inicial debe escribirse en mayúscula; por ejemplo, la Formación El Cajón, en Pardo et al. (2019). Tal y como lo indican Németh y Palmer (2018) se recomienda evitar el uso de capa o flujo para unidades formales, con el fin de evitar la proliferación de nombres en un solo mapa geológico. En la Guía estratigráfica internacional se plantea además que el término supergrupo puede usarse para designar varios grupos asociados o para grupos y formaciones asociados que tienen propiedades litológicas significativas en común. Los supergrupos deben establecerse solo cuando su reconocimiento tenga un propósito claro. Adicionalmente, en este trabajo se sugiere describir los miembros en términos de sucesión de flujos o flujo(s) para los productos efusivos; y paquetes, conjunto de capas, capas, láminas y litohorizontes para los productos clásticos.

Para establecer la jerarquía de las unidades litoestratigráficas en la cartografía de áreas volcánicas se recomienda tener en cuenta la escala de trabajo y el propósito del mapa geológico. Por ejemplo, para la escala de trabajo 1:25000 se han utilizado las categorías formación y miembro. Las formaciones pueden ser reunidas en grupos con el fin de simplificar y generalizar la estratigrafía, lo cual resulta muy útil para el análisis estratigráfico regional o cuando se elaboran mapas de escalas menos detalladas (Salvador, 1994; Németh y Palmer, 2018).

Para definir correctamente una unidad litoestratigráfica se debe tener en cuenta que el nombre que se le asigne debe ser único, lo que hace necesario consultar catálogos o inventarios estratigráficos como el *Léxico estratigráfico para Colombia* (Julivert, 1968), y hacer una revisión bibliográfica minuciosa para evitar el uso de nombres ya asignados a unidades litoestratigráficas definidas formalmente por otros autores en trabajos anteriores (Salvador, 1994).

Las unidades litoestratigráficas en un ambiente volcánico pueden estar formadas por productos efusivos, depósitos volcanoclásticos o por depósitos epiclásticos (Lucchi, 2013). La caracterización de estas unidades depende de las observaciones hechas en campo y del grado de detalle del estudio. En depósitos volcánicos antiguos, en los que el estado de preservación de las rocas o de los depósitos sea muy pobre, las unidades litoestratigráficas puede ser definidas con rangos de edad muy amplios (Martí *et al.*, 2018). Por el contrario, cuando se trabaja con depósitos volcánicos en los que hay un mejor estado de preservación, es posible aplicar un modelo de facies que facilite la delimitación de la unidad, desde su zona proximal hasta su zona distal (Németh y Palmer, 2018).

De este modo, las asociaciones litofaciales pueden ser representadas por miembros de una formación, siempre y cuando esos miembros tengan una utilidad y un propósito que justifique su definición. Un ejemplo se ilustra en Pardo *et al.* (2019), en donde la Formación El Cajón (caj) está subdivida en dos miembros: caj₁ (miembro inferior, interpretado como un depósito de flujo de lava) y caj_u (miembro superior, interpretado como un depósito de bloques y ceniza), de tal forma caj_u corresponde a un colapso frontal de uno de los flujos de lava del miembro caj_i.

Según el Código norteamericano de estratigrafía (NACSN, 2005),

un miembro, ya sea formal o informal, no necesita ser cartografiado a la misma escala de la formación. Incluso si todos los miembros de una formación son localmente cartografiables, no significa que deban ser elevados al rango de formación, porque la proliferación de nombres de formaciones puede oscurecer más que aclarar las relaciones con otras áreas.

Por otro lado, para denominar los cuerpos rocosos con una morfología tridimensional distinguible e identificable mediante sensores remotos, a los que no fue posible acceder directamente durante el trabajo

de campo, por distintos factores que son comunes en el territorio colombiano, tales como vegetación muy densa, topografía muy abrupta, conflicto armado, entre otros, se había utilizado el término unidad geomorfológica (cf. Pardo et al., 2019); sin embargo, este término ha causado confusión entre algunos pares de la comunidad geocientífica colombiana, que señalan que las unidades litoestratigráficas y las unidades geomorfológicas, por ser categorías temáticas diferentes, no deben ser representadas juntas en la leyenda de un mapa geológico. Por lo tanto, estos cuerpos de roca son ahora representados en el mapa geológico como una unidad informal y denominados con un nombre propio relacionado con algún referente geográfico o toponímico, como, por ejemplo, unidad El Cordado, en el volcán Paramillo de Santa Rosa (cf. Pulgarín et al., 2017).

Finalmente, es importante señalar que si bien la Guía estratigráfica internacional (Salvador, 1994) define el término complejo como "una unidad litoestratigráfica que comprende diversos tipos de rocas de cualquier tipo (sedimentarias, ígneas, metamórficas) y de cualquier edad, y que está caracterizada por una litología irregularmente mezclada y con unas relaciones estructurales altamente complicadas...", en el ámbito de la geología de volcanes, un complejo volcánico es entendido como una de las subdivisiones jerárquicas de la distribución geográfica del vulcanismo, como se indicó al comienzo de este capítulo. Por lo tanto, en este estándar para cartografía geológica de volcanes o áreas volcánicas no se hará uso de esa definición dada en la Guía estratigráfica internacional. Cabe resaltar que en NACSN (2005), el término complejo volcánico está definido como "sitios de actividad volcánica persistente, comúnmente caracterizados por un conjunto diverso de rocas volcánicas extrusivas, intrusivos relacionados, y los productos de la meteorización y retrabajo de las mismas", significado que está más relacionado con el empleado en la cartografía geológica de volcanes.

En el anexo 1 de este trabajo se presentan los parámetros utilizados para la descripción de los depósitos que conforman las unidades litoestratigráficas y se establecen algunas consideraciones acerca de la clasificación de los productos efusivos y volcanoclásticos, con el fin de hacer un aporte en la estandarización de los términos utilizados en el levantamiento estratigráfico de áreas volcánicas.

5.3. Litosomas

El término litosoma es un concepto informal que fue definido para referirse a cuerpos rocosos que están mutuamente interdigitados con uno o más cuerpos de roca de diferente constitución lítica (Fischer *et al.*, 1954; Wheeller y Mallory, 1956; Weller, 1958; Krumbein y Sloss, 1963) y que, además, según Moore (1957), están relacionados genéticamente. Aunque este término ha sido muy controversial desde que fue definido, Pasquarè *et al.* (1992) propusieron adoptarlo para la estratigrafía de ambientes volcánicos en un sentido morfogenético, con el fin de identificar centros eruptivos o edificios volcánicos.

Posteriormente, Lucchi *et al.* (2010) plantearon utilizar el término litosoma de manera más amplia, de acuerdo con la definición original presentada por Wheeller y Mallory (1956), como una unidad adimensional. De esta forma, el uso de litosomas resulta útil para definir las relaciones latero-verticales de los distintos tipos de productos originados a partir de diferentes áreas fuentes adyacentes que se alternan. Esto ha permitido identificar tanto las fuentes volcánicas, como los cuerpos no volcánicos, por ejemplo, depósitos glaciares, conos de derrubios o *talus*, entre otros (figura 1), relacionados con procesos de erosión subaérea que afecta el relieve volcánico.

En Colombia, el concepto litosoma ha sido utilizado en la estratigrafía de los complejos volcánicos Doña Juana (Pardo *et al.*, 2019), Paramillo de Santa Rosa (Pulgarín *et al.*, 2017) y Galeras (Pulgarín *et al.*, 2022); donde ha sido posible comprobar su utilidad en volcanes recientes (Doña Juana y Galeras) y volcanes antiguos (Paramillo de Santa Rosa). En el último caso hubo mayor dificultad para ligar las unidades litoestratigráficas a un área fuente (litosoma), por tratarse de un área volcánica antigua que ha sido afectada por la erosión, por procesos tectónicos, por el enterramiento de depósitos antiguos bajo depósitos más recientes, entre otros factores; algo también planteado por Németh y Palmer (2018). Sin embargo, Estándar geográfico para mapas geológicos de volcanes colombianos

21

Figura 1. Esquema interpretativo de litosomas

a) Distinción de diferentes litosomas en el Complejo volcánico Galeras. b) Litosoma externo representado por un depósito proveniente del volcán Las Ánimas, que se superpone a los depósitos del Complejo volcánico Doña Juana.

en los tres casos mencionados, el uso del término litosoma contribuyó a clasificar y describir los centros eruptivos reconocidos, así como a reconstruir el marco estratigráfico del área. Adicionalmente, permitió identificar la interdigitación y yuxtaposición con productos provenientes de un área fuente externa y desconectada espacialmente del volcán estudiado, lo cual se vio reflejado en el adelgazamiento o pinchamiento de los depósitos hacia el área de estudio, o en las variaciones geoquímicas y texturales; a esos cuerpos se los denominó litosomas externos (véase la figura 1) (*cf.* Lucchi, 2013).

Los litosomas quedan caracterizados principalmente en las descripciones de las unidades litoestratigráficas asociadas a ellos (Lucchi, 2013), son representados en la leyenda del mapa y también pueden ser incorporados en el corte geológico y en los esquemas de la historia eruptiva del volcán (*cf.* Pardo *et al.*, 2019). Para nombrarlos se recomienda utilizar nombres únicos, y en caso de que un litosoma tenga

asociada una única unidad litoestratigráfica, ambos pueden llevar el mismo nombre (*cf.* Lucchi, 2013).

Como uno de los principales objetivos de utilizar el término litosoma en la cartografía geológica de áreas volcánicas es identificar los diferentes centros eruptivos que pudieran estar en el área de estudio, en el anexo 1, numeral 2, se presenta una recopilación de la clasificación de las geoformas volcánicas descritas en la literatura.

5.4. Inconformidades estratigráficas

La inconformidad estratigráfica es definida como "una superficie de erosión o de no depositación que separa dos cuerpos de roca, y que representa un hiato o interrupción en la sucesión estratigráfica" (Salvador, 1994). Las inconformidades pueden ser de varios tipos:

- Disconformidad. Inconformidad en la que los planos de estratificación por encima y por debajo de la discontinuidad estratigráfica son prácticamente paralelos; sin embargo, este paralelismo aparente está restringido en área. Su presencia a menudo es evidencia de erosión o de discontinuidad en la depositación, y generalmente está marcada como una superficie erosiva irregular u ondulada, o como un hiato estratigráfico (Dunbar y Rogers, 1957; Salvador, 1994; Howe, 1997).
- Discordancia angular. Inconformidad en la que los planos de estratificación encima y debajo de la discontinuidad estratigráfica se orientan formando un ángulo entre ellos (Salvador, 1994; Howe, 1997). Representan un hiato significativo en la sucesión estratigráfica que indica una pausa en la depositación, una etapa de erosión o de deformación (Bates y Jackson, 1984; Tarbuck y Lutgens, 1999).

No conformidad. Inconformidad desarrollada entre estratos más jóvenes suprayacentes y rocas más antiguas, sean plutónicas o metamórficas, que han estado expuestas a la erosión antes de que los sedimentos suprayacentes las cubrieran (Pirsson y Schuchert, 1915; Dunbar y Rogers, 1957; Howe, 1997; Tarbuck y Lutgens, 1999).

Paraconformidad. Inconformidad en la cual no se observan claras evidencias de erosión y cuya superficie de contacto entre rocas sedimentarias jóvenes y antiguas es plana, y por lo regular las capas situadas por encima y por debajo de esa inconformidad son paralelas. Muchas veces es difícil de identificar, sobre todo cuando las rocas situadas por encima y por debajo son muy similares (Dunbar y Rogers, 1957; Bates y Jackson, 1984; Howe, 1997; Tarbuck y Lutgens, 1999).

En los ambientes volcánicos, estas superficies se forman generalmente durante intervalos de reposo entre erupciones, cuando pueden tener lugar procesos de erosión o de inestabilidad gravitacional. Según Lucchi (2019), existen dos tipos de inconformidades que predominan en estos ambientes: las primeras corresponden a las inconformidades erosivas (disconformidades), que son formadas por cambios en las fuentes eruptivas y cambios en el sistema magmático; y las segundas corresponden a inconformidades de colapso (discordancias angulares), que son formadas por colapsos caldéricos o colapsos laterales que interrumpen la historia del volcán. Debido a la naturaleza episódica de los eventos eruptivos, las sucesiones volcánicas están caracterizadas por numerosas inconformidades que comúnmente son de duración variable, y que normalmente no superan los 10000 años (Lucchi et al., 2010; Lucchi, 2013 y 2019).

Por esta razón, Lucchi (2013 y 2019) enfatiza que el criterio principal para jerarquizar las inconformidades estratigráficas en los ambientes volcánicos es la extensión del área que involucran. En segundo lugar, el tiempo de duración del hiato estratigráfico que representa la inconformidad, y como último criterio estaría el ángulo formado entre los depósitos de encima y debajo de la inconformidad (formada por la influencia estructural de la zona o por erosión), debido a que no es constante desde las zonas proximales a las distales. De igual forma, es posible tener en cuenta como criterio de jerarquización la relevancia de la inconformidad en el desarrollo geológico del área volcánica. De esta forma, Lucchi (2013 y 2019) propone la siguiente jerarquización:

- Inconformidades de primer orden. Son las inconformidades de mayor jerarquía, tienen una escala regional y pueden afectar varios volcanes.
- Inconformidades de segundo orden. Son las que afectan toda el área volcánica o una parte importante del área del volcán o del complejo volcánico objeto de estudio.
- Inconformidades de tercer orden. Afectan un sector específico del área volcánica que se está cartografiando.

Se sugiere evitar jerarquizar aquellas superficies erosivas que aparecen en depósitos de erupciones sucesivas (intererupciones) o incluso en depósitos de una misma erupción (intraerupciones) que no denoten tiempos considerables de reposo (Martí *et al.*, 2018).

Las inconformidades de primer orden se representan con una la letra I mayúscula (o con la letra U, si se escribe en inglés, como se indica en Lucchi, 2013 y en Pardo et al., 2019). Las inconformidades de segundo y tercer orden, que son de menor jerarquía, se designan de acuerdo con la letra inicial del nombre del volcán que es objeto de estudio. Por ejemplo, para el Complejo volcánico Paramillo de Santa Rosa, se utiliza una P mayúscula, para hacer referencia a la inconformidad de segundo orden, y una p minúscula, para nombrar la inconformidad de tercer orden, o menor; para el Complejo volcánico Galeras se usarían las letras G y g para las inconformidades de segundo y de tercer orden, respectivamente. Cuando los nombres de dos volcanes tengan la misma letra inicial, con el fin de evitar repeticiones que ocasionen confusión, se sugiere utilizar la letra inicial y su consecutiva. Por ejemplo, para los volcanes Chiles y Cumbal se usarían Ch y Cu, respectivamente; para los volcanes Cerro Machín y Cerro Bravo podrían usarse las dos letras iniciales, en mayúscula, de cada palabra de su nombre, es decir, CM y CB, respectivamente.

Cuando se identifican varias inconformidades de un mismo orden jerárquico en la zona que se está cartografiando, se debe adicionar un subíndice alfanumérico que indique el orden cronológico de ellas. Para las inconformidades de primer y segundo orden se adiciona un subíndice numérico en orden consecutivo desde el número 1 hasta n (I₁, ...I_n; P₁, ...P_n), donde 1 corresponde a la inconformidad más antigua. En el caso de las inconformidades de tercer orden, se utiliza el número de la inconformidad de segundo orden precedente y un subíndice alfabético desde la letra a en adelante (P_{1a}, P_{1b}, P_{1c}...), donde la inconformidad de tercer orden P_{1a} es la inconformidad más antigua, precedida por la inconformidad de segundo orden P₁.

En Colombia, la mayoría de las inconformidades estratigráficas de primer orden corresponden a disconformidades y no conformidades, y comúnmente están representadas por el contacto entre el basamento y los productos volcánicos presentes en el área de estudio (figura 2A; *cf.* Pardo *et al.*, 2019).

Por otro lado, las inconformidades de segundo y tercer orden frecuentemente cambian a lo largo de la extensión geográfica; es decir, su naturaleza y características no siempre son las mismas desde la zona proximal hasta la zona distal de un edifico volcánico. Estas inconformidades estratigráficas pueden corresponder a dos causas:

Discordancias angulares formadas durante intervalos de quietud o inactividad volcánica, que son evidentes en la zona proximal de un volcán, pero que en las zonas media y distal están frecuentemente asociadas a discordancias angulares de bajo ángulo, disconformidades, presencia de paleosuelos, depósitos epiclásticos (incluidos depósitos de abanicos aluviales, depósitos glaciares, de loess y secuencias lacustres, entre otros) o depósitos volcanoclásticos secundarios, excluyendo los lahares sineruptivos y los colapsos laterales, precursores de erupciones, pues no indicarían períodos de reposo (Lucchi, 2019). En Colombia ha sido posible identificar superficies de erosión glaciar generadas durante las últimas glaciaciones y estadios glaciales (en volcanes que tienen o tuvieron masas glaciares en sus cimas), donde estas superficies están representadas en las zonas proximales por la morfología de valles en "U" resultantes del tallado glaciar, y por la amplia acumulación de depósitos glaciares, o depósitos fluvioglaciares en las zonas medias y distales de los edificios volcánicos.

Estándar geográfico para mapas geológicos de volcanes colombianos

24

Figura 2. Ejemplos de inconformidades en algunos volcanes colombianos

SW

a) Inconformidad de primer orden (U₁), que corresponde a una no conformidad entre la Formación Carrizales (cz) del CVDJ, y el Complejo Quebradagrande (Kcqg); b) Depósito de avalancha de escombros que marca una inconformidad de segundo orden (G₄) en la zona mediadistal del CVG; c) La misma inconformidad (G₄) en la zona proximal del CVG, representada por una discordancia angular; d) Inconformidades de segundo orden (D₁ y D₃), en el CVDJ, asociadas a remanentes de bordes cratéricos de los edificios Santa Helena y Doña Juana Ancestral, respectivamente; e inconformidad de tercer orden (d_{3a}), que corresponde a una discordancia angular que trunca los depósitos del edificio Doña Juana Antiguo; e) Inconformidad de segundo orden (D₄) representada por un paleosuelo de amplia distribución, y una inconformidad de tercer orden (d_{4a}) representada por otro paleosuelo cerca al tope de la secuencia, ambos en la zona media-distal del CVDJ. Fuente: a, d y e) modificadas de Pardo *et al.* (2016); b y c) modificadas de Pulgarín *et al.* (2022).

Discordancias angulares formadas por colapsos caldéricos o colapsos laterales (no asociados con erupciones) que se caracterizan por ser discordancias angulares de alto ángulo entre los depósitos antiguos truncados por el colapso y los depósitos que rellenan la estructura remanente. Este es el caso de los depósitos del cono Galeras, en el Complejo volcánico Galeras (CVG), que rellenan la estructura de anfiteatro del edificio destruido de Urcunina (figura 2C; Pulgarín *et al.*, 2019).

Hacia la zona distal de un volcán es común que estas inconformidades estén asociadas a disconformidades, discordancias de bajo ángulo o paraconformidades, donde los productos volcánicos que están debajo y encima de la inconformidad pueden tener características litológicas, petrográficas y geoquímicas diferentes debido a la reorganización substancial del sistema de bombeo magmático (Lucchi, 2019). De igual forma, pueden estar asociadas a paleosuelos o depósitos epiclásticos. También un colapso lateral puede quedar representado como un depósito de avalancha de escombros en las zonas medias y distales, como se ha visto en el CVG (figura 2B; Pulgarín et al., 2019), donde la inconformidad está representada por el depósito propio del colapso, más que por una superficie. De esta forma, en la leyenda del mapa, la inconformidad podría ser definida en el tope del depósito de la avalancha, asumiendo que el volcán ha estado en un intervalo de reposo después del colapso (Lucchi, 2022).

Como ejemplo, en el Complejo volcánico Doña Juana (CVDJ) se han identificado inconformidades de segundo orden que corresponden a estructuras volcano-tectónicas (colapsos no relacionados con erupciones) y a estructuras de colapsos laterales (colapso de flanco) que afectan de manera amplia varios de los edificios volcánicos del complejo (figura 2D; *cf.* Pardo *et al.*, 2019). En la zona proximal están representadas por discordancias angulares, que en las zonas media y distal pasan a discordancias angulares de bajo ángulo, o incluso a disconformidades, y frecuentemente están asociadas a espesos paleosuelos ampliamente distribuidos (figura 2E; *cf.* Pardo *et al.*, 2019). Estas inconformidades son generadas durante largos intervalos de reposo, lo cual es soportado con datos geocronológicos.

Por otro lado, una de las inconformidades de tercer orden en este mismo complejo corresponde a una discordancia angular causada por el colapso de un domo, representada en las zonas media y distal por depósitos volcanoclásticos retrabajados que separan depósitos volcanoclásticos primarios con 2000 años de diferencia entre ellos (*cf.* Pardo *et al.*, 2019).

5.5. Unidades limitadas por inconformidades

Las unidades limitadas por inconformidades fueron definidas inicialmente como cuerpos de rocas limitados por inconformidades significativas y demostrables en las sucesiones estratigráficas, preferiblemente con una extensión regional o interregional (Chang, 1975; Salvador, 1987).

Estas unidades han sido útiles para esclarecer la historia geológica de un área a lo largo del tiempo, puesto que permiten reconocer la distribución espaciotemporal de eventos tectónicos locales y regionales, de episodios regionales e interregionales no depositacionales, erosivos o de cambios en el nivel eustático del mar. Según Salvador (1994), estas unidades son mapeables, deben ser usadas solo si satisfacen una necesidad que los otros tipos de unidades estratigráficas (litoestratigráficas, bioestratigráficas o cronoestratigráficas) no pueden cumplir, y si su uso contribuye al entendimiento de la estratigrafía y la historia geológica de un área. El orden jerárquico de estas unidades, de mayor a menor, es: supersintema, sintema (como unidad básica de estas unidades), subsintema y subsintema menor, este último propuesto en Lucchi (2019) y Pardo et al. (2019).

Un concepto similar al de unidades limitadas por inconformidades es el de unidades aloestratigráficas, propuestas en el *Código norteamericano de estratigrafía* (NACSN, 2005). Las unidades aloestratigráficas fueron definidas como cuerpos de roca mapeables reconocidos a partir de sus discontinuidades limitantes, que en orden de mayor a menor jerarquía son: alogrupo, aloformación (como unidad básica) y alomiembro.

Además, el término secuencia ha sido usado por autores como Sloss *et al.* (1949), Krumbein y Sloss (1951) y Sloss (1963), entre otros, para referirse a las unidades litoestratigráficas limitadas por inconformidades. Posteriormente, dicho término fue redefinido como secuencia deposicional, en el ámbito de la estratigrafía secuencial, para referirse a unidades compuestas por sucesiones de rocas mapeables, genéticamente relacionadas y limitadas por inconformidades o por sus conformidades correlativas (Mitchum *et al.*, 1977).

Con el fin de reconciliar la estratigrafía tradicional y la estratigrafía secuencial, en la *Guía estratigráfica internacional abreviada* (Murphy y Salvador, 1999) se propuso descartar el término sintema, y emplear el término secuencia como base de la estratigrafía secuencial, y para designar todas las unidades estratigráficas limitadas total o parcialmente por discontinuidades.

Particularmente, en el Código estratigráfico nacional italiano (Pasquarè et al.,1992) se considera que las unidades limitadas por inconformidades son una herramienta indispensable para la correlación y la clasificación estratigráfica en áreas volcánicas, razón por la cual varios autores en las últimas décadas han utilizado este tipo de unidades estratigráficas en la cartografía de este tipo de áreas (p. ej., Lanzafame et al., 1994; Manetti et al., 1995a, 1995b; Rossi et al., 1996; de Rita et al., 1998; Bellucci et al., 1999; Calanchi et al., 1999; de Rita et al., 2002; Santacroce y Sbrana, 2003; Pasquarè et al., 2004; Funiciello et al., 2005; Giannandrea et al., 2006; Funiciello y Giordano, 2008; Bonomo y Ricci, 2010; Lucchi et al., 2010; Tibaldi, 2010; Branca et al., 2011; Morelli et al., 2012; de Astis et al., 2013a; Forni et al., 2013; Francalanci et al., 2013; Lucchi et al., 2013a, 2013c, 2013d, 2013e; Marroni et al., 2015).

Según Lucchi (2019), las unidades limitadas por inconformidades fueron una herramienta muy práctica en la cartografía de las islas Eolias, porque permitieron la correlación de las sucesiones estratigráficas geográficamente distantes, lo que generó un marco estratigráfico sintetizado que partía de una escala local (en una isla en particular) hasta una escala más regional (entre las diferentes islas del archipiélago). Aunque las unidades limitadas por inconformidades han sido utilizadas como unidades mapeables (*cf*. Volentik *et al.*, 2005; Giannandrea *et al.*, 2006), Lucchi (2013 y 2019) recomienda utilizar las unidades litoestratigráficas como única unidad mapeable.

En Colombia, el concepto de unidades limitadas por inconformidades no se usaba anteriormente en ambientes volcánicos. Sin embargo, en la cartografía geológica del Complejo volcánico Doña Juana (Pardo *et al.*, 2016 y 2019), donde se tomó como referencia la metodología de Lucchi (2013), se utilizó, y resultó ser una herramienta muy útil para la correlación estratigráfica.

No obstante, cuando se realizó la cartografía del Complejo volcánico Paramillo de Santa Rosa y la del Complejo volcánico Galeras, no fue necesario formalizar las unidades estratigráficas limitadas por inconformidades, pues, a partir de la definición de las inconformidades estratigráficas, de las unidades litoestratigráficas y de los litosomas, fue posible entender el marco estratigráfico y la evolución de cada uno de estos complejos volcánicos. Sin embargo, no se desconoce que el uso de las unidades limitadas por inconformidades puede resultar útil en algunos volcanes o complejos volcánicos, como lo fue en el caso del Complejo volcánico Doña Juana.

A medida que avance el conocimiento de la geología volcánica en Colombia con el enfoque y las reglas de la nomenclatura estratigráfica clásica se podría evaluar la aplicabilidad de las unidades limitadas por inconformidades en un sentido más amplio, de manera que se faciliten las correlaciones regionales e interregionales entre diferentes áreas volcánicas. En este último caso es importante emplear los mismos criterios de definición y de jerarquización de las distintas inconformidades presentes en cada volcán colombiano.

6 Descripción de la base de datos

Volcán Nevado Santa Isabel, flanco W 9 de junio de 2014 Bernardo Pulgarín

Para almacenar los datos que surgen en el desarrollo de proyectos de cartografía geológica de áreas volcánicas se diseñó e implementó una base de datos geoespacial (*geodatabase*), de acuerdo con el avance de la tecnología SIG, en la que se aplican estándares tanto institucionales como nacionales, teniendo en cuenta las siguientes consideraciones:

- El esquema de representación de los datos debe permitir la gestión sistémica de los datos geocientíficos existentes, levantados en campo. Este esquema considera aspectos de ubicación, características espaciales, atributos/estado y comportamiento geográfico, y a la vez identifica las conexiones y las relaciones entre las clases de objetos geoespaciales y no espaciales.
- Se debe eliminar la redundancia en el almacenamiento de los datos, aplicando el método de normalización en las tablas de atributos.
- Se deben identificar y establecer las reglas de integridad geográfica y de análisis topológico con el fin de minimizar el error lógico y garantizar la uniformidad de los datos.
- Se deben aplicar los estándares del catálogo de objetos geográficos establecidos para la cartografía colombiana, de acuerdo con los lineamientos de la ICDE (2016), y específicamente los adoptados para el área temática del Grupo de Geología de Volcanes de la Dirección de Geociencias Básicas del SGC.

- Los valores correspondientes a los campos de atributos en la base de datos se llenan de acuerdo con los estándares de dominios (o la lista de valores) adoptados por el Grupo de Geología de Volcanes para la representación y manejo de información gráfica en mapas geológicos de áreas volcánicas.
- La base de datos debe permitir su integración al sistema de información geoespacial corporativo del SGC.

La base de datos tiene un mismo marco de referencia espacial, y es almacenada en una file geodatabase de ArcGIS, que contiene toda la información de tipo vectorial y raster, para los productos cartográficos de geología de volcanes (figura 3). La información es organizada en directorios de datos relacionados espacial o temáticamente (conjunto de datos), que contienen clases de entidad (capas) y que a su vez tienen atributos que describen las características de los objetos espaciales y pueden tener asociadas anotaciones (annotation). Las capas tipo raster pueden estar contenidas en un raster dataset, o en un mosaico de datos (mosaic dataset). Esta base de datos se encuentra en formato file (.gdb). La manera como son denominados los componentes de esta geodatabase (véase figura 3) no obedece las normas ortográficas del español, sino que sigue las reglas para la definición de bases de datos.

Estándar geográfico para mapas geológicos de volcanes colombianos

29

Figura 3. Estructura de la geodatabase diseñada para el trabajo en la temática de cartografía geológica de volcanes

Catálogo de objetos

7

Volcanes Pukará (I) y Pan de Azúcar (D), tomada desde el N 8 de mayo de 2009 Observatorio Vulcanológico y Sismológico de Ponarán

La estructura del catálogo de objetos que se describe en este trabajo se basa en la *Guía para la catalogación de objetos y símbolos geográficos del SGC* (Mahecha, 2019) y en las políticas y lineamientos de la ICDE, la ISO 19110 de 2016 y la ISO 19117 de 2011 y 2012, así como en la NTC 5661 de 2010. Con estos lineamientos se busca facilitar la interoperabilidad y normalización de la información geoespacial, lo que permite armonizar, facilitar, disponer y acceder a la información geográfica contenida en bases de datos estandarizadas y de calidad.

Un catálogo de objetos geográficos, por definición, se basa en la abstracción de la realidad clasificada en conjuntos de datos geográficos cuyo nivel básico es el tipo de objeto. Con el fin de representar adecuadamente cada objeto geográfico, cada uno de ellos cuenta con una definición, una clasificación, una codificación y unas características, tales como los atributos, los dominios, las relaciones y las operaciones entre ellos (ICDE, 2016). El catálogo de objetos de este trabajo es presentado de forma clara, precisa, comprensible y accesible para los usuarios, lo que permite más fácilmente la generación, revisión y actualización de la información.

De acuerdo con la ICDE (2016), los elementos que componen un catálogo de objetos geográficos muestran una organización jerárquica agrupada en temas, grupos y objetos. El tema es el primer nivel de jerarquía, y su objetivo es agrupar y ordenar los fenómenos y los elementos de la realidad. Los grupos corresponden al segundo orden de jerarquía y son definidos como subconjuntos del tema que tienen características similares y que describen las particularidades del catálogo al que pertenecen. Los objetos corresponden al tercer orden jerárquico y son definidos como la representación abstracta de un determinado elemento o fenómeno del mundo real que se localiza de manera relativa o absoluta sobre la superficie terrestre.

Cada objeto tiene características y comportamientos específicos que lo diferencian de otros objetos, y a la vez tiene atributos, operaciones y relaciones. Los atributos son definidos como las características propias e implícitas que describen a cada uno de los objetos geográficos y que hacen parte de la información del objeto; cada posible valor que puede tomar un atributo hace parte de la lista de dominios. Mediante estos atributos se identifican las relaciones y las operaciones; las primeras hacen referencia a los vínculos entre un tipo de objeto o entre diferentes tipos de objetos, mientras que las operaciones son las acciones que se ejecutan por las instancias (ocurrencias) de un tipo de objeto.

La estructura del catálogo de objetos para la cartografía geológica de volcanes colombianos (figura 4) hace parte de la estructura general de estándares para cartografía geológica del SGC, en proceso de construcción por parte del Grupo de Estándares Geográficos de la Dirección de Gestión de la Información del SGC, que se basa en lo establecido en el documento de estándares de Gómez y Montaña (2016). Como puede verse claramente en la figura 4, la manera como se denominan los elementos del catálogo de objetos no sigue las normas ortográficas del español, sino que obedece a los requerimientos de la definición de bases de datos.

El catálogo de objetos de este trabajo se divide en tres temas: Geologia, Geomorfologia y Miscelaneos. El tema Geologia está compuesto por dos grupos Geologia_Estructural y Geologia_Volcanes. A su vez, el grupo Geologia_Volcanes contiene dos objetos geográficos, que son la Unidad_Lito_Volcanica y la Unidad_Lito_Volcanica_HE, cada uno con sus respectivos atributos, que representan la variedad litológica y la historia eruptiva.

El tema Geomorfologia contiene a su vez dos grupos: Jerarquia_Geomorfologica y Rasgos_Geomorfologicos, que contienen la información relacionada con las unidades y rasgos geomorfológicos (a nivel de puntos, líneas y polígonos) utilizados en los mapas de geología volcánica.

En el tema Miscelaneos se tomaron los grupos definidos por el Grupo de Estándares Geográficos

de la Dirección Gestión de la Información del SGC: Mapa_Base, Leyenda_Geologica, Corte_Geologico, Estaciones, Mapa_Localizacion, Indice_Participacion e Isolineas. Específicamente, en el grupo Leyenda_Geologica se tienen dos objetos geográficos, Poligono_Leyenda_GeoVol y Linea_Leyenda_Geo. Igualmente, en el grupo Corte_Geologico se tienen dos objetos, Unidad_Lito_Vol_Corte y Litosoma_ Vol_Corte. Finalmente, el grupo Estaciones contiene el objeto geográfico Estacion_Campo, dentro del cual hay cuatro tablas ligadas: Libreta_Campo, Foto_Campo, Muestra, Tipo_Analisis y Datacion_Radiometrica.

Figura 4. Estructura general del catálogo de objetos geográficos usado por el Grupo de Geología de Volcanes del SGC Los recuadros de color más claro incluyen los temas y grupos tomados de la de estructura y catalogación propuesta por el Grupo de Estándares Geográficos del SGC para la temática de Geología, con base en Gómez y Montaña (2016).

Servicio Geológico Colombiano

Catálogo de símbolos

/olcán Las Ánimas, complejo de domo 7 de agosto de 2022 ternardo Pulcaría

La simbología juega un papel muy importante en la representación cartográfica, ya que con los símbolos se intenta expresar lo que se visualiza en un área determinada. La forma y el tamaño del símbolo están determinados por la escala del mapa, que es muy importante para la correcta visualización de la salida gráfica. La simbología presentada en este trabajo es el resultado de la revisión, selección y modificación de símbolos, colores y patrones utilizados en diferentes metodologías de cartografía geológica de varios países. Entre los trabajos consultados está la guía FGDC Digital cartographic standard for geologic map symbolization (FGDC y USGS, 2006), así como los trabajos de: Barsch y Liedtke (1980), Lucchi et al. (2009b), Lucchi et al. (2010), Madeira et al. (2010), Martí et al. (2010), Tibaldi (2010), Branca et al. (2011), de Astis et al. (2013a), de Astis et al. (2013b), Francalanci et al. (2013), Forni et al. (2013), Lucchi (2013), Lucchi et al. (2013a), Lucchi et al. (2013b), Lucchi et al. (2013c), Lucchi et al. (2013d), Lucchi et al. (2013e), Lucchi et al. (2013f), Marroni et al. (2015), Carrasco Núñez et al. (2017) y Matiz León (2020). Además, se tuvieron en cuenta algunos símbolos utilizados en anteriores mapas geológicos de volcanes colombianos (Pardo et al., 2016; Pulgarín et al., 2017; Pardo et al., 2019). Finalmente, algunos símbolos fueron diseñados por los autores de este trabajo.

8.1. Símbolos

La amplia variedad de rasgos y estructuras morfológicas que exhiben los ambientes volcánicos hace necesario el uso de diferentes símbolos cartográficos y de herramientas gráficas que faciliten la representación de las geoformas, los procesos y estructuras volcánicas, así como de la historia eruptiva de un volcán, complejo volcánico o área volcánica determinada.

La simbología presentada en este trabajo proporciona información específica sobre el carácter o la geometría de cada característica geológica susceptible de ser referenciada. Estos elementos se encuentran representados en formato vectorial mediante formas geométricas de puntos, líneas y polígonos, o la combinación de ellos.

Para FGDC y USGS (2006),

una característica geológica lineal es una línea geológica o geomorfológica unidimensional, que puede ser una línea física del mundo real (por ejemplo, una morrena, un lineamiento) o una línea teórica (por ejemplo, la charnela de un pliegue o la dirección de una paleocorriente). La geometría de la línea puede ser recta, curva o crenulada, y su orientación puede ser horizontal, inclinada o vertical.

Teniendo en cuenta esta definición, las características lineales en cartografía geológica de volcanes se utilizan para representar lo siguiente:

🛆 Bordes de cráteres o centros de emisión.

- Estructuras que denotan destrucción catastrófica de edificios volcánicos (colapsos volcano-tectónicos, márgenes de calderas, colapsos de sector o colapsos de flanco y cicatrices de colapsos).
- Direcciones de elongación de depósitos volcánicos efusivos y volcanoclásticos (por ejemplo, la dirección de emplazamiento de flujos de lava o de productos volcanoclásticos).
- Assgos glaciares y fluvioglaciares (crestas de morrenas, valles glaciares, circos glaciares, entre otros).
- Estructuras tectónicas (por ejemplo, fallas, lineamientos u otros rasgos estructurales).
- Estructuras del ambiente denudacional (escarpes de terrazas de depósitos volcánicos o epiclásticos, hummocks, entre otros).
- Frentes de lóbulos de flujos de lava, líneas de crestas u ojivas en flujos de lava.

En cartografía geológica de volcanes, las características geológicas representadas por puntos se asocian a rasgos geológicos o morfológicos que afectan

a un sector particular, que en determinadas escalas de representación gráfica se visualizan mejor como elementos puntuales; por ejemplo, las estaciones de campo, un domo, un criptodomo, un *maar* o un cono piroclástico, así como algunas estructuras glaciares (*horns, kettles*, entre otras). Otros elementos puntuales son las fumarolas y fuentes termales, que son tomadas del *Estándar geográfico para información geotérmica* (Matiz-León *et al.*, 2022).

En el caso de las características geológicas representadas por polígonos, estos se refieren a información de un área en particular. En cartografía geológica de volcanes se pueden definir polígonos que delimitan las diferentes unidades litoestratigráficas, o también se pueden señalar límites glaciares que están ligados al contorno real de la masa glaciar. Los símbolos para representar campos de fumarolas, aguas termales o zonas de alteración son propuestos por el Grupo de Geotermia del SGC (Matiz León, 2020). Otro polígono muy común encontrado en las áreas volcánicas son las lagunas, referenciadas a partir de la cartografía base del IGAC.

A continuación, se presenta un catálogo de símbolos a escala 1:25000, referente a las características utilizadas en cartografía geológica de volcanes. Los símbolos de este catálogo han sido ajustados a escalas 1:50000 y 1:100000, y podrán ser ajustados a la escala de trabajo requerida por otros usuarios, según las necesidades particulares. Para ello se pueden tener en cuenta las proporciones descritas en las especificaciones cartográficas (figura 5 y anexo 3).

8.2. Carta de colores y achurados

Una estructura volcánica o un complejo volcánico suele tener gran cantidad de unidades litoestratigráficas asociadas, generadas por el mismo o por otros centros de emisión cercanos, sobre todo cuando ha tenido una larga historia eruptiva. Por esta razón, para representar esta variedad de unidades es necesario emplear una amplia gama de colores, que no tenga relación con la utilizada en las cartas cronoestratigráficas de los mapas geológicos convencionales (Cohen *et al.*, 2020). Adicionalmente, para evitar confusión en los mapas geológicos de volcanes, o de áreas volcánicas, el basamento no se representa, pero sí se menciona en la leyenda del mapa.

En este estándar se presenta una paleta de colores para representar unidades litoestratigráficas volcánicas, que varía desde la gama del color morado para

Código del símbolo (*)	Nombre del símbolo	Tipo (*)	Muestra gráfica (*)	Propiedades (*)	Descripción (*)	Escala (*)	Recomendaciones de uso
CS020200102404	Drumlin	Punto		RGB: 0,0,0 Tamaño: 6,0 mm	Forma de relieve glaciar con una pendiente inclinada y otra más suave. La superficie más suave indica hacia donde se mueve el flujo de hielo	25K	
CS020200102405	Hom	Punto	A	RGB: 0,0,0 Tamaño: 6,0 mm	Forma de relieve glaciar denominada también como cuerno glaciar. Son picos con paredes de inclinaciones entre 45°-60°	25K	Se sugiere el color negro.
CS020200102406	Kettle	Punto	*	RGB: 0,0,0 Tamaño: 3,5 mm	Forma de relieve glaciar que forma conjuntos de depresiones más o menos circulares	25K	

CONJUNTO DE SÍMBOLOS

(*): Elemento obligatorio

(C): Elemento condicional

Figura 5. Muestra parcial del catálogo de símbolos utilizados en cartografía geológica de volcanes (véase anexo 3)
unidades más antiguas hasta la gama del color amarillo para unidades más recientes, como se observa en la figura 6. Los colores para un mismo rango de edad son asignados buscando los mejores contrastes para las diferentes unidades. Si se tiene un número de unidades litoestratigráficas que supere la cantidad de colores propuestos en este estándar, se sugiere buscar más colores de la misma gama asignada a cada edad. De igual forma, de acuerdo con varias pruebas de verificación e impresión realizadas en este trabajo, se recomienda variar la transparencia de los colores de los polígonos (entre 30 y 40%), para lograr una mejor visualización del mapa. Para los litosomas, se sugiere utilizar los tonos más oscuros de cada gama de color.

Servicio Geológico Colombiano

Estándar geográfico para mapas geológicos de volcanes colombianos

37

Pleistoceno Chibaniano

Figura 6. Carta de colores propuesta con sus respectivos RGB, para representación de unidades litoestratigráficas en los mapas geológicos de volcanes colombianos

Los colores sólidos se utilizan para representar unidades litoestratigráficas predominantemente efusivas, y los colores con achurados, superpuestos, para representar unidades litoestratigráficas predominantemente clásticas (depósitos volcanoclásticos y epiclásticos), tal como lo hicieron Lucchi (2013) y Pardo *et al.* (2019). De esta forma, se propone una carta de achurados para representar estas unidades litoestratigráficas (figura 7), que pueden usarse sin importar si el depósito es volcanoclástico o epiclástico. Cada achurado tendrá un color sólido de fondo, siguiendo la metodología de asignación de colores explicada previamente. Se recomienda variar los colores de los tramados de los achurados con el fin de contrastarlos con el color de fondo (figura 8). El *style* que contiene la simbología, los colores y achurados para la representación cartográfica fue elaborado por el Grupo de Geología de Volcanes, y se asocia a la base de datos (en formato .gdb).

Figura 7. Carta de achurados propuesta para la representación de los depósitos volcanoclásticos y depósitos epiclásticos en los mapas geológicos de volcanes en escala 1: 25 000

Estándar geográfico para mapas geológicos de volcanes colombianos

Figura 8. Ejemplo ilustrativo del uso de la carta de colores y de los achurados Cada color representa una formación o miembro del *Mapa geológico del Complejo volcánico Doña Juana*. Fuente: modificado de Pardo *et al.* (2019).

Estilos de anotaciones

9

olcán Cerro Gordo, flanco 3 de julio de 2009 ernardo Pulgarín

Las anotaciones hacen referencia a los textos que describen las características geográficas y geológicas en un mapa geológico; por ejemplo, los nombres de ciudades, pueblos, quebradas, ríos, la nomenclatura vial, el nombre de las fallas geológicas, los acrónimos de las unidades litoestratigráficas, entre otras. La estandarización de esos textos o *labels* garantiza una mejor visualización y claridad del contenido del mapa.

Las anotaciones son almacenadas como capas de anotación en la base de datos; de esta manera, tienen una ubicación geográfica y unos atributos, y pueden estar dentro de un *dataset* de entidades o de capas de entidad independiente. Las anotaciones de la base de datos están indexadas espacialmente, lo que significa que su diagramación y selección es mucho más rápida y eficiente. En los mapas geológicos de volcanes colombianos, las anotaciones suelen ser texto, pero también pueden incluir formas gráficas, como, por ejemplo, cuadros o flechas, que requieren otro tipo de simbología (Esri, 2016) (figura 9). Cada entidad de anotación tiene unas características que la definen, tales como fuente, tamaño, color y cualquier otra propiedad de símbolo de texto. Así, estas son algunas de las propiedades editables de una anotación:

- 🛆 Desplazamiento de las coordenadas X y Y.
- 🛆 Alineación horizontal y vertical.
- \triangle Inversión del ángulo.
- Texto, incluyendo fuente, tamaño, color, espaciado entre caracteres, ancho de caracteres y símbolo de fondo.
- A Formato de texto: negrita, cursiva y subrayado.
- 🛆 Propiedad de dirección del texto.

			Propiedades									
Objeto	Atributo	Ejemplo	Evonto	Tamaño		Color						
			1 dente	(Points)	Italic	Underline	Bold	R	G	В		
Rasgo_Geomorfologico_ LN_Anot	Orden cronológico de estructuras de colapsos	6	Arial Narrow	7,00			x	4	73	144		
Rasgo_Geomorfologico_ LN_Anot	Colapso de flanco	(C)	Arial Narrow	7,00			x	4	73	144		
Rasgo_Geomorfologico_ LN_Anot	Colapso de sector	6	Arial Narrow	7,00			x	4	73	144		
Rasgo_Geomorfologico_ LN_Anot	Orden cronológico de domo de lava	$= \bigcup_{i=1}^{ i } = \overline{di_n}$	Arial Narrow	7,00			x	4	73	144		

Figura 9. Estilos de anotaciones utilizados en los mapas geológicos de volcanes colombianos

Salida gráfica

olcán Nevado del Huila, tomada desde el S 5 de enero de 2011 bservatorio Vulcanológico y Sismológico de opayán

La cartografía geológica oficial de áreas volcánicas de Colombia se elabora sobre la cartografía base a escala 1:25 000 del IGAC, entidad encargada de elaborar la cartografía oficial del país. De ser necesario, la información faltante en la base cartográfica se puede generar a partir de imágenes satelitales u otro tipo de insumo cartográfico.

Por otro lado, tanto la escala de impresión como la simbología se pueden adaptar a las necesidades de representación del autor o de los autores del mapa. Por ejemplo, a partir de la experiencia obtenida en la última década por el SGC, en los mapas geológicos de áreas volcánicas, principalmente de volcanes compuestos, se han utilizado escalas de impresión de 1:25 000, 1:50 000, 1:100 000 o escalas intermedias, dependiendo de la extensión de los dominios de cada volcán. Esto permite la visualización completa del área cartografiada en un único mapa (p. ej., Pulgarín et al., 2010; Martínez et al., 2014; Pardo et al., 2016 y 2019; Pulgarín et al., 2017). Por ejemplo, en el trabajo del Complejo volcánico Paramillo de Santa Rosa se presentaron tres mapas en escalas de 1:100000, 1:50000 y 1:25000, con el fin de mostrar completamente el área de dominio del volcán (1:100000), el detalle de la zona media (1:50000) y de la zona proximal (1:25 000) respectivamente.

Para la representación de estos mapas se diseñó una plantilla teniendo en cuenta los estándares del SGC, con los respectivos ajustes realizados por el Grupo de Geología de Volcanes y utilizando el *software* ArcGIS (versión 10.X, de ESRI 2018). Se definió una serie de elementos básicos para estandarizar la representación gráfica de las características y los diversos procesos que afectan las estructuras y morfologías volcánicas, incluyendo los procesos tectónicos, erosivos o glaciales que se hayan presentado. Esto permite al usuario comprender e interpretar la historia eruptiva del volcán o del área volcánica y visualizar los posibles eventos de construcción, de destrucción y de inactividad volcánica.

La plantilla de trabajo (figura 10) está dividida en diecisiete marcos de datos (plantilla de mapa) numerados en el siguiente orden: 1) Mapa geológico, 2) Rótulo, 3) Mapa de localización y sistema de referencia, 4) Índice de hojas advacentes, 5) Convenciones geológicas y cartográficas, 6) Referencias, 7) Inconformidades, 8) Litosomas, 9) Unidades litoestratigráficas, 10) Incertidumbre estratigráfica, 11) Edad, 12) Interpretación en términos de unidades eruptivas y de unidades de actividad volcánica, 13) Mapas esquemáticos de la historia eruptiva, o mapas de isolíneas de acuerdo a lo que el autor o los autores del mapa consideren pertinente, 14) Mapa morfoestructural, 15) Diagramas de variabilidad geoquímica, 16) Corte geológico y 17) Mapa de distribución de caídas piroclásticas. Si no se cuenta con la información necesaria para colocar elementos en los espacios 13, 15 y 17, o si se quiere ilustrar información adicional que se crea conveniente, se pueden utilizar estos espacios para tal fin.

Esta plantilla se inspiró en los mapas de las islas Eolias (de Astis *et al.*, 2013b; Lucchi *et al.*, 2013a, 2013b, 2013c, 2013d, 2013e, 2013f), en los cuales se tuvo en cuenta los conceptos unidad litoestratigráfica e inconformidad estratigráfica, de la *Guía estratigráfica internacional*, el concepto litosoma, de Lucchi (2013), y los conceptos unidad de actividad volcánica y unidad eruptiva, de Fisher y Schmincke (1984). Si todos estos conceptos no son utilizados, se recomienda utilizar el modelo simplificado de la plantilla, ilustrado en la figura 11.

A continuación, se presentan las descripciones de los elementos que deben ser configurados en las plantillas de salida gráfica de los mapas. Estos elementos fueron ajustados de acuerdo a la información del mapa del Complejo volcánico Paramillo de Santa Rosa (anexo 2); por lo tanto, y considerando que cada volcán es diferente, es posible ajustar las medidas de los recuadros con el fin de lograr la mejor representación del mapa. Estándar geográfico para mapas geológicos de volcanes colombianos

44

Figura 10. Plantilla completa para la salida gráfica de mapas geológicos de áreas volcánicas de Colombia

Figura 11. Plantilla simplificada para la salida gráfica de mapas geológicos de áreas volcánicas de Colombia

Servicio Geológico Colombiano

10.1. Mapa geológico

El mapa geológico, que ocupa la parte central de la plantilla, contiene los polígonos de las unidades litoestratigráficas y los rasgos estructurales del volcán o complejo volcánico (figura 1 2 y anexo 2). La forma de esta plantilla de mapa puede variar, dependiendo de la posición de elementos tales como el mapa morfoestructural, el mapa de distribución de caídas piroclásticas y los diagramas de variabilidad geoquímica. En el mapa geológico se utiliza la cartografía base oficial del IGAC y un modelo de sombras generado a partir de modelos digitales de elevación. El norte geográfico en los mapas es opcional; en caso de que el autor lo requiera, debe situarlo dentro del marco principal del mapa, y puede utilizar el símbolo que desee.

Figura 12. Ejemplo de salida gráfica en una plantilla para mapa a escala 1:25000 (anexo 2), adaptada al mapa geológico de la zona proximal del Complejo volcánico Paramillo de Santa Rosa Fuente: modificado de Pulgarín et al. (2017).

Servicio Geológico Colombiano

10.2. Rótulo

El rótulo está ubicado en la esquina inferior derecha de la plantilla. En él debe incluirse el logo de la entidad y el título del mapa. De igual forma, se colocan el nombre del autor o los autores del mapa, su afiliación institucional, la escala numérica, la escala gráfica y el año de publicación del mapa, como se indica en la figura 1 3. En la esquina superior derecha del marco principal de la plantilla (figura 14 y anexo 2) se coloca el nombre del mapa, que debe coincidir con el nombre del rótulo (véase la figura 13 y anexo 2). Adicionalmente, en la esquina superior izquierda del marco se ubican los nombres de los departamentos que abarcan el área cartografiada (véase la figura 14).

Figura 13. Configuración del rótulo de la plantilla en el Mapa geológico del Complejo volcánico Paramillo de Santa Rosa, zona proximal, con sus respectivos atributos Fuente: modificado de Pulgarín et al. (2017).

Servicio Geológico Colombiano

Estándar geográfico para mapas geológicos de volcanes colombianos

48

Figura 14. Nombres de los departamentos que abarcan el área cartografiada. Nombre del mapa, que debe coincidir con el nombre que aparece en el rótulo

10.3. Mapa de localización e información de referencia

Este elemento está ubicado justo encima del rótulo. En él se encuentra el mapa de localización, que contiene el mapa político de Colombia dividido por los ejes de origen del sistema de referencia utilizado, con un polígono que delimita el área de estudio. En la información de referencia se incluye la fuente de la base cartográfica (título y fecha), el sistema de referencia utilizado en el mapa (*datum*, origen, sistema de proyección geográfica, coordenadas geográficas y planas del origen) y la referencia del modelo digital de elevación empleado (figura 15 y anexo 2).

Figura 15. Ejemplo de representación del mapa de localización, sistema de referencia y hojas adyacentes en el *Mapa geológico del Complejo volcánico Paramillo de Santa Rosa*, con sus respectivos atributos Fuente: modificado de Pulgarín *et al.* (2017).

10.4. Índice de hojas adyacentes

El índice de hojas adyacentes está ubicado al lado derecho del mapa de localización, y está conformado por dos recuadros: el primero contiene el esquema de los departamentos, en donde se ubica el área de estudio; y el segundo ilustra el índice de las planchas topográficas a escala 1:25000, que enmarcan el área de trabajo (véanse la figura 15 y anexo 2).

10.5. Convenciones geológicas y cartográficas

En las convenciones geológicas y cartográficas se describe la simbología utilizada en el mapa, siguiendo los lineamientos propuestos en el catálogo de símbolos (figura 16 y anexo 3). Las convenciones pueden ser separadas en categorías como: estructuras volcánicas, rasgos estructurales, base cartográfica y otros rasgos. Frente a cada símbolo se debe escribir el nombre correspondiente, para lo que se recomienda dejar un espacio entre el símbolo y la descripción, y un espacio vertical entre los símbolos. Este espaciamiento puede variar dependiendo de la cantidad de símbolos que hayan sido utilizados en el mapa (véase anexo 2).

10.6. Referencias

En la plantilla hay un espacio utilizado para la lista de las referencias bibliográficas citadas en la leyenda del mapa (figura 1 7 y anexo 2). Deben ser citadas de acuerdo con el *Manual de estilo del Servicio Geológico Colombiano* (Escallón y Hernández, 2021). Se recomienda enumerar las referencias para que luego se puedan citar de forma abreviada en el resto del mapa; por ejemplo, en la columna Edad se citan las fuentes bibliográficas de las cuales se tomaron dataciones radiométricas.

Figura 16. Ejemplo de representación de las convenciones geológicas y cartográficas en el *Mapa geológico del Complejo volcánico Paramillo de Santa Rosa*, con sus respectivos atributos Fuente: modificado de Pulgarín *et al.* (2017).

Estándar geográfico para mapas geológicos de volcanes colombianos

51

-	(146 g cm 56
cB	
- 1,4	T Referencias
8 cm	 Cano, M. C., Cortés, G. P., López, C. E., & Méndez, R. A. (2015). Relación geoarqueológica en depósitos de caída piroclástica del volcán Cerro Machin en el sector de Chagualá, Calarcá (Quindio - Colombia). En J. C. Rubin, C. M. Favier, & R. T. da Silva (Orgs.), <i>Geoarqueologia na América</i> do Sul (pp. 221–264). Goiánia: Ed. da PUC Goiás. — Arial Narrow, 7,50
	2: Cano, M. C., López, C. E., & Méndez, R. A. (2013). Geoarqueología en ambientes volcánicos: impactos ambientales y evidencias culturales en el Cauca Medio (centro occidente de Colombia). En J. Rubin, & R. da Silva (Orgs.), <i>Geoarqueología</i> (pp. 227–268). Goiânia: Ed. da PUC Goiás.
	3. Egeo. (1984). Inventario básico de las cenizas volcánicas cuaternarias en la zona Sur-oriental del Risaralda y recomendaciones para la evaluación de los riesgos sísmico y volcánico. Medellín: Carder, Egeo.
	4. Flórez, A. (1992). Los nevados de Colombia: glaciales y glaciaciones. Análisis Geográficos, 22, 1-95.
	5. GómezCruz, A., Moreno-Sánchez, M., & Pardo-Trujillo, A. (1995). Edad y Origen del "Complejo Metasedimentario Aranzazu Manizales" en los i lalrededores de Manizales (Departamento de Caldas, Colombia) <i>Geología Colombiana</i> , 19, 83-93. Recuperado de https://revistas.unal.edu.co/index.php/geocol/article/view/
	6. González, H. (2001). Geología de las planchas 206 Manizales y 225 Nevado del Ruíz. Memoria explicativa. Bogotá: Ingeominas.
	7. González, H. (1993). Mapa geológico del departamento de Caldas. Geología y recursos minerales. Escala 1:250 000. Memoria explicativa. Medellín: Ingeominas.
	A Hooghiemstra, H., & Cleef, A. M. (1995). Pleistocene climatic change and environmental and generic dynamics in the North Andean montane forest and paramo. En S. P. Churchill, H. Balslev, E. Forero, & J. L. Luteyn (Eds.), <i>Biodiversity and conservation of neotropical montane forests</i> (pp. 135–49). New York: The New York Botanical Garden.
	9. JAXA-METI (2017). Conjunto de datos: © JAXA / METI ALOS PALSAR L1.5 . Recuperado de: https://www.asf.alaska.edu.
	10. Lalinde, C. P. (2004). Evidencias paleosísmicas en la región Pereira-Armenia, Colombia (Tesis de Maestría). Recuperado de http://hdl.handle.net/10784/2648
	11. Martínez, L. M., Valencia, L. G., Ceballos, J. A., Narváez, B. L., Pulgarín, B. A., Correa, A. M., Pardo, N. (2014). Geología y estratigrafia del Complejo Volcánico Nevado del Ruiz. Bogotá, Manizalez, Popayán: Servicio Geológico Colombiano.
	12. McCourt, W. J., Aspden, J. A., & Brook, M. (1984). New geological and geochronological data from the Colombian Andes: continental growth by multiple accretion. <i>Journal of the Geological Society</i> , 141(5), 831–845. doi:10.1144/gsjgs.141.5.0831
	13. Méndez, R. A., Cortés, G. P., & Cepeda, H. (2002). Evaluación de la amenaza volcánica potencial del Cerro Machin (departamento del Tolima, Colombia). Manizales: Ingeominas.
	14. Neuwerth, R. (2009). Lithostratigraphical and tectono-sedimentary study of the Plio-Pleistocene infill of the Interandean North Cauca Valley Basin (Colombia) (Tesis de doctorado). doi:10.13097/archive-ouverte/unige:18948
	15. Pulgarín, B., Tamayo, M., Valencia, L. G., Ceballos, J. A., Correa-Tamayo, A. M., Cruz, Y. P., & Méndez, R. (2017). Geología y estratigrafía del Complejo Volcánico Paramillo de Santa Rosa. Bogotá, Popayán, Manizales: Servicio Geológico Colombiano.
	16. Restrepo, J. J., & Toussaint, J. F. (1976). Edades radiométricas de algunas rocas de Antioquia, Colombia. Publicación Especial Geológica Universidad Nacional de Colombia, 6, 1-18.
	17. Suter, F. (2008). Tectono-sedimentary study of the Interanden north Cauca Valley Basin, central western Colombia (Tesis de doctorado). doi: 10.13097/archive-ouverte/unige:2281
	18. Thouret, JC., Van Der Hammen, T., Salomons, B., & Juvigné, E. (1997). Late quaternary glacial stades in the Cordillera Central, Colombia, based on glacial geomorphology, tephra-soil stratigraphy, palynology, and radiocarbon dating. <i>Journal of Quaternary Science</i> , 12(5), 347–369.
	19. Thouret, J. C. (1988). La Cordillère centrale des Andes de Colombie et ses bordures: morphologenèse plio-quaternaire et dynamique actuelle et récente d'une Cordillère Volcanique englacée (Tesis de doctorado). Université Joseph Fourier, Grenoble.
	20. Thouret, J. C., & Van der Hammen, T. (1981). Una secuencia holocénica y tardiglacial en la Cordillera Central de Colombia. Aspectos geomorfológicos, pedológicos, palinológicos y paleo-ecológicos en el área del Parque Nacional de los Nevados (Tolima, Risaralda). Revista CIAF, l6(1–3), 609–634.
	21. Toro, G. (2006). Tephrochronologie de la Colombie centrale (Département d'Antioquia et abanico de Pereira): une approche stratigraphique , géochimique, minéralogique et géochronologique (par 14C et traces de fission) (Tesis de doctorado). Recuperado de https://tel.archives- ouvertes.fr/tel-00710305/
	22. Toro, G., & Hermelin, M. (1991). Proyecto tefraestratigrafia colombiana. Il Etapa: "Tefraestratigrafia de Departamento de Risaralda" Medellin: Universidad Eafit.
	23. Van der Hammen, T. (1960). Estratigrafia del Terciario y Maestrichtiano continentales y tectonogénesis de los Andes Colombianos. Bogotá: Servicio Geológico Nacional.
120	2 on 25 on) 16 on x 21

Figura 17. Ejemplo de presentación de las referencias en el Mapa geológico del Complejo volcánico Paramillo de Santa Rosa, con sus respectivos atributos

Fuente: modificado de Pulgarín et al. (2017).

10.7. Inconformidades

En este marco se muestra la jerarquía de las inconformidades estratigráficas identificadas a lo largo de la sucesión estratigráfica. Cada inconformidad se representa con una barra horizontal (línea), de acuerdo con el encabezado de la plantilla. En el extremo izquierdo de esta barra se dibuja una circunferencia que contendrá el acrónimo de la respectiva inconformidad. A cada orden jerárquico se le asigna un color diferente: a las inconformidades de primer orden se les asigna el color azul; a las inconformidades de segundo orden, el color rojo; y a las de tercer orden, el color verde (figura 18 y anexo 2). Las descripciones de cada inconformidad son presentadas en la columna de las unidades litoestratigráficas, conservando el color asignado a la línea de cada inconformidad (véanse el numeral 11.9, la figura 18 y anexo 2).

10.8. Litosomas

En la columna de litosomas se representa la interdigitación y superposición de los distintos litosomas. Cada polígono representa un litosoma que, a la derecha, tiene asociadas sus respectivas unidades litoestratigráficas (véanse la figura 1 8 y anexo 2). Los litosomas se sitúan según su edad, desde el más antiguo, en la base, hasta el más joven, en el extremo superior. El usuario debe elegir, de la carta de colores descrita en el capítulo Catálogo de símbolos (véase figura 6), el color que se aplicará a cada litosoma, teniendo en cuenta lo descrito en la sección de Carta de colores y achurados.

En esta columna también se representan los litosomas externos. Por ejemplo, en el *Mapa geológico del Complejo volcánico Paramillo Santa Rosa*, el litosoma externo Al-Ar fue representado con una forma triangular cuyo ápice hacia la derecha indica la dirección del pinchamiento de sus depósitos con respecto al litosoma volcán Paramillo de Santa Rosa (véase anexo 2).

Cuando la relación entre el polígono del litosoma y la descripción de las unidades litoestratigráficas no es clara, se recomienda enlazar con una flecha de color negro las unidades litoestratigráficas con su respectivo litosoma, para clarificar la correspondencia entre ambos. Finalmente, las líneas horizontales trazadas en la columna de inconformidades atraviesan la columna de litosomas solo si separan litosomas o si corresponden a inconformidades de primer orden (véase el anexo 2).

10.9. Unidades litoestratigráficas

La columna de las unidades litoestratigráficas se ubica al lado derecho de la columna de los litosomas para guardar la relación entre éstos y sus respectivas unidades. Estas unidades son representadas como polígonos de cuatro lados, dentro de los cuales se coloca su respectivo acrónimo y, de ser necesario, se trazan subdivisiones (líneas que pueden ser horizontales paralelas, interdigitadas o diagonales) para representar las relaciones entre los miembros o las variaciones litofaciales de la unidad (véase la figura 1 8 y anexo 2). El acrónimo asignado a cada unidad se genera a partir de dos o tres letras que hagan referencia al nombre de la unidad.

El usuario debe tener en cuenta que los colores y los tramados de los polígonos de las unidades litoestratigráficas que aparecen en la leyenda deben corresponder a los utilizados en la representación de las diferentes unidades litoestratigráficas en el mapa, y que deben ser escogidos de acuerdo con las recomendaciones dadas en la sección Carta de colores y achurados.

Las unidades litoestratigráficas se ubican en orden cronológico descendente, desde la más antigua, en la base, a la más joven, en la parte superior. Frente a cada unidad litoestratigráfica se coloca su descripción litológica, siguiendo lo sugerido en el anexo 1. El formato de letra de estas descripciones puede variar, con el fin de lograr una mejor distribución de la leyenda. Se recomienda utilizar la fuente Arial o Arial Narrow y un tamaño de letra mayor o igual a 6,5 puntos, con el fin de lograr que el texto sea legible.

En este marco también se caracterizan las inconformidades estratigráficas dentro de un rectángulo de extremos puntiagudos, del ancho de la columna, respetando las recomendaciones de color de cada inconformidad (véanse el numeral 11.7, la figura 18 y anexo 2).

10.10. Incertidumbre estratigráfica, intervalo de depositación

En la columna de incertidumbre estratigráfica e intervalo de depositación se representa el intervalo temporal de depositación de una unidad y la posición estratigráfica aproximada, cuando esta no se conozca con certeza, sea por la ausencia de dataciones radiométricas o porque los contactos estratigráficos con otras unidades no pudieron ser definidos en campo. El intervalo de depositación se representa con una línea vertical terminada en sus extremos con una línea pequeña horizontal (cotas paralelas), de color gris (p. ej., Branca *et al.*, 2011); y el rango de incertidumbre de la posición estratigráfica se representa con una flecha de color azul, que puede tener doble punta o terminar con un signo de interrogación, para reforzar la incertidumbre de la posición estratigráfica (véase la figura 1 8 y anexo 2). Cada unidad litoestratigráfica que presenta tal incertidumbre se relaciona con su correspondiente flecha mediante una línea horizontal discontinua que termina con un punto sobre la flecha (véase la figura 1 8 y anexo 2). Cuando dos o más unidades tienen la misma incertidumbre, se utilizan varias líneas discontinuas que relacionan las diferentes unidades litoestratigráficas a la misma flecha.

		1 cm										
-1 cm-	Inconformidades Primer Segundo Tercer		Litosomas	Unidades litoestratigráficas		Incertidumbre estratigráfica Intervalo de depositación			Interpretación en términos de unidades eruptivas y de actividad volcánica			
	Aria	I Narrow, 7,	0, Bold	PVTSC 0,14 m	Prevaled in Detector Detect						pr: 10 330 ± 65 yrs BP (21) 13 150 ± 30 yrs BP (21) 13 150 ± 310 yrs BP (21) 14 135 ± 135 yrs BP (21) 19 710 ± 300 yrs BP (10) 22 812 ± 84 yrs BP (15) 30 710 ± 1220 yrs BP (15) 30 710 ± 1220 yrs BP (15) 17 23 ± 222 yrs BP (15) 17 23 ± 222 yrs BP (15) 40 831 ± 615 yrs BP (15) 41 41 ± - 290 wr BP (15)	pr: Depoters de cales precisiense productes excludat vicinas auguns, problemente engeloses de otras estructures vicinitas perseneciar a la PVI SC (1). — Arial Narrow, 6,50
		(P ₂)=	0,35 mm		Terminate examples areaupted present per sent per anno metales con import per		BCB (0.160 200)	KUB (0, 109, 200)			bж 31 937 ± 218 учз ВР (15)	Época 2.3 de Cepésiles de CDPs concentradas en la zona priori y que se se transformano a facies de lahar en la z distal principalmente en las cuencas de los Campoalegrite y Campoalegre.
	,	rial Narrow,	10,00, Bold	↓ de Santa Rosa (VPSR)	Cost mill Cost mill	R	GB (1 0,21	56, 15	56,15	© 0.15 mm		Net Depictes de Agé de accentes hyperconnentes de los des que relevan auroral média de los de Olio y Campole participante de los de Campoles de los de debies del Pengecal.
		Aria	Narrow, 6,0	Volcán Paramillo	Undel La Création Under La Cré						07: 60-28 ka (18) 45-35 ka (4)	Época 2.3 er: Depósitos glacianes y fluvioglacianes asociados d'intrincis periglaciar durante el máximo avance glacia la última glaciación. Son descritos con base a fotointerpretación.
	Color F	GB (38, 115	0,28	nm	Incommunda enting/info adhitia pro clappos del fantos VI, integretata con tasse en apladotto da las funcacionas os you Formación Senta Roza Entra unidas esta constituita por desposita videnciciations secundantes, que ellevan entidades de entencicando, no estave anter da la poste da fanto Roza da Esta Ela porten esta despositarias elabera ales partes de entencicando, no maiser internación de las estas da esta Esta Esta Desposita, tenta despositarias el anter esta al poste esta entencia de poste de las estas da esta de esta de las porten estas despositarias y a defendentemente el aplacente maiser entencia esta de las estas de las estas de las de las partes estas despositarias y a defendentemente el aplacente maiser entente estas despositarias, con tamatos tadas givis partes intel silvan media astendarias en una teras con vasatos de las moltos de las de las de estas secuelados costans de explanta de morto tamatos, tamate estas estas de las de las de las de las delas de estas de las despositarias, con tamatos tadas givis partes estas de las delas de las delas de las delas delas delas delas delas de las delas delas delas de las delas de	Aria	d Nari GB (1 0,21	row 6, 0,169, 1 mm	, Italic ,230)	, Bol	d <u>→ </u> #* >40 000 yrs B ^o (22)	Rozusch Problematik De Depótiska de la de excentros contina- principalmente en la cuenca del r/o San Eugenio.
		0.35 mm			Formation Companyabiger Corpus the display goursemously rheplane goursemouldance, corr expression back e-BD ne advantation. For advancements of particular advancements and particular advancements and particular advancements a						> 48 395 yrs AP (15) Arial Narrow 6, Italic	Processor Prode-explinition en Depóticio de excendence de escontence La distribu- suplem su origen a partir del calepto gravitacional fanco NW del editico VPSR :
	Arial Narro	v, 6,00, Bold		0,50 mm	Formación Las Águitas Formación Las Águitas en yaite devidar i con relaciona portinal, teporatales, on espector talal de 100 m, direbuidos adelimiente deschi a cina del VRR, con estudana superficia en yaite devidar i con relaciona portinal, teporatales, con intercación laga indicada, demodimiente con estudana monte y disubanter adante a catigna e contra en estudana a monostrativa, con intercación laga indicada, demodimiente con estudana monte y catigna e contra en estudana en el entercación estas formanes y disubanter de las encentences a demodificación estudanas en el entercación estas formanes y disubanter de las encentences a demodificación estudanas en el entercación estas encentences a demodificación estas encentences a entercación estas estas estas estas encentences a demodificación estas						Ак 260,3 ± 5,7 ka (15)	Época eruptiva 2.2 Jar: Conjunto de depósitos de flujos de lava distribu radialmente desde la cima del edificio VPSR.

Figura 18. Ejemplo de representación de inconformidades, litosomas, unidades litoestratigráficas, incertidumbre estratigráfica, intervalo de depositación, edad e interpretación en términos de unidades eruptivas y de unidades de actividad volcánica en el *Mapa geológico del Complejo volcánico Paramillo de Santa Rosa*, con sus respectivos atributos Fuente: modificado de Pulgarín *et al.* (2017).

10.11. Edad

Por otro lado, cuando se dispone de datos geocronológicos (por las técnicas ¹⁴C, ⁴⁰Ar/³⁹Ar, K/Ar, entre otras) de las unidades litoestratigráficas, ellos se anotan en la columna Edad y son relacionados con la unidad litoestratigráfica a la que corresponden, a partir del acrónimo de esa unidad. Los datos geocronológicos tomados de otros trabajos se deben citar conforme a la numeración establecida en la sección de referencias bibliográficas del mapa (véase la figura 17 y anexo 2), colocando entre paréntesis el respectivo número asignado a dichos trabajos en las referencias.

10.12. Interpretación en términos de unidades eruptivas y de unidades de actividad volcánica

En la columna designada para la interpretación, se presenta la interpretación de las unidades litoestratigráficas en términos de unidades eruptivas (flujo de lava, corrientes de densidad piroclástica, caídas piroclásticas, avalanchas de escombros, entre otras) y de unidades de actividad volcánica (período, época, pulso, fase y erupción) de acuerdo con las definiciones de Fisher y Schmincke (1984). Esto con el fin de presentar una interpretación del comportamiento y de la historia eruptiva del área volcánica estudiada, lo cual es fundamental para realizar la posterior evaluación de la amenaza volcánica de los volcanes activos (véase la figura 18 y anexo 2).

10.13. Mapas esquemáticos de la historia eruptiva

De manera complementaria, en el marco de los mapas esquemáticos de la historia eruptiva, se representa gráficamente la evolución del volcán o del complejo volcánico, empezando desde las etapas más antiguas, en la parte inferior izquierda, hasta las más recientes, en la parte superior; y mostrando la aparición de las diferentes unidades estratigráficas (unidades litoestratigráficas o litosomas) generadas a lo largo de los intervalos de tiempo identificados (unidades de actividad volcánica), teniendo en cuenta los procesos de construcción, de destrucción y de erosión de la estructura o de las estructuras volcánicas (figura 1 9 y anexo 2).

En estos mapas esquemáticos de la historia eruptiva se expone como referencia el contorno del área cartografiada total en color gris, mientras que la información que representa la historia eruptiva se irá completando a medida que aparecen las diferentes unidades litoestratigráficas (véanse la figura 19 y el anexo 2). Se sugiere resaltar en cada recuadro de los mapas, la unidad o las unidades nuevas que aparezcan, con un contorno de color negro más grueso que el de las demás que las precedieron. De igual forma, cuando los polígonos de la geología se solapen con el nombre de las épocas o con la escala gráfica, se puede poner una máscara detrás del nombre para resaltarlo.

El espacio de estos recuadros fue considerado con el fin de facilitar al usuario la visualización gráfica y esquemática secuencial de la evolución geológica relacionada con la historia eruptiva del volcán o área de estudio. Finalmente, de ser necesario, el autor o los autores tienen la libertad de utilizar este espacio para representar mapas de isolíneas (isópacas o isopletas) u otros elementos que consideren relevantes.

Figura 19. Ejemplo de la representación de mapas esquemáticos de la historia eruptiva En este caso se ilustra el esquema de la época eruptiva 2.4 del *Mapa geológico del Complejo volcánico Paramillo de Santa Rosa.* En el recuadro de la izquierda aparecen las nuevas formaciones Valle Largo (vl) y Otún (ot), y en el recuadro de la derecha, la Formación Alsasia-Arenero Superior (al-ar_s). Fuente: modificado de Pulgarín *et al.* (2017).

10.14. Mapa morfoestructural

En el espacio correspondiente al mapa geológico se incluye un espacio de menor tamaño para situar el mapa morfoestructural general. En él se representan los rasgos estructurales, las geoformas y el orden cronológico (si está disponible) de las estructuras volcánicas, tales como domos o cicatrices de colapsos (caldéricos, de sector o de flanco), así como las direcciones de los flujos de lava y de los flujos volcanoclásticos (figura 20 y anexo 2). Las dimensiones de este mapa pueden variar dependiendo de lo requerido por el autor o los autores del mapa. Los símbolos empleados en este mapa están incluidos en el catálogo de símbolos, y se relacionan en el aparte de las convenciones geológicas y cartográficas (véase la figura 16 y anexo 2).

10.15. Diagramas de variabilidad geoquímica

Los diagramas de variabilidad geoquímica incluyen diferentes gráficos geoquímicos, tales como el diagrama TAS, los diagramas tipo Harker, los diagramas de *REE*, los diagramas multielementales, entre otros, que ilustran la variabilidad composicional a lo largo de la evolución magmática reflejada en los litosomas o en las unidades litoestratigráficas (figura 21 y anexo 2). Las dimensiones de este marco pueden variar según lo que el autor o los autores deseen mostrar.

10.16. Corte geológico

En la plantilla se incluye el esquema del corte geológico trazado sobre el mapa. Su dirección se muestra en el croquis (área total cartografiada) ubicado en la

esquina superior izquierda del corte. Se debe tener en cuenta que las unidades litoestratigráficas coincidan con las unidades del mapa geológico, manteniendo los colores y los achurados definidos en el mapa (figura 22 y anexo 2); además en el corte se puede adicionar, de una manera generalizada, unas líneas que indiquen la diposición aparente de las posibles de los distintos tipos de depósito (flujos de lavas, piroclásticos y epiclásticos). De ser posible, hay que representar los litosomas reconocidos y, por tanto, las fuentes eruptivas identificadas. La simbología y la escala del corte se sitúan en el costado derecho del recuadro (véase la figura 22 y anexo 2). Los símbolos empleados en este corte están relacionados en el aparte de las convenciones geológicas y cartográficas (véase la figura 16 y anexo 2).

Figura 20. Ejemplo de presentación del mapa morfoestructural en el Mapa geológico del Complejo volcánico Paramillo de Santa Rosa Fuente: modificado de Pulgarín et al. (2017).

Servicio Geológico Colombiano

Estándar geográfico para mapas geológicos de volcanes colombianos

57

Figura 21. Ejemplo de diagramas que muestran la variabilidad geoquímica de tres unidades litoestratigráficas (lávicas) del Complejo volcánico Paramillo de Santa Rosa

Fuente: modificado de Pulgarín et al. (2017).

Figura 22. Ejemplo de representación del corte geológico en el mapa del Complejo volcánico Paramillo de Santa Rosa, con sus atributos. En el anexo 2 se puede consultar la figura con mayor detalle. Fuente: modificado de Pulgarín *et al.* (2017).

10.17. Mapa de unidades litoestratigráficas de caídas piroclásticas

En la plantilla de salida gráfica se puede incluir un mapa en el que se represente la distribución aproximada de las unidades litoestratigráficas conformadas por caídas piroclásticas del volcán en estudio, así como las de los litosomas externos. Es preferible presentar por separado los polígonos que representan el área de distribución de las caídas piroclásticas, debido a que estos depósitos suelen cubrir gran parte del área de estudio y, por lo tanto, se superponen a la mayoría de los polígonos de las otras unidades litoestratigráficas mostradas en el mapa. Las dimensiones de este mapa de distribución de caídas pueden variar, dependiendo de lo que el autor o los autores quieran mostrar. Se sugiere utilizar el modelo de sombras como base para este mapa (figura 23 y anexo 2).

Servicio Geológico Colombiano

Estándar geográfico para mapas geológicos de volcanes colombianos

58

Figura 23. Ejemplo de representación del mapa de unidades litoestratigráficas de caídas piroclásticas en el área del Complejo volcánico Paramillo de Santa Rosa (CVPSR)

VNR: volcán Nevado del Ruiz; VNSI: volcán Nevado de Santa Isabel; VPQ: volcán Paramillo del Quindío; VNT: volcán Nevado del Tolima. Fuente: modificado de Pulgarín *et al.* (2017).

Agradecimientos

Este estudio fue financiado por el Gobierno colombiano por intermedio del Servicio Geológico Colombiano (SGC) entre los años 2017 y 2020. Durante la fase inicial del proyecto se contó con el apoyo y la participación de Natalia Pardo, Gerónimo Valencia, Julián Ceballos, Valentina Betancourt, Julián Mejía y Yaneth Montaña, quienes hicieron significativas contribuciones al planteamiento y desarrollo inicial del proyecto.

Queremos agradecer, además, por sus sugerencias y comentarios, a los colegas del SGC Henry Carvajal, Armando Espinosa e Iván Ortiz, de la sede Bogotá; a María Luisa Monsalve, Gloria Patricia Cortés, Lilly Martínez, Ricardo Méndez y Harold Ávila, del Observatorio Vulcanológico y Sismológico (OVS) de Manizales; a Paola Narváez, Carlos Laverde y Carlos Muñoz, del OVS de Pasto; a Laura Estefanía Castellanos, John Galarza, Óscar Manzo, José Gómez y Adrián Sotelo, del OVS de Popayán; a los integrantes del Grupo de Exploración de Recursos Geotérmicos, del SGC, sede Bogotá; a los colegas y profesores de la Universidad de Caldas, Hugo Murcia y Carlos Borrero; a los colegas Luisa Acosta, Hugo Patiño, Santiago Villamil y Santiago Villota, del Grupo de Geología de Volcanes del SGC, sede Bogotá. A todos ellos les reiteramos nuestro agradecimiento por el tiempo dedicado a la revisión de este documento, así como por sus valiosas recomendaciones y las constructivas discusiones que ayudaron a mejorar este documento.

De igual manera queremos agradecer al Comité Editorial del SGC, por su invaluable labor y acompañamiento durante el proceso de revisión, corrección de estilo, preparación previa a la diagramación y demás actividades relacionadas, lo que permitió el perfeccionamiento de esta publicación.

Referencias

- Acevedo, A. y Cepeda, H. (1982). *El volcán Sotará: geología y geoquímica de elementos mayores*. Publicación geológica especial 10. Ingeominas.
- Acevedo, A. P., Monsalve, M. L. y Cepeda, H. (1987). *Petrografía de algunas lavas de la cadena volcánica de Los Coconucos* (informe interno). Popayán: Ingeominas.
- Acocella, V. (2007). Understanding caldera structure and development: An overview of analogue models compared to natural calderas. *Earth-Science Reviews*, 85(3-4), 125-160. https://doi.org/10.1016/j.earscirev.2007.08.004
- Acocella, V., Palladino, D. M., Cioni, R., Russo, P. y Simei, S. (2012). Caldera structure, amount of collapse, and erupted volumes: The case of Bolsena caldera, Italy. *GSA Bulletin*, *124*(9-10), 1562-1576. https://doi. org/10.1130/B30662.1
- Acuerdo 008 de 2014 [SGC]. Por el cual se define la Política de Gestión de la Información Geocientífica del Servicio Geológico Colombiano. 12 de diciembre de 2014.
- Almeida, M. A. (2016). Mapa geológico del complejo volcánico Cotacachi-Cuicocha [material cartográfico].
 1:25000. Escuela Politécnica Nacional, Instituto Geofísico Nacional.
- Allen, J. R. L. (1982). Sedimentary structures: Their character and physical basis. Vols. I-II Developments in sedimentology 30A-30B. Elsevier. https://doi. org/10.1016/0037-0738(85)90068-5
- Alvarado, G., Acevedo, A. P., Monsalve, M. L., Espíndola, J. M., Gómez, D., Hall, M. L., Naranjo, J., Pulgarín, B., Raigosa, J., Sigarán, C. y van der Laat, R. (1999). El desarrollo de la vulcanología en Latinoamérica en el último cuarto del siglo XX. *Geofísica*, (51), 186-241.
- Alvarado, G. E., Soto, G. J., Schmincke, H.-U., Bolge, L. L. y Sumita, M. (2006). The 1968 andesitic lateral blast eruption at Arenal volcano, Costa Rica. *Journal of Vol*-

canology and Geothermal Research, 157(1-3), 9-33. https://doi.org/10.1016/j.jvolgeores.2006.03.035

- Aoki, Y., Tsunematsu, K. y Yoshimoto, M. (2019). Recent progress of geophysical and geological studies of Mt. Fuji Volcano, Japan. *Earth-Science Reviews*, 194, 264-282. https://doi.org/10.1016/j.earscirev.2019.05.003
- Asch, K. (2005). The 1: 5 million international geological map of Europe and adjacent areas, IGME 5000 [material cartográfico]. 1:5000000. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR).
- Austin Erickson, A., Ort, M. H. y Carrasco Núñez, G. (2011). Rhyolitic phreatomagmatism explored: Tepexitl tuff ring (Eastern Mexican Volcanic Belt). *Journal of Volcanology and Geothermal Research*, 201(1-4), 325-341. https://doi.org/10.1016/j.jvol-geores.2010.09.007
- Avellán, D. R., Macías, J. L., Arce, J. L., Saucedo Girón, R., Garduño Monroy, V. H., Jiménez Haro, A., Sosa Ceballos, G., Cisneros, G., Bernal, J. P., Layer, P. W., García Sánchez, L., Reyes Agustín, G., Rangel, E., Navarrete, J. A. y López Loera, H. (2019). Geology of the late Pleistocene Tres Vírgenes volcanic complex, Baja California Sur (México). *Journal of Maps*, 15(2), 227-237. https://doi.org/10.1080/17445647.2019.1576552
- Báez, W., Arnosio, M., Chiodi, A., Ortiz Yañes, A., Viramonte, J. G., Bustos, E., Giordano, G. y López, J. F. (2015). Estratigrafía y evolución del complejo volcánico Cerro Blanco, Puna Austral, Argentina. *Revista Mexicana de Ciencias Geológicas*, 32(1), 29-49.
- Bailey, R. A. (1989). Geologic map of Long Valley caldera, Mono-Inyo craters volcanic chain, and vicinity, Mono County, California [material cartográfico]. 1:62500. United States Geological Survey, Miscellaneous Investigations Map-1933. https://doi.org/10.3133/ i1933
- Barsch, D. y Liedtke, H. (1980). Principles, scientific value, and practical applicability of the geomorphological map of the Federal Republic of Germany at the scale of 1:25000 (GMK 25) and 1:100000 (GMK 100). Zeitschrift für Geomorphologie. Supplementband Stuttgart, 36, 296-313.

- Bates, R. L. y Jackson, J. A. (eds.). (1984). *Dictionary of geological terms* (3^a ed.). Anchor Books.
- Bellotti, F., Branca, S. y Groppelli, G. (2010). Geological map of Mount Etna West Rift (Italy). *Journal of Maps*, 6(1), 96-122. https://doi.org/10.4113/jom.2010.1115
- Bellucci, F., Lirer, L. y Munno, R. (1999). Geology of Ponza, Ventotene and Santo Stefano Islands (with a 1:15000 scale geological map). Acta Vulcanologica, 11(2),197-222.
- Belousov, A. (1996). Deposits of the 30 March 1956 directed blast at Bezymianni volcano, Kamchatka, Russia. Bulletin of Volcanology, 57(8), 649-662. https://doi.org/10.1007/s004450050118
- Beresford, S. W. y Cole, J. W. (2000). Kaingaroa Ignimbrite, Taupo volcanic zone, New Zealand: Evidence for asymmetric caldera subsidence of the Reporoa Caldera. *New Zeland Journal Geology and Geophysics*, 43(3), 471-481. https://doi.org/10.1080/00288306 .2000.9514903
- Beresford, S. W., Cole, J. W. y Weaver, S. D. (2000). Weak chemical and mineralogical zonation in the Kaingaroa Ignimbrite, Taupo volcanic zone, New Zealand. New Zealand Journal of Geology and Geophysics, 43(4), 639-650. https://doi.org/ 10.1080/00288306.2000.9514914
- Blake, S. (1990). Viscoplastic models of lava domes. En J. H. Fink (ed.), *Lava flows and domes* (pp. 88-126). Springer. https://doi.org/10.1007/978-3-642-74379-5_5
- Bocanegra, L. C. y Sánchez, J. J. (2017). Mapa de fallas de los volcanes Chiles-Cerro Negro (Nariño) a partir de minería de datos y confirmación de campo. *Boletín de Geología*, 39(3), 71-86. https://doi.org/10.18273/ revbol.v39n3-2017005
- Boggs, S. (2006). *Principles of sedimentology and stratigraphy* (4th ed.). Pearson Prentice Hall.
- Boggs Jr., S. y Boggs, S. (2009). *Petrology of sedimentary rocks* (2nd ed.). Cambridge University Press.
- Bonomo, R. y Ricci, V. (2010). Application of unconformity-bounded stratigraphic (UBS) units to the geological survey of the volcanic island Ustica (Italy). En
 G. Groppelli y L. Viereck Goette (eds.), *Stratigraphy* and geology of volcanic areas (pp. 51-61). Special paper 464. The Geological Society of America. https://doi.org/10.1130/2010.2464(03)

- Borrero, C. A. y Castillo, H. (2006). Vulcanitas del S-SE de Colombia: retro-arco alcalino y su posible relación con una ventana astenosférica. *Boletín de Geología*, 28(2), 23-34. https://doi.org/10.18273/revbol
- Borrero, C., Rosero, J. S., Valencia, J. D. y Pardo, A. (2008). La secuencia volcanoclástico de Aranzazu: registro del impacto del volcanismo en un sistema fluvial Neógeno en la parte media de la Cordillera Central, Colombia. *Boletín de Geología*, 30(2), 61-77.
- Borrero, C., Murcia, H., Agustin Flores, J., Arboleda, M. T. y Giraldo, A. M. (2016). Pyroclastic deposits of San Diego maar, central Colombia: an example of a silicic magma-related monogenetic eruption in a hard substrate. En K. Németh, G. Carrasco Núñez, J. J. Aranda Gómez e I. E. M. Smith (eds.), *Monogenetic* volcanism (vol. 446, pp. 361-374). Geological Society of London. https://doi.org/10.1144/SP446.10
- Botero Gómez, L. A., Osorio, P., Murcia, H., Borrero, C. y Grajales, J. A. (2018). Campo volcánico monogenético Villamaría-Termales, Cordillera Central, Andes colombianos (parte I): Características morfológicas y relaciones temporales. *Boletín de Geología*, 40(3), 85-102. https://doi.org/10.18273/revbol.v40n3-2018006
- Boutin, R. M. A. (2008). Los estándares: una necesidad en la producción y manejo de la información geográfica básica. *Revista de Topografía Azimut*, (2), 25-36.
- Branca, S., Coltelli, M. y Groppelli, G. (2011). Geological evolution of a complex basaltic stratovolcano: Mount Etna, Italy. *Italian Journal of Geosciences*, 130(3), 306-317. https://doi.org/10.3301/ijg.2011.13
- Branney, M. J. y Kokelaar, P. (2002). Pyroclastic density currents and the sedimentation of ignimbrites (vol. 27). Memoirs. Geological Society of London.
- Branney, M. y Acocella, V. (2015). Calderas. En H. Sigurdsson (ed.), *The Encyclopedia of Volcanoes* (2nd ed., pp. 299-315). Academic Press. https://doi.org/10.1016/ B978-0-12-385938-9.00016-X
- Brooker, M. R., Houghton, B. F., Wilson, C. J. N. y Gamble, J.
 A. (1993). Pyroclastic phases of a rhyolitic dome-building eruption: Puketarata tuff ring, Taupo volcanic zone, New Zealand. *Bulletin of Volcanology*, 55(6), 395-406. https://doi.org/10.1007/BF00301999
- Bureau of Mineral Resources, Geology and Geophysics (BMRGG). (1989). Symbols used on geological maps. BMRGG.

- Calanchi, N., Tranne, C. A., Lucchini, F., Rossi, P. L. y Villa, I. M. (1999). Explanatory notes to the geological map (1:10000) of Panarea and Basiluzzo Islands (Aeolian arc, Italy). *Acta Vulcanologica*, 11(2), 223-243.
- Calder, E. S., Lavallée, Y., Kendrick, J. E. y Bernstein, M. (2015). Lava dome eruptions. En H. Sigurdsson (ed.), *The Encyclopedia of Volcanoes* (2nd ed., pp. 343-362). Academic Press. https://doi.org/10.1016/B978-0-12-385938-9.00018-3
- Calvache, M. L. (1990). *Geology and volcanology of the recent evolution of Galeras volcano, Colombia* (tesis de maestría). Louisiana State University.
- Calvache, M. L. (1995). *The geological evolution of Galeras volcanic complex* (tesis de doctorado). Arizona State University.
- Calvache, M. L. y Monsalve, M. L. (1982). *Geología, petrología y análisis de xenolitos en el área A (zona de Manizales) del Proyecto Geotérmico en la región del macizo volcánico del Ruiz* (trabajo de grado). Universidad Nacional de Colombia.
- Calvache, M. L. y Cortés, G. P. (1996, agosto). *Estratigrafía del Complejo Volcánico del Galeras*. Memorias VII Congreso Colombiano de Geología, Bogotá, Colombia.
- Calvache, M. L., Cortés, G. P. y Williams, S. N. (1997). Stratigraphy and chronology of the Galeras volcanic complex, Colombia. *Journal of Volcanology and Geothermal Research*, 77(1-4), 5-19. https://doi. org/10.1016/s0377-0273(96)00083-2
- Calvache, M. L., Cortés, G. P., Torres, M. P., Monsalve, M. L. y Cepeda, H. (2003). Geología y estratigrafía del volcán Azufral, Colombia (informe interno). Bogotá: Ingeominas.
- Campbell, C. V. (1967). Lamina, laminaset, bed and bedset. *Sedimentology*, *8*(1), 7-26. https://doi.org/10.1111/j.1365-3091.1967.tb01301.x
- Camus, G., Boivin, P., De Herve, A. D. G., Gourgaud, A., Kieffer, G., Mergoil, J. y Vincent, P. M. (1981). Le Capelinhos (Faïal, Açores) vingt ans après son éruption: le modèle éruptif «surtseyen» et les anneaux de tufs hyaloclastiques. *Bulletin Volcanologique*, 44(1), 31-42. https://doi.org/10.1007/BF02598187
- Carrasco-Núñez, G. (2000). Structure and proximal stratigraphy of Citlaltepetl volcano (Pica de Orizaba), México. En H. Delgado Granados, G. Aguirre Díaz y J. M. Stock (eds.), *Cenozoic tectonics and volcanism of*

Mexico (pp. 247-262). Geological Society of America. https://doi.org/10.1130/0-8137-2334-5.247

- Carrasco Núñez, G. y Ban, M. (1994). Geologic map and structure sections of the summit area of Citlaltépetl volcano, México with summary of the geology of the Citlátepetl volcano summit area [material cartográfico]. 1:40000. Cartas Geológicas y Mineras 9. Universidad Nacional Autónoma de México, Instituto de Geología.
- Carrasco Núñez, G., Hernández, J., De León, L., Dávila, P., Norini, G., Bernal, J. P., Jicha, B., Navarro, M. y López Quiroz, P. (2017). Geologic map of Los Humeros volcanic complex and geothermal field, eastern Trans-Mexican volcanic belt. *Terra Digitalis International E-Journal of Maps*, 1(2), 1-11. https://doi. org/10.22201/igg.terradigitalis.2017.2.24.78
- Carrasco Núñez, G., Ort, M. H. y Romero, C. (2007). Evolution and hydrological conditions of a maar volcano (Atexcac crater, Eastern Mexico). Journal of Volcanology and Geothermal Research, 159(1-3), 179-197. https://doi.org/10.1016/J.JVOLGEORES.2006.07.001
- Carvajal, J. H. (2012). Propuesta de estandarización de la cartografía geomorfológica en Colombia. Servicio Geológico Colombiano.
- Cas, R. A. F. y Wright, J. V. (1987). Volcanic successions, modern and ancient: A geological approach to processes, products, and successions. Allen and Unwin Ltd.
- Cas, R. A. F., Hayman, P., Pittari, A. y Porritt, L. (2008). Some major problems with existing models and terminology associated with kimberlite pipes from a volcanology perspective, and some suggestions. *Journal of Volcanology and Geothermal Research*, 174(1-3), 209-225. https://doi.org/10.1016/j.jvolgeores.2007.12.031
- Castilla, S. C., Pardo, N., Larrea, P., Zuluaga, C. A., Sarmiento, S., Noguera, D. y Sarmiento, G. A. (2019).
 Pre-eruptive conditions and pyroclastic emplacement of the last known vulcanian eruption of Azufral volcano, SW Colombia. *Journal of South American Earth Sciences*, 91, 372-386. https://doi.org/10.1016/j.jsames.2018.08.007
- Cepeda, H. (1985). Anotaciones acerca de la geología del volcán Galeras, Colombia. S. A. Memorias: VI Congreso Latinoamericano de Geología, tomo I, 339-383. Bogotá, Colombia.

- Cepeda, H. (1987). *Vulcanismo moderno en los Andes de Colombia* (informe interno). Medellín: Ingeominas.
- Cepeda, H. (1989). Investigaciones petrológicas en el ámbito de las planchas 429 Pasto y 410 La Unión, con especial énfasis en el complejo volcánico del Galeras. *Boletín Geológico*, 30(1), 48-113. https://doi. org/10.32685/0120-1425/bolgeol30.1.1989.158
- Cepeda, H. (ed.). (2000). Atlas de amenaza volcánica en Colombia. Ingeominas.
- Cepeda H., Acevedo A. P. y Lesmes L. E. (1986a). Características químicas y petrográficas de los volcanes Azufral, Cumbal y Chiles-Cerro Negro (informe interno n.º I-2058). Popayán-Medellín: Ingeominas.
- Cepeda, H., Méndez, R., Murcia, L. A. y Vergara, H. (1986b). Mapa preliminar de riesgos volcánicos potenciales del Nevado del Huila (informe interno n.º I-1981). Popayán: Ingeominas.
- Cepeda, H. y Murcia, L. A. (1988). Mapa preliminar de amenaza volcánica potencial. Nevado del Tolima, Colombia, S.A. *Boletín Geológico*, 29(3), 33-75. https://doi. org/10.32685/0120-1425/bolgeol29.3.1988.242
- Cepeda, H., Murcia, L. A., Monsalve, M. L., Méndez, R. y Núñez, A. (1995). Volcán Cerro Machín, departamento del Tolima, Colombia: pasado, presente y futuro (informe interno). Popayán: Ingeominas.
- Central Hidroeléctrica de Caldas (CHEC). (1983). Investigación geotérmica del macizo del Ruiz, fase II, etapa A. Vol. III. Geovulcanología. Manizales.
- Chang, K. H. (1975). Unconformity-bounded stratigraphic units. *Bulletin of the Geological Society of America*, 86(11), 1544-1552.
- Coe, A. L. (ed.), Argles, A. L., Rothery, D. A. y Spicer, R. A. (2010). *Geological field techniques*. Wiley-Blackwell.
- Cohen, K. M., Finney, S. C., Gibbard, P. L. y Fan, J. X. (2020, updated). The ICS International Chronostratigraphic Chart. *Episodes*, 36(3), 199-204. https:// doi.org/10.18814/epiiugs/2013/v36i3/002
- Cole, P.D. (1991). Migration direction of sand-wave structures in pyroclastic surge deposits: Implications for depositional processes. *Geology*, 19(11), 1108-1111. https:// doi.org/10.1130/0091-7613(1991)019<1108:M-DOSWS>2.3.CO;2
- Cole, P. D., Guest, J. E., Duncan, A. M. y Pacheco, J. M. (2001). Capelinhos 1957-1958, Faial, Azores: Deposits formed by an emergent surtseyan eruption.

Bulletin of Volcanology, 63(2-3), 204-220. https:// doi.org/10.1007/s004450100136

- Cole, J. W., Milner, D. M. y Spinks, K. D. (2005). Calderas and caldera structures: A review. *Earth Science Reviews*, 69(1-2), 1-26. https://doi.org/10.1016/J. EARSCIREV.2004.06.004
- Colley, H. y Ash, R. P. (1971). *The geology of Erromango*. New Hebrides Geological Survey.
- Collinson, J., Mountney, N. y Thompson, D. (2006). Sedimentary structures (3.^a ed.). Terra Publishing.
- Comité Técnico de Normalización de Información Geográfica (CTN28). (2002). https://es.scribd.com/ document/134272442/ICDE-Comite-28-comite-tecnico-de-normalizacion-de-informacion-geografica-CNT-028
- Compton, R. R. (1962). Manual of field geology. *Soil Science*, 93(4), 295. https://doi.org/10.1097/00010694-196204000-00018
- Consejo Nacional de Política Económica y Social (Conpes). (2009). *Consolidación de la Política Nacional de Información Geográfica y la Infraestructura Colombiana de Datos Espaciales (ICDE)* (documento n.º 3585). Bogotá: Conpes.
- Cortés, G. P. y Calvache, M. L. (1996). *Geología de los volcanes Chiles y Cerro Negro* (informe interno). San Juan de Pasto: Ingeominas.
- Cortés, G. y Calvache, M. (1997). Investigación sobre la evolución de los volcanes del sur. Geología del volcán Azufral, primera fase –reconocimiento– (informe interno). San Juan de Pasto: Ingeominas.
- Cortés, G. P. y Calvache, M. L. (2002). Catálogo de unidades litoestratigráficas de Colombia: Formación Los Pastos (Q₁Q₂lp)-Depresión Interandina Cauca-Patía, departamento de Nariño. Ingeominas.
- Cortés, A., Garduño Monroy, V. H., Navarro Ochoa, C., Komorowski, J. C., Saucedo, R., Macías, J. L. y Gavilanes, J. C. (2005). Cartas geológicas y mineras 10. Carta geológica del complejo volcánico de Colima, con geología del complejo volcánico de Colima [material cartográfico]. 1:10000. México D. F.: Universidad Nacional Autónoma de México, Instituto de Geología.
- Correa Tamayo, A. M. (2009). Estudio petrológico, geoquímico y vulcanológico para establecer la evolución magmática del Complejo volcánico Nevado del Huila, Colombia [tesis de doctorado, Universidad Complu-

tense de Madrid]. ProQuest Dissertations Publishing 10172111.

- Correa Tamayo, A. y Cepeda, H. (1995). Informe preliminar sobre la geología del Complejo volcánico Nevado del Huila (informe interno). Popayán: Ingeominas.
- Correa Tamayo, A. y Pulgarín, B. A. (2002). Morfología, estratigrafía y petrografía general del Complejo volcánico Nevado del Huila (CVNH): énfasis en el flanco occidental (informe interno). Popayán: Ingeominas.
- Dasgupta, P. (2003). Sediment gravity flow-the conceptual problems. *Earth-Science Reviews*, 62(3-4), 265-281. https://doi.org/10.1016/S0012-8252(02)00160-5
- Davidson, J. y de Silva, S. (2000). Composite volcanoes. En H. Sigurdsson, (ed.), *Encyclopedia of Volcanoes* (1.^a ed., pp. 663-681). Academic Press.
- De Astis, G., Lucchi, F., Dellino, P., La Volpe, L., Tranne, C. A., Frezzotti, M. L. y Peccerillo, A. (2013a). Geology, volcanic history, and petrology of Vulcano (central Aeolian Archipelago). En F. Lucchi, A. Peccerillo, J. Keller, C. A. Tranne y P. L. Rossi (eds.), *The Aeolian Islands volcanoes* (pp. 281-349). Memoirs 37. Geological Society of London. https://doi.org/10.1144/M37.11
- De Astis, G., Dellino, P., La Volpe, L., Lucchi, F. y Tranne, C. A. (2013b). Geological map of the island of Vulcano (Aeolian Archipelago) [material cartográfico].
 1:10000. En F. Lucchi, A. Peccerillo, J. Keller, C. A. Tranne y P. L. Rossi (ed.), *The Aeolian Islands volcanoes*. Memoirs, 37(1). Geological Society of London.
- De Rita, D., Fabbri, M., Mazzini, I., Paccara, P., Sposato, A. y Trigari, A. (2002). Volcaniclastic sedimentation in coastal environments: The interplay between volcanism and Quaternary sea level changes (central Italy). *Quaternary International*, 95-96, 141-154. https://doi.org/10.1016/S1040-6182(02)00035-6
- De Rita, D., Giordano, G. y Milli, S. (1998). Forestepping-backstepping stacking pattern of volcaniclastic successions: Roccamonfina volcano, Italy. *Journal of Volcanology and Geothermal Research*, 80(1-2), 155-178. https://doi.org/10.1016/S0377-0273(97)00069-3
- De Silva, S. L. y Francis, P. W. (1991). Volcanoes of the Central Andes. Springer-Verlag, Heidelberg. https:// doi.org/10.1017/S0016756800008372
- De Silva, S. y Lindsay, J. M. (2015). Primary volcanic landforms. En H. Sigurdsson (ed.), *The Encyclopedia*

of Volcanoes (2.ª ed., pp. 279-297). Academic Press. https://doi.org/10.1017/S0016756800008372

- Decker, R. W., Decker, B. y Marañon Medina, M. (1993). Montañas de fuego: la naturaleza de los volcanes. Mc-Graw-Hill Interamericana.
- Decreto 2703 de 2013. [Ministerio de Minas y Energía]. Por el cual se establece la estructura interna del Servicio Geológico Colombiano (SGC) y se determinan las funciones de sus dependencias. 22 de noviembre de 2013.
- Di Traglia, F., Cimarelli, C., De Rita, D. y Torrente, D. G. (2009). Changing eruptive styles in basaltic explosive volcanism: Examples from Croscat complex scoria cone, Garrotxa volcanic field (NE Iberian Peninsula). *Journal of Volcanology and Geothermal Research*, *180*(2-4), 89-109. https://doi.org/10.1016/J.JVOLGEORES.2008.10.020
- Donnelly Nolan, J. M. (2010). Geologic map of Medicine Lake volcano, Northern California [material cartográfico]. 1:50000. United States Geological Survey. https://doi.org/10.3133/sim2927
- Dóniz Páez, J. (2015). Volcanic geomorphological classification of the cinder cones of Tenerife (Canary Islands, Spain). *Geomorphology*, 228, 432-447. https://doi.org/10.1016/J.GEOMORPH.2014.10.004
- Dunbar, C. O. y Rodgers, J. (1957). *Principles of stratigraphy*. John Wiley and Sons.
- Duque, J. F., Toro, G. E., Cardona, A. y Calvache, M. L. (2010). Geología, geocronología y geoquímica del volcán Morasurco, Pasto, Colombia. *Boletín de Ciencias de la Tierra*, (27), 25-36.
- Escallón Silva, J. y Hernández, C. (2021). Manual de estilo del Servicio Geológico Colombiano. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585313132
- Easton, M. R. (1987). Stratigraphy of Kilauea volcano. En R. W. Decker, T. L. Wright y P. H. Stauffer (eds.), *Volcanism in Hawaii* (vol. 1, pp. 243-260). Professional Paper 1350. United States Geological Survey.
- Escobar Wolf, R., Matías Gómez, R. O. y Rose, W. I. (2010). Santiaguito Dome geologic map [material cartográfico]. Digital Map and Chart Series 8. Geological Society of America. https://doi.org/10.1130/2010.DMCH008
- ESRI. (2016). ArcGis for desktop, ArcMap. https://desktop.arcgis.com/es/arcmap/10.3/manage-data/annotations/what-is-annotation.htm
- Federal Geographic Data Committee [preparado para el Federal Geographic Data Committee by the

United States Geological Survey]. (FGDC y USGS). (2006). FGDC Digital Cartographic Standard for Geologic Map Symbolization: Reston, VA. (Federal Geographic Data Committee Document Number FG-DC-STD-013-2006).

- Fink, J. H. y Anderson, S. W. (2000). Lava domes and coulees. En H. Sigurdsson (ed.), *Encyclopedia of Volcanoes* (1.^a ed., pp. 307-319). Academic Press.
- Fischer, A. G., Wheeler, H. E. y Mallory, V. S. (1954). Arbitrary cut-off in stratigraphy: Discussion. AAPG Bulletin, 38(5), 926-931. https://doi.org/10.1306/5CEA-DF32-16BB-11D7-8645000102C1865D
- Fisher, R. V. (1961). Proposed classification of volcaniclastic sediments and rocks. *Bulletin of the Geological Society of America*, 72(9), 1409-1414. https://doi.org/10.1130/0016-7606(1961)72[1409:PCOVSA]2.0. CO;2
- Fisher, R. V. (1966). Rocks composed of volcanic fragments. Earth Science Review, 1(4), 287-298. https:// doi.org/10.1016/0012-8252(66)90010-9
- Fisher, R. V. y Schmincke, H.-U. (1984). Pyroclastic rocks. Springer-Verlag. https://doi.org/10.1007/978-3-642-74864-6
- Fisher, R. V., Glicken, H. X. y Hoblitt, R. P. (1987). May 18, 1980, Mount St. Helens deposits in South Coldwater Creek, Washington. *Journal of Geophysical Research, Solid Earth*, 92(B10), 10267-10283. https:// doi.org/10.1029/JB092iB10p10267
- Fisher, R. V. y Smith, G. A. (1991). Volcanism, tectonics and sedimentation. En R. V. Fisher y G. A. Smith (eds.), *Sedimentation in volcanic settings* (pp. 1-5). Society for Sedimentary Geology. https://doi. org/10.2110/pec.91.45.0001
- Flórez, A. (1983). Cadena volcánica de Los Coconucos, cordillera Central, Colombia. *Revista Colombia Geográfica*, 10(2), 33-53.
- Folk, R. L. (1980). *Petrology of sedimentary rocks*. Hemphill Publishing Company.
- Folk, R. L. y Ward, W. C. (1957). Brazos river bar (Texas): A study of the significance of grain size parameters. *Journal of Sedimentary Research*, 27(1) 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
- Forni, F., Lucchi, F., Peccerillo, A., Tranne, C. A., Rossi, P. L. y Frezzotti, M. L. (2013). Stratigraphy and geolog-

ical evolution of the Lipari volcanic complex (central Aeolian archipelago). En F. Lucchi, A. Peccerillo, J. Keller, C. A. Tranne, P. L. Rossi (eds.), *The Aeolian Islands volcanoes* (pp. 213-279). Memoirs 37. Geological Society of London. https://doi.org/10.1144/ M37.10

- Francalanci, L., Lucchi, F., Keller, J., De Astis, G. y Tranne, C. A. (2013). Eruptive, volcano-tectonic, and magmatic history of the Stromboli volcano (north-eastern Aeolian archipelago). En F. Lucchi, A. Peccerillo, J. Keller, C. A. Tranne y P. L. Rossi (eds.), *The Aeolian Islands* volcanoes (pp. 397-471). Memoirs 37. Geological Society of London. https://doi.org/10.1144/M37.13
- Francis, P. (1993). *Volcanoes, a planetary perspective*. Clarendon Press.
- Francis, P. y Oppenheimer, C. (2004). *Volcanoes* (2.^a ed.). Oxford University Press.
- Freundt, A., Wilson, C. F. N. y Carey, S. N. (2000). Ignimbrites and block-and-ash flow deposits. En H. Sigurdsson (ed.), *Encyclopedia of Volcanoes* (1.^a ed., pp. 581-600). Academic Press.
- Frye, C. y Day, J. (2009). The ESRI geologic mapping template. En Workshop Proceedings (ed.), *Digital mapping techniques* (pp. 2010-1335). United States Geological Survey.
- Funiciello, R., De Rita, D. y Sposato, A. (2005). Explanatory notes to the geological map of Italy, scale 1:50000. Sheet 353-Montalto di Castro, sheet 354-Tarquinia. Geological Survey of Italy.
- Funiciello, R. y Giordano, G. (2008). The geological map of Rome: Lithostratigraphy and stratigraphic organization. La geologia di Roma. Dal centro storico alla periferia II. *Mem Desc Carta Geologica d'Italia*, (80), 39-85.
- Funiciello, R. y Giordano, G. (2010). The Colli Albani volcano. En Bulletin of Volcanology, vol. 74. The Geological Society of London. https://doi.org/10.1007/ s00445-012-0608-y
- García, Y. K. y Sánchez, J. J. (2019). Contribuciones geológicas al modelo conceptual geotérmico en la región de los volcanes Chiles-Cerro Negro (Colombia-Ecuador). Boletín de Geología, 41(1), 151-171. https://doi.org/10.18273/revbol.v41n1-2019008
- García Palomo, A., Macías, J. L., Arce, J. L., Capra, L., Garduño, V. H. y Espíndola, J. M. (2002). Geology of

Nevado de Toluca volcano and surroundings areas, Central México. *Geological Society of America, Map and Chart Series MCH089, 26.*

- García Palomo, A. G., Macıas, J. L. y Espındola, J. M. (2004). Strike-slip faults and K-alkaline volcanism at El Chichón volcano, southeastern Mexico. *Journal of Volcanology and Geothermal Research*, 136(3-4), 247-268. https://doi.org/10.1016/j.jvolgeores.2004.04.001
- García Palomo, A., Macías, J. L., Arce, J. L., Mora, J. C., Hughes, S., Saucedo, R., Espíndola, J. M., Escobar, R. y Layer, P. (2006). *Geological evolution of the Tacaná* volcanic complex, México-Guatemala. Special Paper 412. Geological Society of America. https://doi. org/10.1130/2006.2412(03)
- García Sánchez, L., Macías, J. L., Sulpizio, R., Osorio Ocampo, L. S., Pellicioli, C., Pola, A., Avellán, D. R., Cisneros, G., García, F., Ocampo Díaz, Y. Z. E., Lira Beltran, R. M., Saucedo, R., Sánchez Núñez, J. M., Arce, J. L., Corona Chávez, P., Reyes Agustín, G., Cardona, M., Layer, P. W., Benowitz, J., Solari, L. y Groppelli, G. (2019). Geology of La Reforma caldera complex, Baja California, Mexico. *Journal of Maps*, 15(2), 487-498. https://doi.org/10.1080/17445647 .2019.1612287
- García Tenorio, F., Reyes Agustín, G. y López Pizaña, F. (2012). Geology and geochronology of Tlaloc, Telapón, Iztaccíhuatl, and Popocatépetl volcanoes, Sierra Nevada, central Mexico. En *The Southern Cordillera and Beyond*, vol. 25. Geological Society of America. https://doi.org/10.1130/2012.0025(08)
- Gardeweg, M. C., Amigo, A., Matthews, S. J., Sparks, R. S.
 J. y Clavero, J. E. (2011). *Geología del volcán Láscar, región de Antofagasta* [material cartográfico]. 1:50000.
 Carta Geológica de Chile, serie Geología Básica n.º
 131. Servicio Nacional de Geología y Minería.
- Geological Survey of Ethiopia (GSE). (2007). Standards for regional geologic mapping: Procedures and guidelines for work processes (part I). Content and digital attributes for products (part II). GSE.
- Giannandrea, P., La Volpe, L., Principe, C. y Schiattarella, M. (2006). Unconformity-bounded stratigraphic units and evolutionary history of the middle Pleistocene Monte Vulture volcano, southern Apennies, Italy. *Bollettino-Societa Geologica Italiana*, 125(1), 67-92.

- Gilbert, C. M. (1938). Welded tuff in eastern California. *GSA Bulletin*, 49(12_1), 1829-1862. https://doi. org/10.1130/GSAB-49-1829
- Gillespie, M. R. y Styles, M. T. (1999). BGS rock classification scheme. Volume 1: Classification of igneous rocks (2.^a ed.). [Research Report Number RR 99-06]. Nottingham: British Geological Survey Research.
- Gisbert, G., Gimeno, D. y Fernandez Turiel, J. L. (2009). Eruptive mechanisms of the Puig de la Garrinada volcano (Olot, Garrotxa volcanic field, Northeastern Spain): A methodological study based on proximal pyroclastic deposits. *Journal of Volcanology and Geothermal Research*, 180(2-4), 259-276. https://doi.org/10.1016/J.JVOLGEORES.2008.12.018
- Gómez, J. y Montaña, Y. (2016). Estándar cartográfico para mapas geológicos a escalas 1M, 500K, 100K, 50K, 25K y 10K. Publicaciones Especiales vol. 35. Servicio Geológico Colombiano.
- Gómez, J., Montes, N. E., Nivia, A. y Diederix, H. (2015a).
 Mapa geológico de Colombia [material cartográfico].
 1:1 000000. Servicio Geológico Colombiano.
- Gómez, J., Nivia, A. y Montes, N. (2015b). Notas explicativas: Mapa geológico de Colombia y Atlas geológico de Colombia 2015. Servicio Geológico Colombiano.
- Gómez Vasconcelos, M. G. (2018). El volcán Paricutín en el campo volcánico Michoacán-Guanajuato: una revisión. *Ciencia Nicolaita*, (74), 15-30.
- González Ferrán, O. (1995). *Volcanes de Chile*. Instituto Geográfico Militar.
- Goudie, A.S. (2006). Encyclopedia of geomorphology. (2.ª ed.). Routledge. https://doi.org/10.4324/9780203381137
- Gray, H. H. (1955). Thickness of bedding and parting in sedimentary rocks. *GSA Bulletin*, 66(1), 147-148. https://doi.org/10.1130/0016-7606(1955)66[147:-TOBAPI]2.0.CO;2
- Groppelli, G. y Viereck Goette, L. (2010). *Stratigraphy* and geology of volcanic areas. Special paper 464. The Geological Society of America. https://doi. org/10.1130/2010.2464(00)
- Groppelli, G. y Martí, J. (2018). Volcano Geology Commission: Geological maps and their applications. A short overview. En R. A. Corsaro, M. G. Di Giuseppe, R. Isaia, A. Mormone y R. Nave (eds.), *Millenia of stratification between human life and volcanoes: Strategies for coexistence-Cities on volcanoes 10* (p. 497). INGV.

- Groppelli, G., Principe, C. y Sulpizio, R. (2019). Geological data in volcanology: Collection, organisation and applications. *Journal of Volcanology and Geothermal Research*, 385, 1-2. https://doi.org/10.1016/j.jvolgeores.2019.106694
- Grosse, E. (1935). Acerca de la geología del sur de Colombia. Compilación de los estudios geológicos oficiales en Colombia (informe interno n.º 129). Tomo III, 139-231. Ingeominas.
- Grosse, P. y Kervyn, M. (2018). Morphometry of terrestrial shield volcanoes. *Geomorphology* (304), 1-14. https://doi.org/10.1016/j.geomorph.2017.12.017
- Grosse, P., van Wyk de Vries, B., Petrinovic, I. A., Euillades, P. A. y Alvarado, G. E. (2009). Morphometry and evolution of arc volcanoes. *Geology*, *37*(7), 651-654. https://doi.org/10.1130/G25734A.1
- Gutmann, J. T. (1976). Geology of Crater Elegante, Sonora, Mexico. GSA Bulletin, 87(12), 1718-1729. https:// doi.org/10.1130/0016-7606(1976)87<1718:GO-CESM>2.0.CO;2
- Hackett, W. R. (1985). *Geology and petrology of Ruapehu volcano and related vents*. (Ph. D. dissertation). Victoria University of Wellington.
- Hancox, G. T., Keys, H. y Webby, M. G. (2001, august). Assessment and mitigation of dam-break lahar hazards from Mt Ruapehu Crater Lake following the 1995-96 eruptions. En New Zealand Geotechnical Society 2001 Symposium, Christchurch, *Engineering and development in hazardous terrain* (pp. 385-408). Institution of Professional Engineers New Zealand.
- Harrell, J. (1984). A visual comparator for degree of sorting in thin and plane sections. *Journal of Sedimentary Research*, 54(2), 646-650. https://doi.org/10.2110/ jsr.54.646
- Harris, A. J. L. y Rowland, S. K. (2015). Lava flows and rheology. En H. Sigurdsson (ed.), *The Encyclopedia of Volcanoes* (2.^a ed., pp. 321-342). Academic Press. https:// doi.org/10.1016/B978-0-12-385938-9.00017-1
- Hasenaka, T. (1994). Size, distribution, and magma output rate for shield volcanoes of the Michoacán-Guanajuato volcanic field, Central Mexico. Journal of Volcanology and Geothermal Research, 63(1-2), 13-31. https://doi.org/10.1016/0377-0273(94)90016-7
- Hasenaka, T. y Carmichael, I. S. (1985). The cinder cones of Michoacán-Guanajuato, central Mexico: Their

age, volume and distribution, and magma discharge rate. *Journal of Volcanology and Geothermal Research*, 25(1-2), 105-124. https://doi.org/10.1016/0377-0273(85)90007-1

- Hasenaka, T. y Carmichael, I. S. (1987). The cinder cones of Michoacan-Guanajuato, central Mexico: Petrology and chemistry. *Journal of Petrology*, 28(2), 241-269. https://doi.org/10.1093/petrology/28.2.241
- Hastings, J. T., Raines, G. L. y Moyer, L. A. (2007). Proposal for an ArcGeology Version 1 A. base de datos design for digital geologic maps using ArcGIS. En *Digital Mapping Techniques* '07 Workshop Proceedings. USGS. https://doi.org/10.3133/ofr20081385
- Head, J. W. y Wilson, L. (1989). Basaltic pyroclastic eruptions: Influence of gas-release patterns and volume fluxes on fountain structure, and the formation of cinder cones, spatter cones, rootless flows, lava ponds and lava flows. *Journal of Volcanology and Geothermal Research*, 37(3-4), 261-271. https://doi. org/10.1016/0377-0273(89)90083-8
- Herd, D. (1982). Glacial and volcanic geology of the Ruiz-Tolima volcanic complex Cordillera Central, Colombia. Publicaciones Geológicas Especiales 8. Ingeominas.
- Houghton, B. F. y Wilson, C. J. N. (1989). A vesicularity index for pyroclastic deposits. *Bulletin of Volcanology*, 51(6), 451-462. https://doi.org/10.1007/ BF01078811
- Hora, J. M., Singer, B. S. y Worner, G. (2007). Volcano evolution and eruptive flux on the thick crust of the Andean Central volcanic zone: 40Ar/39Ar constraints from volcan Parinacota, Chile. *GSA Bulletin*, 119(3-4), 343-362. https://doi.org/10.1130/b25954.1
- Howe, R. C. (1997). Geologic contacts. Department of Geography, Geology and Anthropology, Indiana State University. *Journal of Geoscience Education*, 45(2), 133-136. https://doi.org/10.5408/1089-9995-45.2.133
- Hradecky, P. (2001). Estudio geológico y reconocimiento de las amenazas geológicas en el volcán Apoyeque, Nicaragua [material cartográfico]. 1:50000. Servicio Geológico Checo, Ineter.
- Infraestructura Colombiana de Datos Espaciales (ICDE). (2001). Documento electrónico. En Boutin, R. M. A. (2008). Los estándares: una necesidad en la producción y manejo de la información geográfica básica. *Revista de Topografía AZIMUT*, (2), 25-36.

- Infraestructura Colombiana de Datos Espaciales (ICDE). (2016). *Guía de catalogación de objetos geográficos.* ICDE.
- Ingram, R. L. (1954). Terminology for the thickness of stratification and parting units in sedimentary rocks. *GSA Bulletin*, 65(9), 937-938. https://doi.org/10.1130/0016-7606(1954)65[937:TFTTOS]2.0. CO:2
- Inman, D. L. (1952). Measures for describing the size distribution of sediments. *Journal of Sedimentary Petrology*, 22(3), 125-145. https://doi.org/10.1306/ D42694DB-2B26-11D7-8648000102C1865D
- Instituto de Investigación Geológico y Energético (IIGE). (2019). Estándares de nomenclatura, estratigrafía, simbolización y abreviaturas para la cartografía geológica (2.0). Quito, Ecuador: Dirección de Transferencia Tecnológica e Incubación, Instituto de Investigación Geológico Energético.
- Ingeominas. (1985). *Mapa preliminar de riesgos volcánicos potenciales del volcán Nevado del Ruiz* (informe interno). Bogotá.
- Ingeominas. (1992a). Mapa geológico del Nevado Santa Isabel [material cartográfico]. 1:50000. En Ingeominas (ed.), Amenaza volcánica potencial del sector occidental del Nevado Santa Isabel-Fase I: Geología-volcanología (informe Interno n.º I-2152). Ibagué: Ingeominas y Corporación Autónoma Regional del Risaralda.
- Ingeominas. (1992b). Amenaza volcánica potencial del sector occidental del Nevado Santa Isabel-Fase I: Geología-volcanología (informe interno n.º I-2152). Ibagué: Ingeominas y Corporación Autónoma Regional del Risaralda.
- Ingeominas. (1992c). Amenaza volcánica potencial del sector oriental del Nevado Santa Isabel (informe Interno n.º I-2160). Ibagué: Ingeominas, Gobernación del Tolima y Comité Regional de Emergencias del Tolima.
- Ingeominas. (1993a). *Mapa preliminar de amenaza volcánica potencial, complejo de domos Santa Isabel, Cordillera Central de Colombia* (informe interno n.º 2162). Ibagué: Ingeominas y Corporación Autónoma de Risaralda.
- Ingeominas. (1993b). Mapa preliminar de amenaza volcánica Nevado de Santa Isabel [material cartográfico]. 1:100000. En Ingeominas (ed.), *Mapa preliminar*

de amenaza volcánica potencial, complejo de domos Santa Isabel, cordillera Central de Colombia (informe interno n.º 2162). Ibagué: Ingeominas y Corporación Autónoma de Risaralda.

- Ingeominas. (1996). *Mapa geológico plancha 364 Timbío* [material cartográfico]. 1:100000. Bogotá.
- Ingeominas y Río Quieto B. V. (1997a). *Exploración básica del parque natural de Los Nevados* (informe interno convenio n.º 72.615). Bogotá.
- Ingeominas y Río Quieto B. V. (1997b). Proyecto parque natural de Los Nevados, geología y morfología volcánica [material cartográfico]. 1:100000. En Ingeominas y Río Quieto B.V., *Exploración básica del parque natural de Los Nevados* (informe interno, Convenio n.º 72.615). Bogotá.
- Ingeominas. (2004). Estándar institucional para cartografía base-propuesta versión 2.0. Bogotá.
- Instituto Colombiano de Normas Técnicas y Certificación (Icontec). (2010a). Norma técnica colombiana 5661: metodología para la catalogación de objetos geográficos.
- Instituto Colombiano de Normas Técnicas y Certificación (Icontec). (2010b). Norma técnica colombiana 5043: conceptos básicos de la calidad de los datos geográficos.
- Instituto Colombiano de Normas Técnicas y Certificación (Icontec). (2010c). Norma técnica colombiana 5662: especificaciones técnicas de productos geográficos.
- Instituto Colombiano de Normas Técnicas y Certificación (Icontec). (2011). Norma técnica colombiana 4611: metadatos geográficos. Define el esquema requerido para describir la información geográfica análoga y digital.
- Instituto Geográfico Agustín Codazzi (IGAC). (2012). *Curso fundamentos de infraestructura de datos espaciales (IDE)*. Centro de Investigación y Desarrollo en Información Geográfica (CIAF), Grupo de Infraestructura de Datos Espaciales y Gestión de la Información Geográfica.
- Instituto Geológico y Minero de España (IGME). (2007). Mapa geológico de España, segunda serie, primera edición, hoja 604 [material cartográfico]. 1:50000.
- Ingeominas. (1979). *Mapa geológico generalizado del departamento del Cauca* [material cartográfico]. 1:350000.

- Instituto Panamericano de Geografía e Historia (IPGH). (1978). *Especificaciones para mapas topográficos*. Panamá.
- International Organization for Standardization (ISO) 19110. (2016). *Geographic information – Methodology for feature cataloguing*. https://www.iso.org/standard/57303.html
- International Organization for Standardization (ISO) 19117. (2012). *Geographic information – Portrayal*. https://www.iso.org/standard/46226.html
- International Organization for Standardization (ISO) 19117. (2011). *Geographic information Portrayal (revision of first edition ISO 19117:2005)*. https://www. iso.org/obp/ui/#iso:std:iso:19117:ed-2:v1
- International Organization for Standardization (ISO) 19131. (2010). *Geographic information – Data product specifications*. https://www.iso.org/standard/36760.html
- International Organization for Standardization (ISO) 710. (1989). Graphical symbols for use on detailed maps, plans and geological cross-sections, Part 5: Representation of minerals.
- International Organization for Standardization (ISO) 710. (1984). Graphical symbols for use on detailed maps, plans and geological cross sections, Part 6: Representation of contact rocks, and rocks which have undergone metasomatic, pneumatolytic or hidrotermal transformation or transformation by weathering. Part 7: Tectonic symbols.
- International Organization for Standardization (ISO) 710. (1982). Graphical symbols for use on detailed maps, plans and geological cross sections, Part 4: Representation of metamorphic rocks.
- International Organization for Standardization (ISO) 710. (1974). Graphical symbols for use on detailed maps, plans and geological cross-sections, Part 1: General rules of representation. Part 2: Representation of sedimentary rocks. Part 3: Representation of magmatic rocks.
- Ishizuka, Y., Nakagawa, M. y Fujiwara, S. (2010). *Geological map of Tokachidake volcano* [material cartográfico]. 1:30000. Geological Survey of Japan.
- Iverson, R. M. (1997). The physics of debris flows. Reviews of Geophysics, 35(3), 245-296. https://doi.org/10.1029/97RG00426

- Iverson, R. M. y Vallance, J. W. (2001). New views of granular mass flows. *Geology*, 29(2), 115-118. https:// doi.org/10.1130/0091-7613(2001)029<0115:N-VOGMF>2.0.CO;2
- Jaramillo, J. M. (1980). Petrology and chemestry of the Nevado del Ruiz volcano, Northern Andes, Colombia (doctoral dissetation). University of Houston.
- Johnson, P. J., Valentine, G. A., Stauffer, P. H., Lowry, C. S., Sonder, I., Pulgarín, B. A., Santacoloma, C. C. y Agudelo, A. (2018). Groundwater drainage from fissures as a source for lahars. *Bulletin of Volcanology*, 80(4), 39. https://doi.org/10.1007/s00445-018-12144
- Jones, A. E. (1943). Classification of lava-surfaces. Eos, Transactions American Geophysical Union, 24(1), 265-268. https://doi.org/10.1029/TR024i001p00265
- Julivert, M. (1968). Lexique stratigraphique international. Amérique Latine, Colombie (première partie) -Précambrien, Paléozoïque, Mésozoïque et intrusions d'âge Mésozoïque-Tertiaire. Centre National de la Recherche Scientifique, 5(4a), 1-651.
- Katsuki, Y., Suzuki, T., Soya, T. y Yoshihisa, Y. (1989). Geological map of Hokkaido-Komagate volcano [material cartográfico]. 1:50000. Geological Survey of Japan.
- Kereszturi, G. y Németh, K. (2012a). Structural and morphometric irregularities of eroded Pliocene scoria cones at the Bakony-Balaton highland volcanic field, Hungary. *Geomorphology*, 136(1), 45-58. https://doi. org/10.1016/J.GEOMORPH.2011.08.005
- Kereszturi, G. y Németh, K. (2012b). Monogenetic basaltic volcanoes: Genetic classification, growth, geomorphology and degradation. En K. Németh (ed.), Updates in volcanology-new advances in understanding volcanic systems (pp. 3-89). IntechOpen. https:// doi.org/10.5772/51387
- Kieffer, S. (1981). Fluid dynamics of the May 18 blast at Mt. St. Helens. En P. W. Lipman y R. R. Mullineaux (eds.), *The 1980 eruption of mount St. Helens, Washington* (pp. 379-400). Professional paper n.º 1250. United States Geological Survey.
- Kokelaar, B. P. y Durant, G. P. (1983). The submarine eruption and erosion of Surtla (Surtsey), Iceland. *Journal of Volcanology and Geothermal Research*, 19(3-4), 239-246. https://doi.org/10.1016/0377-0273(83)90112-9

- Krumbein, W. C. y Sloss, L. L. (1951). Stratigraphy and sedimentation. W. H. Freeman & Company. https:// doi.org/10.1002/gj.3350010110
- Krumbein, W. C. y Sloss, L. L. (1963). Stratigraphy and sedimentation. (2.^a ed.). W. H. Freeman & Company. https://doi.org/10.1107/S0365110X64004170
- Lanzafame, G., Rossi, P. L., Tranne, C. A. y Lanti, E. (1994). Carta geologica dell'isola di Linosa [material cartográfico]. 1:5000. University of Bologna and Istituto Nazionale di Vulcanologia (INGV). Società Elaborazioni Cartografiche (Selca).
- Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. y Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. *Journal of Petrology*, 27(3), 745-750. https://doi.org/10.1093/ petrology/27.3.745
- Le Maitre, R. W. (ed.), Bateman, P., Dudek, A., Keller, J., Lameyre, M., Le Bas, M. J., Sabine, P. A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A. R., Zanettin, B., Bonin, P., Bellieni, G. y Efremova, S. (2002). A classification of igneous rocks and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommision on the Systematics of Igneous Rocks. Cambridge University Press.
- Leonard, G. S., Begg, J. G. y Wilson, C. J. N. (2010). *Geology* of the Rotorua area [material cartográfico]. 1:250000. QMAP, GNS Science 102. Lower Hutt.
- Lescinsky, D. T. (1990). Geology, volcanology, and petrology of Cerro Bravo, a young, dactic, stratovolcano in West-Central Colombia (tesis de maestría). Louisiana State University. https://digitalcommons.lsu.edu/cgi/ viewcontent.cgi?article=9231&context=gradschool_ disstheses
- Ley 1712 de 2014. [Congreso de la República]. Por medio de la cual se crea la Ley de transparencia y del derecho de acceso a la información pública nacional y se dictan otras disposiciones. 6 de marzo de 2014.
- Lipman, P. W. (2000). Calderas. En H. Sigurdsson (ed.), *Encyclopedia of Volcanoes* (1.^a ed., pp. 643-662). Academic Press.
- Lockwood, J. P. y Hazlett, R. W. (2010). *Volcanoes: Global perspectives*. John Wiley & Sons.
- López Castro, S. M. (2009). Estratigrafía, petrología y geoquímica de las rocas volcánicas del flanco occidental

del volcán Puracé, alrededores de Coconuco (tesis de maestría). Universidad Eafit.

- Lorenz, V. (1985). Maars and diatremes of phreatomagmatic origin: A review. *Transactions of the Geological Society of South Africa*, (88), 459-470.
- Lorenz, V. (1986). On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bulletin of Volcanology, 48(5), 265-274. https://doi. org/10.1007/BF01081755
- Lucchi, F. (2009). Late-Quaternary terraced marine deposits as tools for wide-scale correlation of unconformity-bounded units in the volcanic Aeolian archipelago (southern Italy). *Sedimentary Geology*, 216(3-4), 158-178. https://doi.org/10.1016/j.sedgeo.2009.03.003
- Lucchi, F. (2013). Stratigraphic methodology for the geological mapping of volcanic areas: Insights from the Aeolian archipelago (southern Italy). En F. Lucchi, A. Peccerillo, J. Keller, C. A. Tranne y P. L. Rossi (eds.), *The Aeolian Islands volcanoes* (pp. 37-53). Memoirs 37. Geological Society of London. https://doi. org/10.1144/M37.5
- Lucchi, F. (2019). On the use of unconformities in volcanic stratigraphy and mapping: Insights from the Aeolian Islands (southern Italy). *Journal of Volcanology and Geothermal Research*, 38(1). https://doi.org/10.1016/j.jvolgeores.2019.01.014
- Lucchi, F., Tranne, C. A., Rossi, P. L., Gallardo, C., De Astis, G. y Pini, G. A. (2009a). Volcanic and tectonic history of the El Tatio area (central Andes, northern Chile): Explanatory notes to the 1:50000 scale geological map. *GeoActa, Special Publication*, 2, 1-29.
- Lucchi, F., Tranne, C. A., Gallardo, C., Rossi, P. L., Pini, G. A. y De Astis, G. (2009b). Geological map of the El Tatio volcanic area (central Andes-northern Chile) [material cartográfico]. 1:50000. University of Bologne.
- Lucchi, F., Tranne, C. A. y Rossi, P. L. (2010). Stratigraphic approach to geological mapping of the late-Quaternary volcanic island of Lipari (Aeolian archipelago, Southern Italy). En G. Groppelli y L. Viereck Goette (eds.), *Stratigraphy and geology of volcanic areas* (pp. 1-32). Special paper 464. The Geological Society of America. https://doi.org/10.1130/2010.2464(01)
- Lucchi, F., Peccerillo, A., Tranne, C. A., Rossi, P. L., Frezzotti, M. L. y Donati, C. (2013a). Volcanism, calderas

and magmas of the Alicudi composite volcano (Western Aeolian archipelago). En F. Lucchi, A. Peccerillo, J. Keller, C. A. Tranne y P. L. Rossi (eds.), *The Aeolian Islands volcanoes* (pp. 83-111). Memoirs 37. Geological Society of London. https://doi. org/10.1144/M37.7

- Lucchi, F., Santo, A. P., Tranne, C. A., Peccerillo, A. y Keller, J. (2013b). Volcanism, magmatism, volcano-tectonics and sea-level fluctuations in the geological history of Filicudi (Western Aeolian archipelago). En F. Lucchi, A. Peccerillo, J. Keller, C. A. Tranne y P. L. Rossi (eds.), *The Aeolian Islands volcanoes* (pp. 113-153). Memoirs 37. Geological Society of London. https://doi.org/10.1144/M37.8
- Lucchi, F., Tranne, C. A., Forni, F. y Rossi, P. L. (2013c). Geological map of the island of Lipari (Aeolian archipelago) [material cartográfico]. 1:10000. En F. Lucchi, A. Peccerillo, J. Keller, C. A. Tranne y P. L. Rossi (eds.), *The Aeolian Islands volcanoes*. Memoirs 37. Geological Society of London.
- Lucchi, F., Tranne, C. A., Peccerillo, A., Keller, J. y Rossi, P.
 L. (2013d). Geological history of the Panarea volcanic group (Eastern Aeolian archipelago). En F. Lucchi, A. Peccerillo, J. Keller, C. A. Tranne y P. L. Rossi (eds.), *The Aeolian Islands volcanoes* (pp. 351-395). Memoirs 37. Geological Society of London. https://doi.org/10.1144/M37.12
- Lucchi, F., Gertisser, R., Keller, J., Forni, F., De Astis, G. y Tranne, C. A. (2013e). Eruptive history and magmatic evolution of the island of Salina (central Aeolian archipielago). En F. Lucchi, A. Peccerillo, J. Keller, C. A. Tranne y P. L. Rossi (eds.), *The Aeolian Islands volcanoes* (pp. 155-211). Memoirs 37. Geological Society of London. https://doi.org/10.1144/M37.9
- Lucchi, F., Keller, J., De Astis, G., Francalanci, L. y Tranne, C. A. (2013f). Geological map of Stromboli (Aeolian archipelago) [material cartográfico]. 1:10000. En F. Lucchi, A. Peccerillo, J. Keller, C. A. Tranne y P. L. Rossi (eds.), *The Aeolian Islands volcanoes*. Memoirs 37. Geological Society of London.
- Luhr, J. F. y Carmichael, I. S. E. (1990). Geology of volcano de Colima. *Boletín Instituto de Geología* 103, Universidad Nacional Autónoma de México.
- Luhr, J. F. y Simkin, T. (1993). *Parícutin: The volcano born in a Mexican cornfield*. Geoscience Press.

- Macías, J. L. (2005). Geología e historia eruptiva de algunos de los grandes volcanes activos de México. Boletín de la Sociedad Geológica Mexicana, 57(3), 379-424. https://doi.org/10.18268/bsgm2005v57n3a6
- Macías, J. L. y Jiménez Salgado, E. (2013). Estudio de estratigrafía y geología del complejo volcánico Tres Vírgenes, B. C. S. *Geotermia*, 26(1), 14-23.
- Macdonald, G. A. (1953). Pahoehoe, aa, and block lava. *American Journal of Science*, 251(3), 169-191. https://doi.org/10.2475/ajs.251.3.169
- Macdonald, G. A. (1972). Volcanoes. Prentice-Hall inc.
- Madeira, J., Mata, J., Mourão, C., da Silveira, A. B., Martins, S., Ramalho, R. y Hoffmann, D. L. (2010). Volcano-stratigraphic and structural evolution of Brava Island (Cape Verde) based on 40Ar/39Ar, U-Th and field constraints. *Journal of Volcanology and Geothermal Research*, 196(3-4), 219-235. https://doi. org/10.1016/j.jvolgeores.2010.07.010
- Mahecha, M. L. (2019). *Guía para la catalogación de obje*tos y símbolos geográficos del SGC (informe interno).
 Bogotá: Servicio Geológico Colombiano.
- Mahgoub, A. N., Böhnel, H., Siebe, C. y Chevrel, M. O. (2017). Paleomagnetic study of El Metate shield volcano (Michoacán, Mexico) confirms its monogenetic nature and young age (~1250 CE). Journal of Volcanology and Geothermal Research, 336, 209-218. https:// doi.org/10.1016/J.JVOLGEORES.2017.02.024
- Manetti, P., Pasquarè, G. y Tsegaye, A. (1995a). A new geo-volcanological map of Filicudi Island (Aeolian Arc, Italy). *Acta Vulcanologica*, 7(1), 1-5.
- Manetti, P., Pasquarè, G., Tibaldi, A. y Tsegaye, A. (1995b). Geology, structure and evolution of the island of Alicudi, Aeolian volcanic arc, Italy. *Acta Vulcanologica*, 7(1), 7-12.
- Manville, V., Németh, K. y Kano, K. (2009). Source to sink: A review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. *Sedimentary Geology*, 220(3-4), 136-161. https://doi.org/10.1016/j.sedgeo.2009.04.022
- Mariño, J., Rivera, M., Thouret, J. C. y Macedo, L. (2006). Geología y mapa de peligros del volcán Misti [material cartográfico]. 1:32000. Instituto Geológico, Minero y Metalúrgico.
- Mariño, J., Cabrera, M., Valdivia, D., Aguilar, R., Manrrique, N., Thouret, J. C., Edwards, B. y Kochtizky, W.
(2016). *Mapa geológico complejo volcánico Nevado Coropuna* [material cartográfico]. 1:25000. Instituto Geológico, Minero y Metalúrgico.

- Marquínez, G., Rodríguez, Y., Terraza, R. y Martínez, M. (2003). *Geología de la plancha 365 Coconuco* [material cartográfico]. 1:100000. Ingeominas.
- Marroni, M., Moratti, G., Costantini, A., Conticelli, S., Benvenuti, M. G., Pandolfi, L., Bonini, M., Cornamusini, G. y Laurenzi, M. A. (2015). Geology of the monte Amiata region, Southern Tuscany, central Italy. *Italian Journal of Geosciences*, 134(2), 171-199. https://doi.org/10.3301/IJG.2015.13
- Marshall, P. (1935). Acid rocks of the Taupo-Rotorua volcanic district. *Transactions of the Royal Society*, 64(3), 81-131.
- Martí, J. y Mallarach, J. M. (1987). Erupciones hidromagmáticas en el volcanismo cuaternario de Olot (Girona). *Estudios Geológicos*, 43(1-2), 31-40.
- Martí, J., Soriano, C., Galindo, I. y Cas, R. A. F. (2010). Resolving problems with the origin of Las Cañadas caldera (Tenerife, Canary Islands): Los Roques de García Formation- part of a major debris avalanche or an in situ, stratified, edifice-building succession? En G. Groppelli y L. Viereck Goette (eds.), *Stratigraphy and geology of volcanic areas* (pp. 113-132). Special paper 464. The Geological Society of America. https://doi.org/10.1130/2010.2464(06)
- Martí, J., Groppelli, G. y da Silveira, A. (2018). Volcanic stratigraphy: A review. Journal of Volcanology and Geothermal Research, 357, 68-91. https://doi. org/10.1016/j.jvolgeores.2018.04.006
- Martin, U. y Németh, K. (2006a). How strombolian is a "strombolian" scoria cone? Some irregularities in scoria cone architecture from the Transmexican volcanic belt, near volcán Ceboruco, (Mexico) and Al Haruj (Libya). *Journal of Volcanology and Geothermal Research*, 155(1-2), 104-118. https://doi.org/10.1016/J.JVOLGEORES.2006.02.012
- Martin, U. y Németh, K. (2006b). Eruptive mechanism of phreatomagmatic volcanoes from the Pinacate volcanic field: Comparison between crater Elegante and Cerro Colorado, Mexico [Eruptionsmechanismen phreatomagmatischer Vulkane des Pinacate Vulkanfelds: Ein Vergleich zwischen Krater Elegante und Cerro Colorado, Mexiko]. Zeitschrift der Deutschen Ge-

sellschaft für Geowissenschaften, 157(3), 451-466. https://doi.org/10.1127/1860-1804/2006/0157-0451

- Martínez, R. M., Lago, M., Vaquer, R., Arranz, E. y Valenzuela, J. I. (1996). Precisiones vulcanológicas entre mecanismos de fragmentación y emplazamiento de rocas volcanoclásticas. *Gaceta*, (20), 515-517.
- Martínez, L. M., Valencia, L. G., Ceballos, J. A., Narváez,
 B. L., Pulgarín, B. A., Correa Tamayo, A. M., Navarro,
 S., Murcia, H. F., Zuluaga, I., Rueda, J. B. y Pardo, N.
 (2014). *Geología y estratigrafía del Complejo volca*nicánico Nevado del Ruiz (informe interno). Bogotá:
 Servicio Geológico Colombiano.
- Matiz León, J. C. (2020, abril). Cartographic standard for geothermal information of the Colombian Geological Survey. Conference present in Proceedings World Geothermal Congress 2020. Reykjavik, Iceland.
- Matiz-León, J. C., Alfaro-Valero, C., Rueda-Gutiérrez, J. B., Rodríguez-Rodríguez, G., Malo-Lázaro, J., González-Idárraga, C., Beltrán-Luque, M., Rodríguez-Ospina, G., Casallas-Veloza, Y., Herrera-Casseres, J. C., Rodríguez-Molina, Y., Pardo-López, Y. J. y Sánchez-Ducuara, J. (2022). Estándar geográfico para información geotérmica. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585399334
- Mawer, C. (2002). *Cartographic standard geological symbol index, version 3*. British Geological Survey Research (Report, RR/01/01). Nottingham: BGS.
- McGuire, W. J. y Pullen, A. D. (1989). Location and orientation of eruptive fissures and feederdykes at Mount Etna: Influence of gravitational and regional tectonic stress regimes. *Journal of Volcanology and Geothermal Research*, 38(3-4), 325-344. https://doi. org/10.1016/0377-0273(89)90046-2
- Mcphie, J., Doyle, M. G. y Allen, R. L. (1993). *Volcanic textures: A guide to the interpretation of textures in volcanic rocks.* University of Tasmania and Centre for Ore Deposit and Exploration Studies, ed. Tasmanian Government Printing Office.
- Méndez, R. (1997). Atlas de los volcanes activos en Colombia. Ingeominas.
- Miall, A. D. (2016). Stratigraphy: A modern synthesis. Springer. https://doi.org/10.1007/978-3-319-24304-7
- Mitchum Jr., R. M., Vail, P. R. y Thompson III, S. (1977). Seismic stratigraphy and global changes of sea level: Part 2. The depositional sequence as a basic unit for stratigra-

phic analysis: Section 2. Application of seismic reflection configuration to stratigraphic interpretation. En C. E. Payton (ed.), *Seismic stratigraphy: Applications to hydrocarbon exploration* (pp. 53-62). Special Volumes, n.°165. American Association of Petroleum Geologists.

- Moles, J. D., McGarvie, D., Stevenson, J. A. y Sherlock, S. C. (2018). Geology of Tindfjallajökull volcano, Iceland. *Journal of Maps*, 14(2), 22-31. https://doi.org/1 0.1080/17445647.2018.1425163
- Monsalve, M. L. (1991). Mapa preliminar de amenaza volcánica del volcán Cerro Bravo (informe interno n.º 2142). Ibagué: Ingeominas.
- Monsalve, M. L. (2000). Catálogo de las volcanitas Neógenas de Colombia. Fascículo Formación Coconucos. Ingeominas.
- Molsalve, M. L. y Méndez, R. (1988a). Mapa geológico del complejo volcánico del Cumbal [material cartográfico]. 1:50000. Informe 2082. Ingeominas.
- Molsalve, M. L. y Méndez, R. (1988b). *Mapa preliminar de amenaza volcánica potencial del complejo volcánico del Cumbal* (informe interno). Convenio Ingeominas y Gobernación de Nariño. Popayán: Ingeominas.
- Monsalve, M. L y Núñez, A. (1992). El volcán Cerro Bravo geología y amenaza volcánica. *Revista Ingeominas*, 1(1), 2-9.
- Monsalve, M. L. y Pulgarín, B. A. (1991). *Mapa preliminar de amenaza volcánica potencial del volcán Purac*é (informe interno). Popayán: Ingeominas.
- Monsalve, M. L. y Pulgarín, B. A. (1992). Mapa geológico preliminar de los productos proximales de la cadena volcánica de los Coconucos (Dpto. del Cauca) [material cartográfico]. 1:25000. Popayán: Ingeominas.
- Monsalve, M. L. y Pulgarín, B. A. (1993). Mapa preliminar de amenaza volcánica potencial del volcán Puracé. Memoria explicativa. *Revista Ingeominas*, (2), 3-27.
- Monsalve, M. L. y Pulgarín, B. A. (1999). Cadena volcánica de Los Coconucos (Colombia): centros eruptivos y productos recientes. *Boletín Geológico*, 37(1-3), 16-51. https:// doi.org/10.32685/0120-1425/bolgeol37.1-3.1999.38
- Monsalve, M. L., Pulgarín, B. A., Narváez, B. L., Aguirre, L. P. y Laverde, C. A. (2012). *Geología y estratigrafía del volcán Puracé actual, Colombia* (informe interno). Bogotá-Popayán: Ingeominas.
- Monsalve, M. L., Galarza, J. J., Zuluaga, M. I. y Laverde, C. A. (2014). Evaluación de la amenaza del volcán Puracé

actual (Colombia), para la actualización del mapa de amenaza volcánica, escala 1:100000 (informe interno). Bogotá: Servicio Geológico Colombiano (SGC).

- Monsalve, M. L. y Laverde, C. A. (2016). Contribución al registro histórico de actividad de los volcanes Chiles y Cerro Negro (frontera colombo-ecuatoriana). *Boletín de Geología*, 38(4), 61-78. https://doi. org/10.18273/revbol.v38n4-2016004
- Monsalve, M. L. y Serna, E. (2016). *Geología del área geotérmica de San Diego, Caldas*. Bogotá: Servicio Geológico Colombiano (SGC).
- Monsalve, M. L., Ortiz, I. D. y Norini, G. (2019a). El Escondido, a newly identified silicic Quaternary volcano in the NE region of the Northern volcanic segment (Central cordillera of Colombia). *Journal of Volcanology and Geothermal Research*, 383, 47-62. https://doi.org/10.1016/j.jvolgeores.2017.12.010
- Monsalve, M. L., Cortés, G. P. y Martínez, L. M. (2019b). Guía de excursión de campo. Il Taller Regional para Geoparques Mundiales de la Unesco en América Latina y el Caribe 2019 al área del geoparque Volcán del Ruiz, aspirante Unesco. Servicio Geológico Colombiano (SGC).
- Moore, R. C. (1957). Modern methods of paleoecology. AAPG Bulletin, 41(8), 1775-1801.
- Mora, H., Guarnizo, L. F. y Murcia, A. (1994). Volcán Nevado del Tolima generalidades y consideraciones glaciológicas (informe interno n.º 2184). Manizales: Ingeominas.
- Morelli, C., Marocchi, M., Moretti, A., Bargossi, G. M., Gasparotto, G., de Waele, B., Klötzli, U. y Mair, V. (2012). Volcanic stratigraphy and radiometric age constraints at the Northern margin of a mega-caldera system: Athesian volcanic group (Southern Alps, Italy). *GeoActa* (11), 51-67.
- Murcia, L. A. y Cepeda, H. (1984). *Geología y geoquímica de la plancha 429 Pasto* (informe interno). Popayán: Ingeominas.
- Murcia L. A. y Cepeda H. (1991). Mapa geológico de Colombia, plancha 429 Pasto [material cartográfico]. 1:100000. Ingeominas.
- Murcia, H. F., Borrero, C. A., Pardo, N., Alvarado, G. R., Arnosio, M. y Scolamacchia, T. (2013). Depósitos volcaniclásticos: términos y conceptos para una clasificación en español. Universidad de Costa Rica. *Revista Geológica de América Central*, (48), 15-39.

- Murcia, H., Borrero, C. y Németh, K. (2019). Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes' volcanic province. *Journal of Volcanology and Geothermal Research*, (383), 77-87. https://doi.org/10.1016/j.jvolgeores.2018.06.0130377-0273
- Murphy, M. A. y Salvador, A. (1999). International Subcommission on Stratigraphic Classification of IUGS International Commission on Stratigraphy – International Stratigraphic Guide – An abridged version. *Episodes*, 22(4), 255-271.
- Murtagh, R. M., White, J. D. y Sohn, Y. K. (2011). Pyroclast textures of the Ilchulbong 'wet'tuff cone, Jeju Island, South Korea. *Journal of Volcanology and Geothermal Research*, 201(1-4), 385-396. https://doi.org/10.1016/J.JVOLGEORES.2010.09.009
- Navarro, S., Pulgarín, B. A., Monsalve, M. L., Cortés, G.
 P., Calvache, M. L., Pardo, N. y Murcia, H. (2009).
 Geología e historia eruptiva del Complejo volcánico Doña Juana (CVDJ) Nariño. *Boletín de Geología*, *31*(2), 109-118.
- Neal, C. A. y Lockwood, J. P. (2003). Geologic map of the summit region of Kilauea volcano, Hawaii [material cartográfico]. 1:24000. Geologic Investigations Series I-2759. United States Geological Survey.
- Németh, K. y Martin, U. (2007). Practical volcanology Lecture notes for understanding volcanic rocks from field based studies. Occasional Papers of the Geological Institute of Hungary. https://doi.org/10.1016/j. gca.2012.05.024
- Németh, K. y Palmer, J. (2018). Geological mapping of volcanic terrains: Discussion on concepts, facies models, scales, and resolutions from New Zealand perspective. Journal of Volcanology and Geothermal Research, 385, 27-45. https://doi.org/10.1016/j.jvolgeores.2018.11.028
- Nichols, G. (2009). *Sedimentology and stratigraphy* (2.^a ed.). John Wiley & Sons.
- Norini, G., Cogliati, S., Báez, W., Arnosio, M., Bustos, E., Viramonte, J. y Groppelli, G. (2014). The geological and structural evolution of the Cerro Tuzgle Quaternary stratovolcano in the back-arc region of the Central Andes, Argentina. *Journal of Volcanology and Geothermal Research*, 285, 214-228. https://doi.org/10.1016/j.jvolgeores.2014.08.023

- North American Commission on Stratigraphic Nomenclature (NACSN). (2005). North American stratigraphic code. *AAPG Bulletin*, 89(11), 1547-1591. https://doi.org/10.1306/07050504129
- Organización Latinoamericana de Energía (Olade), Instituto Colombiano de Energía Eléctrica (ICEL) Geotérmica Italiana S. R. L. y Contecol. (1982). Estudio de reconocimiento de los recursos geotérmicos de Colombia.
- Ono, K. y Watanabe, K. (1985). *Geological map of Aso volcano* [material cartográfico]. 1:50000. Geological Survey of Japan.
- Open Geospatial Consortium (OGC). (2013). CFnetCDF3 data model extension standard. Version 3.1.
 B. Domenico y S. Nativi (eds.). http://www.opengis. net/doc/is/netcdf-data-model-extension/1.0
- Osorio, P., Botero Gómez, L. A., Murcia, H., Borrero, C. y Grajales, J. A. (2018). Campo volcánico monogenético Villamaría-Termales, cordillera Central, Andes colombianos (Parte II): Características composicionales. *Revista Boletín de Geología*, 40(3), 103-123. https://doi.org/10.18273/revbol.v40n3-2018006
- Pacheco Hoyos, J. G., Aguirre Díaz, G. J. y Dávila Harris, P. (2018). Boiling-over dense pyroclastic density currents during the formation of the ~100 km³ Huichapan ignimbrite in Central Mexico: Stratigraphic and lithofacies analysis. *Journal of Volcanology and Geothermal Research*, 349, 268-282. https://doi. org/10.1016/j.jvolgeores.2017.11.007
- Palladino, D. M., Simei, S., Sottili, G. y Trigila, R. (2010).
 Integrated approach for the reconstruction of stratigraphy and geology of Quaternary volcanic terrains: An application to the Vulsini volcanoes (central Italy). En G. Groppelli y L. Viereck Goette (eds.), *Stratigraphy and Geology of volcanic areas* (pp. 63-84). Special paper 464. The Geological Society of America. https://doi.org/10.1130/2010.2464(04)
- Paolillo, A., Principe, C., Bisson, M., Gianardi, R., Giordano, D. y La Felice, S. (2016). Volcanology of the Southwestern sector of Vesuvius volcano, Italy. *Journal of Maps*, 12(sup1), 425-440. https://doi.org/10.1 080/17445647.2016.1234982
- Pardo, N., Pulgarín, B. A. y Betancourt, V. (2016). Avances en el conocimiento sobre el Complejo volcánico Doña Juana: integración del análisis de litofacies, estratigra-

fía, geocronología y petrología (informe interno). Bogotá: Servicio Geológico Colombiano.

- Pardo, N., Pulgarín, B. A., Betancourt, V., Lucchi, F. y Valencia, L. J. (2019). Facing geological mapping at low-latitude volcanoes: The Doña Juana volcanic complex study-case, SW-Colombia. *Journal of Volcanology and Geothermal Research*, (385), 46-67. https://doi.org/10.1016/j.jvolgeores.2018.04.016
- Parfitt, E. A. y Wilson, L. (2008). Fundamentals of physical volcanology. Blackwell Publishing. https://doi. org/10.1017/S0016756809006074
- Pasquarè, G., Abbate, E., Bosi, C., Castiglioni, G. B., Merenda, L., Mutti, E., Orombelli, G., Ortolani, F., Parotto, M., Pignone, R., Polino, R., Premoli Silva, I. y Sassi, F. P. (1992). *Carta geologica d'Italia, Guida al rilevamento* [material cartográfico]. 1:50000. Servizio Geologico Nazionale, Quaderni, 3(1). Istituto Poligrafico e Zecca dello Stato.
- Pasquarè, G., Venturini, C. y Groppelli, G. (eds.). (2004). Mapping geology in Italy. Società Elaborazioni Cartografiche.
- Pedersen, G. B. M. y Grosse, P. (2014). Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: Effects of eruption environment. *Journal of Volcanology and Geothermal Research*, 282, 115-133. https://doi.org/10.1016/J. JVOLGEORES.2014.06.008
- Pettijohn, F. J. y Potter, P. E. (1964). Atlas and glossary of primary sedimentary structures. Springer-Verlag. https://doi.org/10.1007/978-3-642-94899-2
- Pettijohn,F.J.,Potter,P.E.ySiever,R.(1973). Sandandsandstone. Springer-Verlag. https://doi.org/10.1007/978-1-4615-9974-6
- Pettijohn, F. J., Potter, P. E. y Siever, R. (1987). Sand and sandstone (2.^a ed.). Springer Science- Business Media. https://doi.org/10.1007/978-1-4612-1066-5
- Piedrahita, D. A., Aguilar Casallas, C., Arango Palacio, E., Murcia, H. y Gómez Arango, J. (2018). Estratigrafía del cráter y morfología del volcán Cerro Machín, Colombia. *Boletín de Geología*, 40(3), 29-48. https://doi. org/10.18273/revbol.v40n3-2018002
- Pierson, T. C. (2005). Hyperconcentrated flow transitional process between water flow and debris flow. En M. Jakob y O. Hungr (eds.), *Debris-flow hazards* and related phenomena (pp. 159-202). Springer. https://doi.org/10.1007/3-540-27129-5_8

- Pierson, T. C. y Costa, J. E. (1987). A rheologic classification of subaerial sediment-water flows. En J. E. Costa y G. F. Wieczorek (eds.), *Debris flows/avalanches: Process, recognition, and mitigation* (vol. 7, pp. 1-12). Geological Society of America. Reviews in Engineering Geology. https://doi.org/10.1130/REG7-p1
- Pierson, T. C. y Scott, K. M. (1985). Downstream dilution of a Lahar: Transition from debris flow to hyperconcentrated streamflow. *Water Resources Research*, 21(10), 1511-1524. https://doi.org/10.1029/ WR021i010p01511
- Pinilla, A. y Ríos, P. (2005). Cartografía geológica de los depósitos volcánicos y sedimentarios vulcanogénicos a escala 1:25000 y bosquejo de la amenaza por eventos de caída piroclástica en la parte alta de la cuenca de los ríos Tapias-Tareas (trabajo de grado). Universidad de Caldas, Manizales.
- Pioli, L., Erlund, E., Johnson, E., Cashman, K., Wallace, P., Rosi, M. y Granados, H. D. (2008). Explosive dynamics of violent Strombolian eruptions: The eruption of Parícutin volcano 1943-1952 (Mexico). *Earth and Planetary Science Letters*, 271(1-4), 359-368. https:// doi.org/10.1016/J.EPSL.2008.04.026
- Pirsson, L. V. y Schuchert, C. (1915). A text-book of geology. *Nature*, 98(2455), 206-207. https://doi.org/10.1038/098206a0
- Posamentier, H. W. y Walker, R. G. (2006). Facies models revisited. Special publication 84. SEPM Society for Sedimentary Geology. https://doi.org/10.2110/ pec.06.84
- Powers, M. C. (1953). A new roundness scale for sedimentary particles. *Journal of Sedimentary Research*, 23(2), 117-119. https://doi.org/10.1306/ D4269567-2B26-11D7-8648000102C1865D
- Pujadas, A., Brusi, D. y Pedrinaci, E. (1999). ¡Los volcanes han cambiado! Nuevos enfoques de terminología volcánica. *Enseñanza de las Ciencias de La Tierra*, 7(3), 200-209.
- Pulgarín, B. A., Monsalve, M. L., Arcila, M. M. y Cepeda, H. (1993). Actividad histórica y actual del volcán Puracé, Colombia. *Boletín Geológico*, 34(2-3), 39-53. https://doi.org/10.32685/0120-1425/bolgeol34.2-3.1994.361
- Pulgarín, B. A., Monsalve, M. L., Torres, M. P. y Cepeda, H. (1996). La cadena volcánica de Los Coconucos (CVLC):

¿productos de vulcanismo resurgente? (informe interno). Popayán: Ingeominas.

- Pulgarín, B. A., Navarro, S., Monsalve, M. L., Cortés, G. P., Calvache, M. L., Pardo, N. y Murcia, H. F. (2008). *Geología e historia eruptiva del Complejo volcánico Doña Juana, Colombia* (informe interno). Manizales-Popayán: Ingeominas.
- Pulgarín, B. A., Navarro S., Monsalve, M. L., Murcia, H. F., Téllez L., Correa Tamayo, A. Martínez L. y Martínez L. (2010). *Geología e historia eruptiva del Complejo* volcánico Sotará, Colombia (informe interno). Popayán-Manizales: Ingeominas.
- Pulgarín, B. A., Tamayo, M., Valencia, J., Correa Tamayo, A. M., Ceballos, J. A., Cruz, Y. P. y Méndez, R. A. (2017). *Geología y estratigrafía del Complejo volcánico Paramillo de Santa Rosa* (informe interno). Bogotá: Servicio Geológico Colombiano.
- Pulgarín, B., Tamayo, M., Rayo, L., Zuluaga, I., Castilla, S., Cruz, Y., Correa Tamayo, A., Palechor, D., Villamil, E., Acosta, L., Villota, S., Narváez, P. y Gómez, J. (2022). Geología y estratigrafía del Complejo volcánico Galeras. Bogotá, Popayán y Manizales: Servicio Geológico Colombiano.
- Ramírez, C. (1982). El vulcanismo Neogénico y Cuaternario de Colombia: cronología y caracterización químico-petrográfica (trabajo de grado). Universidad Nacional de Colombia.
- Rayo, L. (2012). Evolución geoquímica y térmica del volcán Nevado del Ruiz, Colombia (tesis de maestría). Universidad Nacional de Colombia. http://bdigital.unal. edu.co/8181/
- Resolución 068 de 2005. [Instituto Geográfico Agustín Codazzi (IGAC)]. Marco Geocéntrico Nacional de Referencia Magna-Sirgas, Colombia. 17 de noviembre de 2005.
- Rivera, M., Mariño, J. y Thouret, J. C. (2009). Mapa geológico del volcán Ubinas [material cartográfico]. 1:25000. Instituto Geológico Minero y Metalúrgico.
- Robertson, G., Jaramillo, O. y Castiblanco, M. (2013). *Guía metodológica para la elaboración de mapas geomorfológicos a escala 1:100 000.* Instituto de Hidrología, Meteorología y Estudios Ambientales.
- Rodolfo, K. S. y Arguden, A. T. (1991). Rain-lahar generation and sediment delivery systems at Mayon volcano, Philippines. En R. V. Fisher y G. A. Smith (eds.), *Sedi*-

mentation in volcanic settings (pp. 71-87). Special publication 45. SEPM Society for Sedimentary Geology.

- Rossi, M. J. (1996). Morphology and mechanism of eruption of postglacial shield volcanoes in Iceland. *Bulletin of Volcanology*, 57(7), 530-540. https://doi. org/10.1007/BF00304437
- Rossi, P. L., Tranne, C. A., Calanchi, N. y Lanti, E. (1996). Geology, stratigraphy and volcanological evolution of the island of Linosa (Sicily Channel). *Acta Vulcanologica*, 8(1), 73-90.
- Rueda, H. (2005). Erupciones plinianas del Holoceno en el volcán Cerro Machín, Colombia. Estratigrafía, petrografía y dinámica eruptiva (tesis de maestría). Universidad Nacional Autónoma de México. http://132.248.9.195/ ppt2005/0343808/Index.html
- Santacroce, R. y Sbrana, A. (2003). Geological map of Vesuvius [material cartográfico]. 1:15000. Servizio Geologico Nazionale, Società Elaborazioni Cartografiche.
- Salvador, A. (1987). Unconformity-bounded stratigraphie units. *GSA Bulletin*, 98(2), 232-237. https://doi. org/10.1130/0016-7606(1987)98<232:USU>2.0. CO;2
- Salvador, A. (ed.). (1994). International stratigraphic guide: A guide to stratigraphic classification, terminology, and procedure (n.° 30). Geological Society of America.
- Schaefer, S. J. (1995). Nevado del Ruiz volcano, Colombia: magmatic system and evolution (tesis de doctorado). Arizona State University.
- Schmidt, R. (1981). Descriptive nomenclature and classification of pyroclastic deposits and fragments: Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. *Geology*, 9(1), 41-43. https://doi.org/10.1130/0091-7613(1981)9<41:D-NACOP>2.0.CO:2
- Schmidt, R. y Schmincke, H.-U. (2000). Seamounts and island building. En H. Sigurdsson (ed.), *Encyclopedia* of Volcanoes (1.^a ed., pp. 383-402). Academic Press.

Schmincke, H. U. (2004). Volcanism. Springer-Verlag.

Schmincke, H. U., Fisher, R. V. y Waters, A. C. (1973). Antidune and chute and pool structures in the base surge deposits of the Laacher See area, Germany. *Sedimentology*, 20(4), 553-574. https://doi.org/10.1111/j.1365-3091.1973.tb01632.x

- Scott, K. M., Macías, J. L., Naranjo, J. A., Rodriguez, S. y McGeehin, J. P. (2001). Catastrophic debris flows transformed from landslides in volcanic terrains: Mobility, hazard assessment and mitigation strategies. Professional paper 1630. United States Geological Survey. https://doi.org/10.3133/pp1630
- Self, S., Coffin, M., Rampino, M. y Wolff, J. (2015). Large igneous provinces and flood basalt volcanism. En H. Sigurdsson (ed.), *The Encyclopedia of Volcanoes* (2.^a ed., pp. 441-455). Academic Press. https://doi.org/10.1016/B978-0-12-385938-9.00024-9
- Servicio Geológico Colombiano (SGC). (2014). Plan estratégico del conocimiento geológico del territorio colombiano, 2013-2023.
- Servicio Geológico Colombiano (SGC). (2015). Guía de estándares para la presentación de informes institucionales.
- Short, N. M. (1986). Volcanic landforms. En N. M. Short y R. W. Blair (eds.), Geomorphology from space: A global overview of regional landforms (pp. 185-254). NASA Publications.
- Siebert, L. (1984). Large volcanic debris avalanches: Characteristics of source areas, deposits, and associated eruptions. *Journal of Volcanology and Geothermal Research*, 22(3-4), 163-197. https://doi. org/10.1016/0377-0273(84)90002-7
- Siebert, L., Cottrell, E., Venzke, E. y Andrews, B. (2015). Earth's volcanoes and their eruptions: An overview. En H. Sigurdsson (ed.), *The Encyclopedia of Volcanoes* (2.^a ed., pp. 239-255). Academic Press. https://doi. org/10.1016/B978-0-12-385938-9.00012-2
- Sigurdsson, H. (ed.), Houghton, B., Mcnutt, S. R., Rymer, H. y Stix, J. (2000). *Encyclopedia of Volcanoes* (1.^a ed.). Academic Press.
- Sigurdsson, H. (ed.), Houghton, B., McNutt, S., Rymer, H. y Stix, J. (2015). *The Encyclopedia of Volcanoes* (2.^a ed.). Academic Press.
- Simkin, T. y Siebert, L. (1994). *Volcanoes of the World*. (2.^a ed.). https://doi.org/10.1017/S001675689730613X
- Simkin, T. y Siebert, L. (2000). Earth's volcanoes and eruptions: An overview. En H. Sigurdsson (ed.), *Encyclopedia of Volcanoes* (1.^a ed., pp. 249-261). Academic Press.
- Sloss, L., Krumbein, W. y Dapples, E. (1949). Integrated facies analysis. En C. R., Longwell (ed.), Sedimentary facies in geologic history (pp. 91-124). Me-

moir 39. Geological Society of America. https://doi. org/10.1130/MEM39 -p91

- Sloss, L. L. (1963). Sequences in the cratonic interior of North America. GSA Bulletin, 74(2), 93-114. https://doi. org/10.1130/0016-7606(1963)74[93:sitcio]2.0.co;2
- Smith, R.L. (1960a). Ash flows. *GSA Bulletin*, 71(6), 795-841. https://doi.org/10.1130/0016-7606(1960)71[795:A-F]2.0.CO;2
- Smith, R. L. (1960b). Zones and zonal variations in welded ash flows. En USGS (ed.), *Shorter contributions to general geology* 1959 (pp. 149-159). Professional paper n.° 354. United States Geological Survey.
- Smith, G. A. y Fritz, W. J. (1989). Volcanic influences on terrestrial sedimentation. *Geology*, 17(4), 375-376. https://doi.org/10.1130/0091-7613(1989)017<0375:-VIOTS>2.3.CO;2
- Smith, G. A. y Lowe, D. R. (1991). Lahars: Volcano hydrologic - events and deposition in the debris flow hyperconcentrated flow continuum. En R. V. Fisher y G. A. Smith (eds.), *Sedimentation in volcanic settings* (pp. 60-70). Special publication 45. Society for Sedimentary Geology.
- Sohn, Y. K., Park, K. H. y Yoon, S. H. (2008). Primary versus secondary and subaereal versus submarine hydrovolcanic deposits in the surface of Jeju Island, Korea. *Sedimentology*, 55(4), 899-924. https://doi. org/10.1111/j.1365-3091.2007.00927.x
- Spark, R. S. J., Self, S. y Walker, G. P. (1973). Products of ignimbrite eruptions. *Geology*, 1(3), 115-118. https://doi. org/10.1130/0091-7613(1973)1<115:POIE>2.0.CO;2
- Stern, C. R. (2004). Active andean volcanism: its geologic and tectonic setting. *Revista Geológica de Chile*, 31(2), 161-206. http://dx.doi.org/10.5027/andgeoV31n2-a01
- Stow, D. A. (2005). *Sedimentary rocks in the field: A color guide*. Manson Publishing.
- Streckeisen, A. (1976). To each plutonic rock its proper name. *Earth-Science Reviews*, 12(1), 1-33. https:// doi.org/10.1016/0012-8252(76)90052-0
- Swanson, D. A. (1973). Pahoehoe flows from the 1969-1971 Mauna Ulu eruption, Kilauea volcano, Hawaii. GSA Bulletin, 84(2), 615-626. https://doi. org/10.1130/0016-7606
- Tarbuck, E. J. y Lutgens, F. K. (1999). Ciencias de la Tierra: una introducción a la geología física (6.ª ed. en español). Prentice Hall.

- Thorpe, R. y Brown, G. (1993). *The field description of igneous rocks*. John Wiley & Sons.
- Thouret, J. C., Murcia, L. A., Salinas, E. R. y Vatin-Perignon, N. (1985). Aspectos volcano-estructurales y dinamismo eruptivo reciente de los volcanes Cerro Bravo y Nevado del Tolima, cordillera Central de Colombia (pp. 307-334). En *Memoria IV Congreso Latinoamericano de Geología*, tomo I.
- Thouret, J. C., Cantagrel, J. M., Salinas, R. y Murcia, A. (1990). Quaternary eruptive history of Nevado del Ruiz (Colombia). *Journal of Volcanology and Geothermal Research*, 41(1-4), 225-251. https://doi. org/10.1016/0377-0273(90)90090-3
- Tibaldi, A. (2010). A new geological map of Stromboli volcano (Tyrrhenian Sea, Italy) based on application of lithostratigraphic and unconformity-bounded stratigraphic (UBS) units. En G. Groppelli y L. Viereck Goette (eds.), *Stratigraphy and geology of volcanic areas* (pp. 33-49). Special paper 464. The Geological Society of America. https://doi.org/10.1130/2010.2464(02)
- Tilling, R. I. (ed.). (1993). Apuntes para un curso breve sobre los peligros volcánicos: 2-3 de julio de 1989. Santa Fé, Nuevo México, USA: Organización Mundial de Observatorios Vulcanológicos.
- Toro, G. (1988). Étude du volcán San Diego (Caldas) et des dépots de Nariño (Antioquia), Colombie. Contributions at l'étude des tephras en climats tropicaux humides (tesis de maestría). Université de Liège, Belgique.
- Toro, G. (1989). Caracterización del volcanismo de San Diego y estudio de los depósitos de San Diego (Caldas) y Nariño (Antioquia), Colombia. *Memorias del VI Congreso Colombiano de Geología*, 1, 419-441. Bucaramanga, Colombia.
- Torres, M. P., Cortés, G. P., Calvache, M. L. y Monsalve, M. L., (2005). Mapa geológico del volcán Azufral [material cartográfico]. 1:50000. Ingeominas.
- Torres, M. P., Monsalve, M. L., Pulgarín, B. y Cepeda, H. (1999). Caldera de Paletará: aproximación a la fuente de las Ignimbritas del Cauca y Huila (Colombia). *Boletín Geológico*, 37(1-3), 1-15. https://doi. org/10.32685/0120-1425/bolgeol37.1-3.1999.35
- Torres, M. P., Monsalve, M. L. y Pulgarín, B. A. (2016). The Puracé Region. En M. Hermelin (ed.), *Landscapes and landforms of Colombia* (pp. 183-192). Springer. https://doi.org/10.1007/978-3-319-11800-0_15

- Tucker, M. E. (2003). *Sedimentary rocks in the field* (3.^a ed.). John Wiley & Sons.
- Ui, T., Takarada, S. y Yoshimoto, M. (2000). Debris avalanches. En H. Sigurdsson (ed.), *Encyclopedia of Volcanoes* (1.^a ed., pp. 617-626). Academic Press.
- Valentine, G. A. y Fisher, R. V. (2000). Pyroclastic surges and blast. En H. Sigurdsson (ed.), *Encyclopedia of Volcanoes* (1.^a ed., pp. 571-580). Academic Press.
- Valentine, G. A., Krier, D. J., Perry, F. V. y Heiken, G. (2007). Eruptive and geomorphic processes at the Lathrop wells scoria cone volcano. Journal of Volcanology and Geothermal Research, 161(1-2), 57-80. https://doi.org/10.1016/J.JVOLGEORES.2006.11.003
- Valentine, G. A. y Connor, C. B. (2015). Basaltic volcanic fields. En H. Sigurdsson (ed.), *The Encyclopedia of Volcanoes* (pp. 423-439). Academic Press.
- Vallance, J. W. (2000). Lahars. En H. Sigurdsson (ed.), Encyclopedia of Volcanoes (1 st ed., pp. 601-616). Academic Press.
- Vallance, J. W. y Iverson, R. M. (2015). Lahars and their deposits. En H. Sigurdsson (ed.), *The Encyclopedia of Volcanoes* (2.^a ed., pp. 649-664). Academic Press. https:// doi.org/10.1016/B978-0-12-385938-9.00037-7
- Vallance, J. W. y Scott, K. M. (1997). The Osceola Mudflow from Mount Rainier: Sedimentology and hazard implications of a huge clay-rich debris flow. GSA Bulletin, 109(2), 143-163. https://doi. org/10.1130/0016-7606(1997)109<0143:TOM-FMR>2.3.CO;2
- Van Zuidam, R. (1986). Aerial photo-interpretation in terrain analysis and geomorphologic mapping. ITC. Smits Publishers.
- Vásconez, F. (2002). Mapa geológico del complejo volcánico Pululahua (CVP) [material cartográfico]. 1:25000. Escuela Politécnica Nacional, Instituto Geofísico Nacional.
- Vespermann, D. y Schmincke, H. U. (2000). Scoria cones and tuff rings. En H. Sigurdsson (ed.), *Encyclopedia of Volcanoes* (1.^a ed., pp. 683-694). Academic Press.
- Vincent, P. (2000). Volcanoes: From magmas to tephra and epivolcaniclastics. En H. Leyrit y C. Montenant (ed.), *Volcaniclastic rocks: From magmas to sediments* (pp. 1-32). Amsterdam: Gordon and Breach Science Publishers.
- Volentik, A. C. M., Vanderkluysen, L., Principe, C. y Hunziker, J. C. (2005). Stratigraphy of Nisyros volcano

(Greece). En J. C. Hunziker y L. Marini (ed.), *The geology, geochemistry, and evolution of Nisyros volcano* (*Greece*): *Implications for the volcanic hazards* (pp. 26-66). Mémoire de Géologie, n.º 4.

- Wadell, H. A. (1933). Sphericity and roundness of rock particles. *Journal of Geology*, (41), 310-331.
- Walker, G. P. (2000). Basaltic volcanoes and volcanic systems. En H. Sigurdsson (ed.), *Encyclopedia of Volcanoes* (1.^a ed., pp. 283-289). Academic Press.
- Webb, P. K. y Weaver, S. D. (1975). Trachyte shield volcanoes: A new volcanic form from South Turkana, Kenya. *Bulletin Volcanologique*, 39(2), 294-312. https://doi.org/10.1007/BF02597833
- Weller, J. M. (1958). Stratigraphic facies differentiation and nomenclature. AAPG Bulletin, 42(3), 609-639. https://doi.org/10.1306/0BDA5AAD-16BD-11D7-8645000102C1865D
- Wheeler, H. E. y Mallory, V. S. (1956). Factors in lithostratigraphy. *AAPG Bulletin*, 40(11), 2711-2723. https://doi.org/10.1306/5CEAE5D1-16BB-11D7-8645000102C1865D
- White, J. D. L. y Houghton, B. F. (2006). Primary volcaniclastic rocks. *Geology*, (34), 677-680. https://doi. org/10.1130/G22346.1
- White, J. D. y Ross, P. S. (2011). Maar-diatreme volcanoes: A review. Journal of Volcanology and Geothermal Research, 201(1-4), 1-29. https://doi.org/10.1016/J. JVOLGEORES.2011.01.010
- Williams, M., Bursik, M. I., Cortés, G. P. y Garcia, A. M. (2017). Correlation of eruptive products, Volcán Azufral, Colombia: Implications for rapid emplacement of domes and pyroclastic flow units. *Journal of Volcanology and Geothermal Research*, 341, 21-32. https://doi.org/10.1016/j.jvolgeores.2017.05.001

- Wilson, C. F. N. y Houghton, B. F. (2000). Pyroclast transport and deposition. En H. Sigurdsson (ed.), *Encyclopedia of Volcanoes* (1.^a ed., pp. 545-554). Academic Press.
- Wirakusumah, A. D., Juwarna, H. y Loebis, H. (1989). Geological map of Merapi volcano, Yogyakarta Special and Central Java Province [material cartográfico].
 1:50000. Ministry of Energy and Mineral Resources, Geological Agency, Centre for Volcanology and Geological Hazard Mitigation.
- Wohletz, K. H. y Sheridan, M. F. (1983). Hydrovolcanic explosions; II, Evolution of basaltic tuff rings and tuff cones. American Journal of Science, 283(5), 385-413. https://doi.org/10.2475/ajs.283.5.385
- Wohletz, K. y Heiken, G. (1992). Volcanology and geothermal energy. University of California Press.
- Wolf, J. A. y Sumner, J. M. (2000). Lava fountains and their products. En H. Sigurdsson (ed.), *Encyclopedia of Volcanoes* (1.^a ed., pp. 346-354). Academic Press.
- Wood, C. A. (1979). *Morphometric studies of planetary landforms: Impact craters and volcanoes* (tesis de doctorado). Brown University,
- Wood, C. A. (1980). Morphometric evolution of cinder cones. *Journal of Volcanology and Geothermal Research*, 7(3-4), 387-413. https://doi.org/10.1016/0377-0273(80)90040-2
- Zanon, V., Pacheco, J. y Pimentel, A. (2009). Growth and evolution of an emergent tuff cone: Considerations from structural geology, geomorphology and facies analysis of São Roque volcano, São Miguel (Azores). *Journal of Volcanology and Geothermal Research*, 180(2-4), 277-291. https://doi.org/10.1016/J.JVOL-GEORES.2008.09.018
- Zuluaga, I. (2011). Definición del campo volcánico monogenético de San Agustín (CVSA), Huila, Colombia (trabajo de grado). Universidad de Caldas.

Anexo 1. Términos y conceptos básicos

Descripción y clasificación de las unidades litoestratigráficas

Tanto en la vulcanología como en otras ramas de la geología es fundamental la precisión en las descripciones de los depósitos y de las rocas. Por lo que surge la necesidad de una mejor comprensión e interpretación de los eventos que intervienen en su formación y de los mecanismos de transporte y acumulación respectivos (cf. Murcia et al., 2013). Sin embargo, debido a que en los últimos años se han utilizado diferentes sistemas de clasificación de los depósitos volcánicos, en este trabajo, como un aporte a la estandarización de los términos utilizados para definir las unidades litoestratigráficas en las áreas volcánicas, se presenta una recopilación de los principales parámetros utilizados en la descripción de depósitos encontrados en los ambientes volcánicos y algunas consideraciones sobre la clasificación de los productos efusivos y volcanoclásticos.

Productos efusivos

Los productos generados por la actividad volcánica efusiva son los flujos de lava y los domos de lava, que comprenden facies coherentes y autoclásticas (McPhie *et al.*, 1993). Estos productos tienen origen en el enfriamiento del magma que se solidifica sin fragmentarse, y desarrollan estructuras internas y externas particulares que varían según las propiedades reológicas del magma, la tasa de emisión del fundido y las condiciones topográficas del terreno.

Para caracterizar los productos efusivos deben tenerse en cuenta, según Thorpe y Brown (1993) y Pardo *et al.* (2016), los siguientes criterios:

- El espesor y las superficies de contacto del depósito.
- La descripción de las estructuras superficiales, tales como pāhoehoe –y sus diferentes subtipos–, 'A'ā, almohadilladas, lavas en bloques, flujos de lava con crestas u ojivas, y hornitos, entre otras.
- La descripción de las estructuras internas, tales como estratificación o laminación, bandeamiento a escala de afloramiento, autobrechas, diaclasamiento (columnar, tabular, radial, concéntrico, en caparazón de tortuga, entre otros).
- 🛆 La textura de la roca, que incluye color, vesicularidad, cristalinidad, tamaño y forma de los cristales y la fábrica. Particularmente, los productos lávicos pueden ser rocas afaníticas (microcristalinas o vítreas) o porfiríticas. Dependiendo del tamaño de los cristales existen tres categorías texturales: roca finogranular o de grano fino (cristales <1 mm), roca mesogranular o de grano medio (cristales de 1 y 5 mm) y roca gruesogranular o de grano grueso (cristales > 5 mm). El grado de desarrollo de las caras cristalinas de los minerales que conforman las rocas efusivas permite clasificar los cristales desde euhedrales (caras bien desarrolladas) y subhedrales (moderadamente desarrolladas), hasta anhedrales (mal desarrolladas). La composición mineralógica permite la clasificación de la roca, para ello se sugiere utilizar los diagramas QAPF (Streckeisen, 1976); en caso de contar con información de litogeoquímica, se puede usar el diagrama TAS para la clasificación geoquímica de rocas (Le Bas et al., 1986), según las recomendaciones de Le Maitre et al. (2002).

En la bibliografía científica ha sido ampliamente difundida la clasificación de los flujos de lava según su morfología superficial, que está estrechamente ligada a la composición del magma. Actualmente, la clasificación de productos lávicos se hace en un sentido más amplio, que va más allá de la descripción de la apariencia de la superficie del flujo, y abarca la dinámica del movimiento de la lava que los forman. Existen, además, tipologías basadas en el sistema de distribución de los productos efusivos y en las estructuras que se desarrollan en el interior de los flujos de lava (Jones, 1943; Macdonald, 1953; Cas y Wright, 1987; Decker et al., 1993; Thorpe y Brown, 1993; Francis y Oppenheimer, 2004; Schmincke, 2004; Németh y Martin, 2007; Parfitt y Wilson, 2008; Lockwood y Hazlett, 2010; Harris y Rowland, 2015).

Según su morfología superficial en los ambientes subacuáticos, se han descrito las lavas almohadilladas, que comúnmente son de composición basáltica. En ambientes subaéreos se distinguen principalmente tres tipos de flujos de lava: $p\overline{a}hoehoe$, 'A' \overline{a} y lava en bloques (tabla 1):

🛆 Lavas *pāhoehoe*: se caracterizan por tener una superficie suave, ondulada, vítrea y compacta. Estos flujos se forman a partir de magmas de baja viscosidad y pueden alcanzar espesores que varían entre 1 y 10 m, y longitudes de varios kilómetros. Según la cinemática de los flujos de lava, se pueden originar diferentes tipos de estructuras: lomo de ballena (whale back), skylights, hornitos y túmulos. Igualmente, dependiendo de su apariencia superficial, las lavas $p\overline{a}hoehoe$ se pueden dividir en diferentes subtipos, entre los que se destacan las lavas cordadas (ropy lavas), que en superficie muestran pliegues o formas semejantes a cuerdas; lavas en tripas (entrail $p\overline{a}hoehoe$), que se forman en altas pendientes, y corresponden a una superposición de pequeños lóbulos de lava ($p\overline{a}hoehoe toes$), y las lavas she*lly pahoehoe*, generadas cuando el movimiento rápido de las lavas pāhoehoe de baja viscosidad deja una superficie en forma de placas frágiles y ricas en vidrio (p. ej., Swanson,1973; Parfitt y Wilson, 2008, Lockwood y Hazlett, 2010). Generalmente se desarrollan a partir de magmas de composición básica.

Este tipo de flujos de lavas presentan en su interior diaclasas columnares que suelen mostrar una separación tripartita: una zona superior (hacia el techo) y una zona inferior (hacia la base) caracterizadas por tener columnas de lados rectos bien desarrolladas (conocidas como colonnades), que pueden presentar fracturas de enfriamiento tipo platy o blocky. Estas dos zonas están separadas por una tercera zona o unidad intermedia, conformada por columnas irregulares (fracturas de enfriamiento curvicolumnar), blocosas, con un patrón complejo, conocida como entablature (Thorpe y Brown, 1993). Igualmente, pueden desarrollar múltiples zonas de columnas de enfriamiento y tener o no una zona de entablature o múltiples combinaciones de estas.

Lavas 'A'ā: se caracterizan por la presencia de zonas autobrechadas, tanto en el tope como en la base del flujo. Tienen una superficie áspera, escoriácea y espinosa, con bloques sueltos. Los bloques son extremadamente rugosos, con facetas irregulares, y con tamaños que varían desde unos pocos centímetros hasta varias decenas de ellos. Estos tipos de flujos generalmente se desarrollan a partir de magmas de composición básica.

Los flujos de lava 'A' \overline{a} frecuentemente presentan en su interior tres partes o secciones: una brecha basal, una parte central más masiva y otra brecha hacía el tope. Estos flujos desarrollan un patrón de fracturamiento similar a un flujo de lava en bloques, pero los bloques suelen ser notablemente más vesiculares en una lava tipo 'A' \overline{a} .

Lava en bloques (blocky lava): típicamente se desarrollan en lavas andesíticas, dacíticas y riolíticas, es decir, involucran magmas de composición entre intermedia y félsica. Los bloques, a diferencia de las lavas 'A'ā, son poliedros limitados por ángulos diedros, con caras que varían de lineares a ligeramente curvas, y carecen de la superficie espinosa y áspera de las lavas 'A'ā. La parte superior de los flujos de lava en bloques

está formada por bloques relativamente suaves, angulares, que varían de pobremente vesiculados a no vesiculados.

Los frentes de los flujos de lava en bloques se caracterizan por ser abruptos. De igual manera, en la superficie de los flujos de lava en bloques se pueden generar crestas curvas y concéntricas formadas por acumulación de bloques, conocidas como *ojivas*; en vista de planta son cóncavas en la dirección del flujo, y el espaciamiento entre cada cresta puede ser de hasta decenas de metros (Cas y Wright, 1987; Lockwood y Hazlett, 2010).

Este tipo de lavas comúnmente desarrollan diaclasamiento laminar o tabular, y ocasionalmente exhiben diaclasamiento columnar (Thorpe y Brown, 1993). Las fracturas tabulares generalmente se inclinan de manera ascendente hacia los frentes y márgenes de flujo (Németh y Martin, 2007).

Cuando las lavas son de carácter más silíceo, la alta viscosidad del magma propicia la generación de flujos cortos o de domos de lava. Estos últimos presentan características complejas, tienen un cuerpo central masivo rodeado por una especie de caparazón rocoso de facies de rocas autoclásticas, marginales. Asimismo, los domos pueden ser clasificados según su forma en cuatro tipos: *upheaven, pelée, coulée* y tortas (véase anexo 1).

Los flujos de lava también pueden ser clasificados, a partir de su sistema de distribución, en flujos de lava canalizados y tubos de lavas. Los primeros ocurren cuando la lava se mueve en su zona central, mientras ésta queda limitada por una acumulación de rocas estacionadas en cada lado del flujo; los diques que limitan el canal central son llamados *levées* u *hombreras*. Cuando el límite entre el canal y el *levée* no es evidente, se conoce como *flujo en láminas (sheet flow)* (Parfitt y Wilson, 2008).

Por otro lado, los tubos de lava, también conocidos como *túneles de lava* o *piroductos (pyroduct)* (Lockwood y Hazlett, 2010), se forman cuando la superficie de un flujo de lava se solidifica, formando una corteza, mientras que la lava continúa fluyendo debajo de dicha corteza, lo que permite que estos flujos alcancen grandes distancias desde el foco de emisión. Generalmente se desarrollan en lavas de composición básica.

Productos volcanoclásticos y epiclásticos

El término volcanoclástico incluye el espectro completo de depósitos clásticos constituidos enteramente, o en parte, por fragmentos volcánicos originados a partir de cualquier fragmentación mecánica del magma, que han sido transportados por cualquier mecanismo y depositados en cualquier ambiente por procesos volcánicos primarios o de resedimentación (Fisher, 1961; 1966; Fisher y Smith, 1991).

Existe una amplia variedad de productos volcanoclásticos, razón por la cual se tienen en cuenta diferentes características para su clasificación. Entre ellas se destacan las siguientes:

- Geometría de la capa, espesor y tipos de contactos (p. ej., Ingram, 1954; Gray, 1955; Campbell, 1967).
- Estructuras del depósito: estratificación o laminación (p. ej., Compton, 1962; Pettijohn y Potter,

Tabla 1. Relación entre el tipo de superficie de los flujos de lava con su composición química y la fuente de emisión.

Clasificación según su morfología superficial	Composición química típica	Estructura del foco de emisión
$P\overline{a}hoehoe$ (superficie suave, $hummocky$)	Basalto	Volcanes escudos, conos de escoria, volcanes compuestos
'A' \overline{a} (cubierta por escombros sueltos y espinosos)	Basalto, andesita	Volcanes escudos, conos de escoria, volcanes compuestos
En bloques (líticos)	Andesita basáltica, dacita	Conos de escoria, escudo de lava en bloques (<i>block-lava shields</i>), volcanes compuestos
En bloques (vítreos)	Dacita, riolita	Domos

Fuente: modificada de Lockwood y Hazlett (2010).

1964; Campbell, 1967; Schmincke *et al.*, 1973; Allen, 1982; Cole, 1991; Fisher y Schmincke, 1984; Cas y Wright, 1987; Tucker, 2003; Stow, 2005; Boggs, 2006; Collinson *et al.*, 2006; Coe, 2010), gradación (p. ej., Compton, 1962; Fisher y Schmincke, 1984; Tucker, 2003; Stow, 2005; Collison *et al.*, 2006; Nichols, 2009; Coe, 2010; Miall, 2016), competencia, imbricación de clastos (p. ej., Boggs Jr. y Boggs, 2009), bandeamiento a escala de afloramiento, huellas de impacto, estrías de cizalla y fracturas de enfriamiento.

- Textura del depósito: granulometría (p. ej., Fisher, 1966; Schmid, 1981; Fisher y Schmincke, 1984; White y Houghton, 2006; Murcia *et al.*, 2013), selección (p. ej., Inman, 1952; Compton, 1962; Folk y Ward, 1957; Harrel, 1984; Cas y Wright, 1987; Tucker, 2003; Stow, 2005) y soporte (p. ej., Compton, 1962; Tucker, 2003; Miall, 2016).
- 🛆 Rasgos texturales y composicionales de los principales componentes de los depósitos (p. ej., Schmid, 1981; Wohletz y Heiken, 1992). De tal forma que para cada tipo de fragmento se describen color, vesicularidad (p. ej., Houghton y Wilson, 1989), redondez (p. ej., Powers, 1953; Pettijohn et al., 1987), esfericidad (p. ej., Wadell, 1933; Powers, 1953; Pettijohn et al., 1973), tamaño (Murcia et al., 2013), bandeamiento, estructuras superficiales en muestra de mano (superficie en corteza de pan o coliflor, fracturas de enfriamiento, estructuras en rompecabezas, entre otros), cristalinidad, composición mineralógica, y la presencia o ausencia de enclaves y sus respectivas características (Universidad Complutense de Madrid, 2014)¹.
- Presencia de otro tipo de componentes: agregados de ceniza (tamaño, forma, estructura interna), fragmentos de materia orgánica o madera carbonizada, intraclastos y restos de cerámica u otros utensilios arqueológicos.
- Estructuras primarias y texturas posteriores a la acumulación: soldamiento, endurecimiento,

cristalización de fases de vapor, alteraciones, estructuras de disyunción columnar, chimeneas de desgasificación, vesículas de deshidratación, entre otras.

Por otro lado, los depósitos epiclásticos son aquellos generados a partir de procesos de remoción y resedimentación de cualquier tipo de roca (ígnea, metamórfica o sedimentaria) o depósito preexistente. Para la clasificación de estos depósitos se tienen en cuenta los criterios y la terminología convencional utilizados en la clasificación de rocas sedimentarias detríticas, originadas en diferentes tipos de ambientes ya sean fluviales, fluviolacustres, lacustres, glaciares, marinos, kársticos o eólicos, caracterizados por autores como Nichols (2009), Posamentier y Walker (2006) o Miall (2016).

Para la clasificación y la descripción, tanto de estos tipos de depósitos, como de los depósitos volcanoclásticos secundarios, se recomienda utilizar la terminología convencional de la clasificación de rocas y depósitos sedimentarios detríticos (p. ej., Pettijohn y Potter, 1964; Pettijohn *et al.*, 1973; Folk, 1980; Pettijohn *et al.*, 1987; Nichols, 2009; Udden Wentworth, 1920, en Murcia *et al.*, 2013).

En cuanto a la clasificación de los tipos de fragmentos en los depósitos volcanoclásticos, Murcia *et al.* (2013) sintetizan y actualizan las clasificaciones propuestas por diferentes autores (p. ej., Fisher, 1961; Schmid, 1981; Fisher y Schmincke, 1984; Cas y Wright, 1987; Fisher y Smith, 1991; McPhie *et al.*, 1993; Martínez *et al.*, 1996; Gillespie y Styles, 1999; Vincent, 2000; White y Houghton, 2006; Cas *et al.*, 2008; Sohn *et al.*, 2008), e indican que un depósito volcanoclástico puede estar formado por uno o varios de los siguientes tipos de fragmentos:

Piroclásticos: son aquellos originados durante una erupción volcánica explosiva, sea magmática o hidromagmática, que pueden subdividirse en fragmentos juveniles, accesorios y accidentales.

Los fragmentos juveniles se forman directamente por la fragmentación del magma emitido en una erupción; los accesorios son aquellos

¹ Universidad Complutense de Madrid. (2014). Atlas de rocas ígneas. https:// petroignea.wordpress.com/esta-es-la-segunda-pagina/texturas-en-rocasvolcanicas/enclaves/

fragmentos volcánicos, comagmáticos, que son incorporados durante la erupción desde el conducto, el edificio volcánico o los depósitos asociados a éste; y los fragmentos accidentales provienen de rocas metamórficas, rocas ígneas, rocas o depósitos sedimentarios o depósitos volcánicos, no comagmáticos, preexistentes.

- Hialoclásticos: son los fragmentos producidos por el enfriamiento rápido y subsecuente fragmentación de flujos de lava en movimiento o de domos de lava en crecimiento, al contacto inmediato con agua o con hielo; generalmente se originan en erupciones subacuáticas o subglaciares.
- Autoclásticos: son aquellos formados por la fragmentación, debido a la fricción o la explosión gaseosa, durante el movimiento de flujos de lava o el crecimiento de domos de lava.
- Epiclásticos: fragmentos de roca volcánica, plutónica, metamórfica o sedimentaria, que se han originado por procesos de meteorización, de erosión, o ambos, y que son transportados posteriormente por agua, hielo, viento o gravedad.

Igualmente, varios autores han planteado diferentes clasificaciones para los tipos de depósitos piroclásticos, considerando parámetros que incluyen tanto criterios granulométricos como genéticos (p. ej., Fisher, 1961; Schmid, 1981; Fisher y Schmincke, 1984; Cas y Wright, 1987; McPhie *et al.*, 1993; Martínez *et al.*, 1996; Gillespie y Styles, 1999; Vincent, 2000; Dasgupta, 2003; White y Houghton, 2006; Borrero *et al.*, 2008; Sohn *et al.*, 2008; Manville *et al.*, 2009).

Para la clasificación granulométrica de los depósitos piroclásticos (figura 1 A) se recomienda utilizar las propuestas de Fisher (1966) y de Schmid (1981), ambas recogidas por Le Maitre *et al.* (2002), quienes coinciden en que para denominar un depósito piroclástico inconsolidado debe usarse el término tefra, y para un depósito consolidado, el término toba. Así, un depósito con un contenido mayor al 75% de fragmentos de tamaño ceniza (<2 mm) se denomina tefra de ceniza (y el equivalente consolidado se denomina toba de ceniza); un depósito con contenido de 25-75% de ceniza y *lapilli* (2-64 mm) y con <25% de bloques o bombas (>64 mm) se denomina tefra de ceniza y *lapilli* (el equivalente consolidado se denomina toba lapillítica); un depósito con un contenido >75 % de *lapilli* se denomina tefra de *lapilli* (su correspondiente consolidado es lapillita); un depósito con >75 % de bloques o de bombas se denomina tefra de bloques o tefra de bombas (los equivalentes consolidados, brecha piroclástica o aglomerado), respectivamente, y, por último, un depósito que incluye 25 a 75 % de *lapilli*, ceniza y bloques o bombas se denomina tefra de ceniza, *lapilli* y bloques o bombas (el depósito consolidado se denomina toba brechosa).

Adicionalmente, la clasificación composicional del depósito piroclástico (figura 1B) debe acompañar a la denominación de su clasificación granulométrica, por lo que se sugiere utilizar aquella adaptada de Cook (1965, en Wohletz y Heiken, 1992). Según esta clasificación, si el depósito está formado por más del 50% de componentes líticos, se clasifica como lítico; si tiene entre 25 y 50% de líticos, más del 25% de cristales y menos del 50% de vidrio, se le denomina liticocristalino; si tiene entre 25 y 50% de líticos, menos del 25% de cristales y entre 25 y 75% de vidrio, se clasifica como liticovítreo; si tiene entre 10 y 25% de líticos, más del 25% de cristales y menos del 60% de vidrio, es un depósito cristalolítico; si tiene entre 10 y 25% de líticos, menos del 25% de cristales y más del 50% de vidrio, se clasifica como vitreolítico; si tiene menos del 10% de líticos, más del 50% de cristales y menos del 50% de vidrio, se clasifica como cristalino; si tiene menos del 10% de líticos, entre 25 y 50% de cristales y entre 40 y 75% de vidrio, se clasifica como cristalovítreo; si tiene menos del 10% de líticos, entre 10 y 25% de cristales y entre 60 y 90% de vidrio, es vitreocristalino; y si tiene menos del 10% de líticos, menos del 10% de cristales y más del 90% de vidrio, es vítreo. De esta forma, el nombre compuesto de un depósito volcanoclástico podría ser, por ejemplo, tefra lapillítica cristalolítica.

Para la clasificación genética de los depósitos volcanoclásticos se elaboró una síntesis basada en la revisión de varios trabajos (p. ej., Fisher y Schmincke, 1984; Cas y Wright, 1987; McPhie *et al.*, 1993; White y Houghton, 2006; Sohn *et al.*, 2008; Murcia *et al.*, 2013; Sigurdsson, 2015; entre otros), y se re-

Estándar geográfico para mapas geológicos de volcanes colombianos

86

Figura 1. Clasificación de rocas y depósitos piroclásticos

a) Clasificación granulométrica de rocas y depósitos piroclásticos;
 b) Clasificación composicional de rocas y depósitos piroclásticos. Fuente:
 a) modificado de Fisher (1966) y de Le Maitre et al. (2002);
 b) Cook (1965, en Wohletz y Heiken, 1992).

comienda adoptar la clasificación que los divide en primarios (caída piroclástica, corriente de densidad piroclástica, peperita y hialoclastita), y secundarios (avalanchas de escombros y lahares).

En la categoría de los depósitos volcanoclásticos primarios están incluidos los depósitos de caídas piroclásticas generados a partir de una lluvia de fragmentos piroclásticos que tiene su origen en una erupción volcánica. Estos fragmentos se precipitan por gravedad desde una nube o pluma de ceniza que se forma en la parte alta de una columna eruptiva, y termina acumulándose sobre el terreno, manteando la topografía. Los fragmentos que siguen una trayectoria balística y que no son incorporados en la zona convectiva de la columna eruptiva, ni son controlados por el viento son llamados proyectiles balísticos (Fisher y Schmincke, 1984; Cas y Wright, 1987; Sigurdsson, 2000; Schmincke, 2004; Murcia *et al.*, 2013; Sigurdsson, 2015).

También se incluyen en este grupo los depósitos de corriente de densidad piroclástica (CDP). Dicha corriente es descrita como un flujo de fragmentos volcánicos, gases calientes, vapor en fase de condensación y agua líquida, más denso que la atmósfera circundante (Tilling, 1993; Sigurdsson, 2000; Branney y Kokelaar, 2002; Schmincke, 2004; Murcia *et al.*, 2013; Sigurdsson, 2015). Una CDP que se genera a partir de un flujo de alta concentración de fragmentos se denomina CDP concentrada, o flujo piroclástico (Fisher y Schmincke, 1984; Cas y Wright, 1987). La CDP generada a partir de un flujo de baja concentración de fragmentos es denominada CDP diluida, conocida también como oleada piroclástica (Fisher y Schmincke, 1984; Cas y Wright, 1987; McPhie *et al.*, 1993; Valentine y Fisher, 2000; Wilson y Houghton, 2000; Branney y Kokelaar, 2002; Németh y Martin, 2007).

Los depósitos volcanoclásticos primarios se subdividen según el proceso de formación del depósito, el tipo de erupción y los mecanismos de fragmentación, de transporte o de emplazamiento/acumulación, entre otros factores. Por ejemplo, un tipo particular de depósito de caída piroclástica es el depósito de caída de ceniza coignimbrítica, o depósito de caída de ceniza co-CDP (*co-ignimbrite ash fall deposit* o *co-PDC ash fall deposit*), que es el depósito resultante de la acumulación de partículas que se transportan por suspensión en la nube de ceniza acompañante de flujos piroclásticos en movimiento (Fisher y Schmincke, 1984; Cas y Wright, 1987; Sigurdsson, 2015).

Asimismo, los depósitos de CDP se subdividen según los procesos eruptivos que los generan. Entre estos procesos se consideran: el colapso gravitacional de domos, el colapso de columna eruptiva, el desbordamiento por ebullición (*boiling over*) y explosión lateral dirigida (*blast*). Los depósitos de CDP asociados al colapso gravitacional o a la explosión disruptiva de un domo o de un frente de flujo de lava han sido denominados depósitos de bloques y ceniza (*block and ash deposits*, o BAF), y se caracterizan por ser monolitológicos y por el alto contenido de fragmentos líticos densos (Fisher y Schmincke, 1984; Cas y Wright, 1987; Sigurdsson, 2000; Schmincke, 2004; Murcia *et al.*, 2013).

Por otro lado, los depósitos de CDP formados durante erupciones explosivas grandes, de tipo plinianas o subplinianas, que involucran el colapso gravitacional de columnas eruptivas o el desbordamiento por ebullición (boiling over), han sido denominados ignimbritas (Marshall, 1935; Gilbert, 1938; Fisher y Schmincke, 1984; Cas y Wright, 1987; Beresford y Cole, 2000; Beresford et al., 2000; Freundt et al., 2000; Branney y Kokelaar, 2002; Sigurdsson, 2015; Pacheco Hoyos et al., 2018). Éstas se caracterizan por estar compuestas principalmente por fragmentos juveniles que pueden ser desde moderada o altamente vesiculados (pómez o escoria), hasta pobremente vesiculados o densos. Estos últimos se dan especialmente cuando se trata de ignimbritas generadas por erupciones freatomagmáticas (Freundt et al., 2000).

Aunque inicialmente el término ignimbrita solo hacía referencia a los depósitos soldados, actualmente algunos autores también lo utilizan para referirse a depósitos que pueden no estar soldados, dependiendo de la composición, temperatura, tasa de enfriamiento y carga del flujo (Marshall, 1935; Gilbert, 1938; Smith, 1960a y 1960b; Spark *et al.*, 1973; Fisher y Schmincke, 1984; Cas y Wright, 1987; Freundt *et al.*, 2000; Cole *et al.*, 2001; Branney y Kokelaar, 2002; Sigurdsson, 2015).

Se han realizado diversas subdivisiones de los depósitos de CDP diluida. Por ejemplo, para referirse a los depósitos que acompañan a algunos depósitos de flujo piroclástico (CDP concentrada), ya sea en la base o en el tope del flujo, se han usado los términos oleada de terreno (*ground surge deposit*) y oleada de nube de ceniza (*ash cloud surge*), respectivamente (Fisher y Schmincke, 1984; Cas y Wright, 1987; Sigurdsson, 2015). Otro tipo de CDP diluida es el conocido como *blast surge*, que es una oleada piroclástica dirigida, generalmente ocasionada por un colapso de sector o asociada a explosión lateral debido a la despresurización de un criptodomo (Kieffer, 1981; Fisher y Schmincke, 1984; Fisher *et al.*, 1987; Belousov, 1996; Alvarado *et al.*, 2006).

También se utiliza el término oleada basal (*base surge*) para la CDP diluida que se dispersa radialmente desde una columna eruptiva formada por erupción freatomagmática. Esta puede ser húmeda, si la temperatura de emplazamiento es menor a 100 °C, o seca, si la temperatura es mayor de 100 °C (Fisher y Schmincke, 1984; Cas y Wright, 1987; Németh y Martin, 2007; Murcia *et al.*, 2013; Sigurdsson, 2015).

Todas las subdivisiones anteriores, de acuerdo con Branney y Kokelaar (2003) y Murcia *et al.* (2013), están en desuso, por lo que se sugiere discutir los mecanismos de emplazamiento en términos de la definición de corrientes de densidad piroclástica de facies concentrada o de facies diluida que pueden o no estar asociadas a los flujos piroclásticos.

Por otro lado, entre los depósitos volcanoclásticos secundarios se encuentran los depósitos de avalanchas de escombros, producto del colapso de una parte del edificio volcánico, que puede o no estar asociado a una erupción (Siebert, 1984; Ui *et al.*, 2000). Cuando el colapso involucra parte del conducto volcánico, se denomina *colapso de sector*; de lo contrario, se llama colapso de flanco (Scott *et al.*, 2001; Sigurdsson, 2015).

Los depósitos de lahares, incluidos también en la categoría de los depósitos volcanoclásticos secundarios, son generados por flujos densos de fragmentos, saturados en agua, que descienden desde un volcán y remueven e incorporan los materiales disponibles a partir de depósitos preexistentes (Fisher y Schmincke, 1984; Smith y Fritz, 1989; Rodolfo y Arguden, 1991; Smith y Lowe, 1991; Vallance, 2000; Iverson y Vallance, 2001; Sigurdsson, 2015).

El término *lahar* ha sido empleado tanto para describir el flujo como para denominar los depósitos formados por este. Los lahares pueden ser sinerupti-

vos, posteruptivos o no estar relacionados con erupciones; en cualquier caso, requieren de la presencia de agua, de un terreno con pendientes comúnmente mayores de 25° y de abundante material detrítico disponible, que puede provenir de depósitos de flujos de lava, de corrientes de densidad piroclástica, de caídas piroclásticas, de avalanchas de escombros, de otros lahares, de sedimentos de origen glaciar, de coluviones, o de deslizamientos, e incluso de horizontes de suelo. El agua involucrada puede provenir de diversas fuentes: ríos o quebradas, agua intersticial, agua de origen hidrotermal, agua generada por fusión rápida de nieve o hielo, agua subglaciar atrapada, agua de lagos -sean estos cratéricos o no-, así como agua de escorrentía (Vallance y Iverson, 2015), de reservorios de agua almacenada en el sistema de grietas de las rocas (Johnson et al., 2018), o en ocasiones de reservorios artificiales de agua, como las represas (Hancox et al., 2001).

Los lahares pueden ser clasificados en tres tipos: flujo de escombros, si tiene un alto contenido de sedimentos (> 80% en peso o 60% en volumen); flujo hiperconcentrado, si el contenido de sedimentos varía entre 40y 80% en peso o entre 20 y 60% en volumen; o flujo de corriente, si el contenido de sedimentos es menor que el del flujo hiperconcentrado (Pierson y Costa, 1987; Smith y Lowe, 1991; Iverson, 1997; Vallance y Scott, 1997; Pierson, 2005).

Clasificación de geoformas volcánicas

Cono piroclástico (de escoria, de ceniza o cono cinerítico [cinder cone])

Estructura volcánica definida como una colina en forma de cono truncado, con cráter ovalado (Macdonald, 1972; de Silva y Lindsay, 2015), construida a partir de la acumulación secuencial de piroclastos (*Encyclopaedia Britannica*, 2006)². Los fragmentos piroclásticos no se aglutinan en la mayoría de los casos, sino que tienden a acumularse para formar depósitos de *talus* en los flancos del cono en crecimiento. Por lo regular, estos fragmentos son generados en erupciones de explosividad moderada, en ocasiones violentas (Pioli *et al.*, 2008), de tipo estromboliano o de tipo vulcaniano (Gómez Vasconcelos, 2018), que a veces pueden estar acompañadas por erupciones de lava, tipo hawaiano (di Traglia *et al.*, 2009), o por erupciones freatomagmáticas (Wohletz y Sheridan, 1983; Gisbert *et al.*, 2009).

Este tipo de estructura volcánica tiene típicamente un diámetro basal entre 0,5 a 2,5 km, que puede llegar hasta los 6 km, y alcanzar alturas menores o iguales a 300 m, con pendientes de 30 a 33°, aproximadamente (Wood, 1980; Luhr y Simkin, 1993; Vespermann y Schmincke, 2000; Cole *et al.*, 2001; Martin y Németh, 2006a; Valentine *et al.*, 2007; Murtagh *et al.*, 2011; Dóniz Páez, 2015; tabla 2).

Algunos ejemplos de este tipo de conos son el volcán Paricutín, en el Campo monogenético Michoacán-Guanajuato, de México (Hasenaka y Carmichael, 1987); el cono Croscat, en el Campo monogenético La Garrotxa, en España (Martí y Mallarach, 1987); el volcán La Horqueta, en el Campo monogenético San Agustín, en Colombia (Zuluaga, 2011), y el cono La Guaca, en el Complejo volcánico Galeras (Calvache, 1995).

Anillo piroclástico (tuff ring)

Es una estructura volcánica de cráter amplio, desarrollada a partir de erupciones freatomagmáticas, en las que el magma interactúa con cuerpos de agua someros como lagos, en ambientes fluviales o mares poco profundos (Camus *et al.*, 1981).

Esta estructura es similar al *maar*; sin embargo, en contraste con éste, no desarrolla una excavación en el basamento subyacente, debido a que la cantidad de agua involucrada es menor, además la proporción de fragmentos (producto de la interacción magma/ agua) de material de la roca encajante es mínima, y por lo regular se forma un anillo alrededor del cráter a partir de la acumulación del material de caídas piroclásticas y de corrientes de densidad piroclástica, principalmente oleadas basales (Lorenz, 1986; White y Ross, 2011).

Este tipo de geoforma desarrolla flancos (véase la tabla 2) con pendientes que varían desde 2° hasta

² Encyclopaedia Britannica. (2006). Geology [varios temas]. https://www. britannica.com/science/pyroclastic-cone

10° (Kereszturi y Németh, 2012a; de Silva y Lindsay, 2015), y alturas menores o iguales a 50 m (Lorenz, 1985; Kereszturi y Németh, 2012b). Las dimensiones y las relaciones morfométricas de estos anillos piroclásticos, exceptuando su profundidad, son similares a las de los maares, a los que suelen estar asociados (Wohletz y Sheridan, 1983; de Silva y Lindsay, 2015).

Algunos ejemplos de estas estructuras son los anillos de Hverfjall, en el norte de Islandia (Lorenz, 1986); Tepexitl, en el Cinturón volcánico oriental de México (Austin Erickson y Carrasco Núñez, 2011) y Puketarata, en la zona volcánica de Taupo, en Nueva Zelanda (Brooker *et al.*, 1993).

Maar

Esta geoforma ha sido definida como una depresión circular o cráter excavado en la topografía preexistente, formada por procesos de erupciones freatomagmáticas muy violentas, sucesivas, en las que quedan expuestas rocas más antiguas en las paredes del propio cráter (Lorenz, 1985) y que ocasionan el derrumbamiento de las mismas.

Durante la formación de un *maar*, la interacción del magma ascendente con aguas provenientes del subsuelo (ya sea de acuíferos o de sedimentos saturados) vaporiza el agua, lo que produce violentas explosiones (Wohletz y Sheridan, 1983; Lorenz, 1986; de Silva y Lindsay, 2015). Una vez que ha cesado la erupción, y el nivel freático se restablece, pueden formarse lagos cratéricos.

Debajo de este tipo de depresiones volcánicas se desarrollan estructuras con forma de embudo o cono invertido denominadas diatremas, formadas durante el proceso eruptivo, como resultado de la excavación del sustrato. Estas estructuras se rellenan de material juvenil y de fragmentos de la roca encajante/basamento (de Silva y Lindsay, 2015). Los maares suelen estar rodeados de anillos con pendientes bajas, y estar conformados por material piroclástico muy fino y escombros que resultan de la explosividad del evento eruptivo (Lorenz, 1986; Sigurdsson, 2015).

De manera similar a los anillos piroclásticos, los maares son el resultado de la acumulación, alrededor de un cráter, de numerosas capas (de espesor milimétrico hasta decimétrico) de material piroclástico proveniente de caídas y de corrientes de densidad piroclástica diluida, pero con una mayor proporción de fragmentos de roca del basamento. Esta diferencia con los anillos piroclásticos se debe a la profundidad que alcanza la excavación vertical del cráter, que llega a formar profundas diatremas, de 2000 a 2500 m, como es el caso de las diatremas kimberlíticas presentes en Suráfrica y Alemania (Lorenz, 1986).

Respecto al diámetro de los cráteres, en los maares pueden variar desde menos de 100 m hasta los 2000 o 3000 m, aproximadamente (Lorenz, 1985; Lorenz, 1986; de Silva y Lindsay, 2015). Las dimensiones y relaciones morfométricas (véase la tabla 2) que usualmente pueden alcanzar son similares a las que presentan los anillos piroclásticos (Kereszturi y Németh, 2012a). Ejemplos de estructuras volcánicas de este tipo son el cráter Elegante, en el Campo volcánico El Pinacate, en el desierto de Sonora, México (Gutmann, 1976); el maar de San Diego, en el departamento de Caldas, Colombia (Toro, 1989; Borrero et al., 2016); el maar de Yerbabuena, en el departamento del Cauca (Torres et al., 2016); y el cráter Atexcac, del Cinturón volcánico mexicano (Carrasco Núñez et al., 2007).

Cono de toba (tuff cone)

Esta estructura se desarrolla como resultado de la interacción del magma con cantidades excesivas de agua durante una erupción (erupciones hidromagmáticas/surtseyanas). El agua que interactúa con el magma puede provenir de los niveles someros del océano o de reservorios (acuíferos) cercanos a la superficie (Wohletz y Sheridan, 1983; Davidson y de Silva, 2000).

Este tipo de estructura volcánica es construida a partir del apilamiento o acumulación del material de caídas piroclásticas y de corrientes de densidad piroclástica (oleadas húmedas), que se desplazan por cortas distancias desde la fuente, y forman, así, el típico y empinado cono de toba (Wohletz y Sheridan, 1983). Después de emerger, el edificio puede convertirse en un cono volcánico de pendientes relativamente empinadas, mayores de 25° en cercanías del cráter (Ves-

Tipo de geoforma monogenética	W _{cr} Diámetro del cráter o del borde del cráter (km)	W _{co} Promedio diámetro del cono (km)	W _{cr} /W _{co}	H _{co} Altura del cono o del borde del cráter (m)	H _{co} /W _{co}	Pendientes laderas (Ángulo [°])
Cono de escoria (cinder cone)	0,5-6	0,8	0,4	≤ 300	0,18	25-38 (~30-33)
Anillo piroclástico (<i>tuff ring</i>)	0,2-3 Promedio: 0,7-0,8	1,6	0,6	< 50	0,02	2-10 Subhorizontal hasta 20 (< 25)
Maar	0,2-3 Promedio: 0,7-0,8	1,38	0,6	< 30. Profundidad: ≤ 300 10 a > 500	0,02	Subhorizontal hasta 20 (< 25)
Cono de salpicadura (spatter cone)	0,08	0,36	0,22	> 33	_	_
Cono de toba (<i>tuff cone</i>)	< 0,1-1,5	1,38	0,6	50-330	0,02	20-30
Volcán en escudo pequeño (small shield volcano/scutulum shield)	_	3-10	—	300-700	_	10

Tabla 2. Dimensiones y relaciones morfométricas de las geoformas volcánicas monogenéticas

Fuente: modificado a partir de Wood (1979), Kereszturi y Németh (2012a; 2012b), de Silva y Lindsay (2015) y Grosse y Kervyn (2018).

permann y Schmincke, 2000); sus bordes pueden alcanzar los 300 m de altura, y el cráter suele tener menos de 5 km de diámetro.

Cuando las erupciones son submarinas, dicha acumulación piroclástica puede emerger y convertirse en una isla, como en el caso de la isla Surtsey, de donde toman el nombre las erupciones surtseyanas (Kokelaar y Durant, 1983; Kereszturi y Németh, 2012a).

Las dimensiones morfométricas (véase la tabla 2) de este tipo de cono son similares a las de los anillos piroclásticos y a las de los maares (Kereszturi y Németh, 2012a; 2012b). Los conos de toba son considerados una variante de los anillos piroclásticos, pero con pendientes mayores (de Silva y Lindsay, 2015).

Ejemplos de conos de toba en el mundo son el cono Metis Shoal, en las islas Tonga, del Pacífico sur (Schmidt y Schmincke, 2000); el cerro Colorado, en el Campo volcánico Pinacate, de México (Martin y Németh, 2006b), y el volcán San Roque, en las islas Azores, de Portugal (Zanon *et al.*, 2009).

Cono de salpicadura (spatter cone)

Esta geoforma se produce a partir de la acumulación y el soldamiento de piroclastos formados por el desprendimiento de fragmentos a manera de salpicaduras o *spatters* a partir de flujos de lava emplazados a lo largo de focos de emisión elongados, en erupciones fisurales (Davidson y de Silva, 2000; Parfitt, 2004; Valentine y Connor, 2015). Estos flujos de lava pueden estar asociados a eventos explosivos moderados, pero continuos, como son las erupciones de tipo hawaiano. El material expulsado está parcialmente fundido, es altamente maleable y deformable, por lo que puede soldarse, aglutinarse o sufrir coalescencia debido a las altas temperaturas de emplazamiento. Estos fragmentos tienden a acumularse en pilas a manera de cono, donde se pueden alternar tanto las salpicaduras de lava como los flujos provenientes de la misma fuente de lava.

En cuanto a dimensiones, los conos de salpicadura (véase la tabla 2) llegan a tener pocas decenas de metros de altura, y diámetros menores de 100 m (Head y Wilson, 1989; Kereszturi y Németh, 2012b). Los ejemplos típicos de este tipo de geoformas son los conos de salpicadura de los volcanes Mauna Iki y Kilauea Iki, en Hawái (Davidson y de Silva, 2000).

Fisura volcánica (volcanic fissure)

Es la expresión superficial de una fractura o grieta (USGS, 2015)³; es de forma linear alargada y aplanada, y puede alcanzar decenas de kilómetros de largo con pocos metros de ancho (V*olcano Discovery*, 2004). Las fisuras, comúnmente, tienen actividad explosiva o efusiva simultáneas y pueden generar mu-

³ United States Geological Survey (USGS). (2015). Volcanic hazards, glossary. https://volcanoes.usgs.gov/vsc/glossary/fissure.html

rallas de salpicadura en sus paredes (Camp, 2010)⁴. A lo largo de las fisuras se pueden desarrollar varios centros eruptivos (Self *et al.*, 2015) como resultado de la migración de la actividad volcánica (GVP, 2013)⁵. Esto se ve reflejado en la formación de pequeños conos de salpicadura alineados (Volcano Discovery, 2004)⁶, como por ejemplo en la erupción de Eldfell, en Islandia (Wolf y Sumner, 2000).

Por otro lado, en los volcanes compuestos, la presencia de las fisuras está controlada por la tectónica de la zona, que permite el ascenso de magma por medio de estas zonas de debilidad. Estas fisuras generalmente se encuentran en las laderas del volcán (p. ej., McGuire *et al.*, 1989).

Domo de lava (lava dome)

Catalogado como un tipo de geoforma volcánica producto de vulcanismo de composición que varía entre intermedia y félsica, se forma por la acumulación de extrusiones de flujos lávicos de altas viscosidades a partir de una fuente de emisión. El apilamiento de estas lavas es favorecido en algunos casos por la topografía plana circundante, por la influencia restrictiva de las paredes circundantes del cráter o por la alta viscosidad del magma (Blake, 1990). Con frecuencia, estas lavas son muy cristalinas, aunque se conocen cuerpos dómicos de obsidiana (vítreos), como el Cerro Azafatudo, en el Complejo Volcánico Sotará (Pulgarín *et al.*, 2010). Morfológicamente se reconocen diversas geoformas de domos:-

Domo torta (low dome). Es el tipo más común de domo, de forma achatada y redondeada a manera de torta, de suaves pendientes, con cimas rocosas pseudocolumnares. Algunos de estos domos tienen estructura interna hojosa-concéntrica, que indica un crecimiento endógeno (Blake, 1990; de Silva y Lindsay, 2015). Sus suaves pendientes y una escasa acumulación de depósitos de *talus* sugieren que son formados por magmas poco viscosos. Un ejemplo de este tipo de domos es el Chillahuita, en Chile (de Silva y Lindsay, 2015).

Domo colada (coulée). Geoforma generada a partir del derrame o elongación de lavas extruidas desde un domo, que se transforman en flujos de lava, en cuyo caso se denominan coulée (Fink y Anderson, 2000). Se consideran fundamentalmente una transición de domos a flujos de lava (Calder et al., 2015).

Estas lavas fluyen por gravedad, pero el esfuerzo de cizalla sobrepasa la resistencia a fluir, lo que genera una morfología externa similar a piel de elefante, y hace que cada nuevo flujo empuje al anterior, lo que da lugar a una expresión superficial con ondulaciones que imprimen al flujo la apariencia de ojivas. Esta morfología depende de la pendiente del terreno (Blake, 1990; de Silva y Lindsay, 2015). Buenos ejemplos de esta forma volcánica son el domo Chao, en Chile (de Silva y Lindsay, 2015), y en Colombia están el domo colada del Complejo volcánico Sotará (Pulgarín et al., 2010), el domo La Laguna en el Complejo volcánico Nevado del Ruiz (Martínez et al., 2014) y el domo El Cordado, en el Complejo volcánico Paramillo de Santa Rosa (Pulgarín et al., 2017), entre otros.

Domo peleano o en espina. Domo de forma entre cónica y circular con topografía empinada y superficies relativamente lisas enmarcadas por espinas muy empinadas (verticalizadas), que le imprimen un aspecto escarpado y brechoso. Estas espinas generalmente colapsan, lo que genera un depósito de ladera (talus) que rodea este tipo de domos y da la apariencia de que su amplitud excede las dimensiones del conducto (Blake, 1990; de Silva y Lindsay, 2015). Algunos de estos domos se encuentran en el volcán Mount Pelée, en la isla Martinica, de Las Antillas (Siebert et al., 2015) y en el volcán Santiaguito, en Guatemala (Fink y Anderson, 2000). En Colombia, hay algunas espinas en los domos recientes del volcán Doña Juana (Pulgarín et al., 2008).

⁴ Camp, V. (2010). How volcances work, Fissure eruptions. Department of Geological Sciences, San Diego State University. http://sci.sdsu.edu/how_ volcances_work/Fissure.html

⁵ Global Volcanism Program, Smithsonian Institution (GVP). (2013). Types and processes gallery – Fissure vents. https://volcano.si.edu/learn_galleries. cfm?p=5

⁶ Volcano Discovery. (2004). Ilustrated volcano glossary. https://www. volcanodiscovery.com/photoglossary/fissure-vent.html

Domo en pistón (upheaved dome). Es la geoforma resultante de la extrusión de lava a manera

de pistón o dique. Estas extrusiones sobresalen por encima de la superficie y ocasionalmente arrastran consigo material de las rocas encajantes (Blake, 1990; de Silva y Lindsay, 2015). Dada su morfología de pendientes abruptas, pueden llegar a ser muy inestables y colapsar rápidamente luego de su emplazamiento. Un ejemplo de este tipo de geoformas es el domo O'Usu, en el volcán Usu, de Japón (Blake, 1990). En Colombia, un ejemplo es el domo del volcán Sucubún y otros domos del volcán Sotará (Pulgarín *et al.*, 2010).

*Volcán en escudo pequeño (*small shield volcano/scutulum shield)

Geoforma volcánica formada por la acumulación casi circular de numerosos flujos de lava $p\overline{a}hoehoe$ (Hasenaka, 1994; Rossi, 1996) producidos en erupciones hawaianas, que se esparcen radialmente desde un foco central. Es similar al escudo de un guerrero (Simkin y Siebert, 1994), razón por la cual también es llamado *scutulum*, que en latín significa *escudo* (de Silva y Lindsay, 2015).

Su morfología se caracteriza por pendientes entre suaves y muy suaves, menores o iguales a los 10° (Grosse y Kervyn, 2018), con un diámetro basal considerable (3-10 km) y alturas de entre 300 y 700 m (véase la tabla 2).

Estos volcanes están compuestos casi en su totalidad por flujos de lava, mientras que la presencia de depósitos piroclásticos es escasa: <1 % (Wohletz y Sheridan, 1983). En algunos casos, en los últimos estadios de la erupción, si se llega a formar un lago de lava en la cima del edificio, puede aparecer un cráter remanente, una vez que se ha drenado dicho lago (Rossi, 1996).

Ejemplos de este tipo de volcán son El Metate, en el Campo volcánico Michoacán-Guanajuato, de México (Mahgoub *et al.*, 2017), y algunos volcanes en la península Reykjanes, en Islandia (Pedersen y Grosse, 2014).

Volcán compuesto

Se describe como una estructura volcánica en forma de cono más o menos simétrico, con una altura que

oscila entre 1 y 3 km, con pendientes de 10 a 30°, y una base de varios kilómetros de diámetro. Este tipo de volcanes poligenéticos es formado por erupciones repetidas desde una sola o varias fuentes de emisión relacionadas con el mismo sistema magmático. Normalmente, los volcanes compuestos tienen una historia eruptiva compleja (Lockwood y Hazlett, 2010), dada por períodos de construcción (erupciones lávicas, generación de domos, emplazamiento de depósitos piroclásticos, etc.) y períodos destructivos (colapso de sector, colapso de flanco, explosión de domos, etc.). Se pueden diferenciar, a grandes rasgos, tres morfologías principales (de Silva y Lindsay, 2015):

- Conos grandes empinados, como el monte Fuji, en Japón (Aoki *et al.*, 2019) o El Misti, en Perú (Mariño *et al.*, 2006). En Colombia, un ejemplo de este tipo de morfología es el volcán Nevado del Tolima (Méndez, 1997; Cepeda y Murcia, 1988).
- Edificios asimétricos más anchos o con forma de cresta (subcono), que suelen tener una cima más amplia y una altura menor (Grosse *et al.*, 2009), como el volcán Lascar, en Chile (Gardeweg *et al.*, 2011), o el Ruapehu, en Nueva Zelanda (Hackett, 1985). En Colombia, un ejemplo es el Complejo volcánico de Paramillo de Santa Rosa (Pulgarín *et al.*, 2017).
- Macizos construidos a partir de edificios superpuestos que forman un macizo distinto, separado de otros volcanes grandes, como el volcán Aucanquilcha, en Chile (González Ferrán,1995), o el Coropuna, en Perú (Mariño *et al.*, 2016). En Colombia podrían mencionarse como ejemplos de este tipo de morfología el volcán Cerro Bravo (Monsalve y Nuñez, 1992), el volcán Puracé (Monsalve y Pulgarín, 1993; Monsalve *et al.*, 2012), el Complejo volcánico Galeras (Calvache, 1995), el Complejo volcánico Nevado del Huila (Correa Tamayo y Pulgarín, 2002; Correa Tamayo, 2009), el Complejo volcánico Nevado del Ruiz (Martínez *et al.*, 2014), el Complejo volcánico Sotará (Pulgarín *et al.*, 2010), entre otros.

Los volcanes compuestos pueden tener algunas estructuras volcánicas monogenéticas asociadas, a

manera de conos satélites (normalmente conos piroclásticos) en sus flancos, mientras que en la cima del volcán suelen formarse domos de lava, cráteres o conos piroclásticos. Esta diversidad de estructuras volcánicas se caracteriza por tener una gran variedad de productos volcánicos, en comparación con otros tipos de volcanes (Davidson y de Silva 2000). El término volcán compuesto se usa como sinónimo de los términos estratovolcán, cono de lava, cono compuesto o centro volcánico (de Silva y Lindsay, 2015). Ejemplos clásicos de estratovolcanes son *Mount Saint Helens* (EE.UU.), Popocatépetl (México), Pinatubo (Filipinas) y El Teide Pico Viejo (Tenerife, islas Canarias).

Volcán escudo

Es una geoforma volcánica con pendientes menos pronunciadas que las de un volcán compuesto. Tiene cima amplia y aproximadamente redondeada (Lockwood y Hazlett, 2010), construida principalmente con flujos de lava de composición basáltica, cuya fuente eruptiva puede estar en la cima del volcán o en los flancos de este (de Silva y Lindsay, 2015). En esta clasificación se incluyen algunos volcanes compuestos de composición bimodal (basáltica-riolítica) que pueden tener una altura de 1,5 km y un diámetro de cráter de 7 y 12 km. Algunos volcanes escudo tienen conos piroclásticos en su cima, como es el caso de algunos volcanes en el Campo de Michoacán-Guanajuato, México (Hasenaka y Carmichael, 1985).

Según Grosse y Kervyn (2018), los volcanes escudo tienen tres características clásicas principales: 1) pendientes suaves, 2) están constituidos principalmente por flujos de lava, 3) son de composición basáltica (Walker, 2000; Francis y Oppenheimer, 2004; Lockwood y Hazlett, 2010), aunque también se han documentado algunos volcanes escudo andesíticos (Hasenaka, 1994) y traquíticos (Webb y Weaver, 1975, en Grosse y Kervyn, 2018).

Se proponen tres tipos de volcanes escudo comunes (Whitford Stark, 1975, en Grosse y Kervyn, 2018; Pike, 1978, en Grosse y Kervyn, 2018; de Silva y Lindsay, 2015): 1) hawaiano, caracterizado por tener una cima redondeada, pendientes de 4 a 8°, por lo regular tienen un cráter central y normalmente son los volcanes escudo más grandes, en los que predominan las erupciones de tipo fisural; 2) tipo Galápagos, con una pendiente promedio de 4° y una cima plana con un cráter profundo; 3) islándico, que es el tipo de volcán escudo más pequeño, con pendientes de apenas 1° en promedio, un diámetro pequeño, que no sobrepasa los 10 km, y pocos centenares de metros de elevación.

Calderas

Otro de los principales tipos de geoformas volcánicas primarias, además de los volcanes monogenéticos y poligenéticos, son las calderas. En Colombia se tiene como ejemplo representativo de este tipo de estructura volcánica, la caldera de Paletará (Torres *et al.*, 1999).

Una caldera corresponde a una gran depresión, frecuentemente semicircular (Acocella *et al.*, 2012), generada por el colapso del techo de un reservorio de magma o cámara magmática durante una erupción catastrófica que produce decenas a miles de kilómetros cúbicos de material piroclástico, y que normalmente tiene un escarpe o una elevación topográfica que rodea dicha depresión. La composición y el volumen de los materiales que la conforman son de una amplia variedad (Branney y Acocella, 2015). Clásicamente se ha aplicado el término caldera a estructuras con diámetro mayor de 1,6 km (Macdonald, 1972).

Muchos procesos afectan las formas de las calderas; por lo tanto, es difícil categorizarlas en tipos: cada caldera es única, dadas las variables que afectan la estructura. Según Cole et al. (2005), estas variables incluven: marco tectónico, estructuras preexistentes, composición del magma, geometría y profundidad de la cámara magmática, tamaño de la erupción, número y simetría de los eventos de colapso, y si ocurrieron o no procesos de inflación o si hubo resurgimiento volcánico. Sin embargo, algunos autores (p. ej., Branney y Acocella, 2015) han clasificado las calderas, según los procesos que envuelven su generación y su evolución, en: 1) calderas en volcanes escudo basálticos, 2) calderas en volcanes compuestos de composición intermedia, y 3) calderas de ignimbritas riolíticas, que se forman en erupciones explosivas de grandes volúmenes.

La forma de una caldera es muy importante y, por lo tanto, debe ser caracterizada o descrita muy objetivamente, evitando inferencias anticipadas (Cole *et al.*, 2005; Acocella, 2007). Por tal razón, Cole *et al.* (2005) sugieren que los términos propuestos originalmente por Lipman (2000) sean reemplazados de la siguiente manera: *piston* por *symmetric collapse* o por *single block collapse; trapdoor* por *asymmetric collapse*, y *piecemeal* por *multiple block collapse*.

Anexo 2. Ejemplo de salida gráfica aplicada al mapa geológico del Complejo volcánico Paramillo de Santa Rosa

Anexo 3. Catálogo de objetos

Introducción (*)

Los temas definidos en este catálogo corresponden a los datos geográficos que conforman el mapeo geológico de volcanes en el territorio colombiano. Estos temas también comprenden información tabular espacializable.

Definiciones, siglas y abreviaturas (*)

No aplica

Contenido del catálogo (*)

El catálogo de objetos y símbolos describe las especificaciones de datos de tipo vectorial y tablas alfanuméricas asociadas, utilizados para la representación de los mapas geológicos de volcanes colombianos. Este catálogo de objetos contiene tres temas: Geología, Geomorfología y Misceláneos. El tema Geología está compuesto por dos grupos Geologia_Estructural y Geologia_Volcanes. A su vez, el grupo Geologia_ Volcanes contiene dos objetos geográficos, que son la Unidad_Lito_Volcanica y la Unidad_Lito_Volcanica_ HE, cada uno con sus respectivos atributos, que representan la variedad litológica y la historia eruptiva.

El tema Geomorfología contiene dos grupos: Jerarquia_Geomorfologica y Rasgos_Geomorfologicos, que contienen la información relacionada con las unidades y rasgos geomorfológicos (a nivel de puntos, líneas y polígonos), utilizados en los mapas de geología volcánica.

En el tema Misceláneos se presentan los grupos: Mapa_Base, Leyenda_Geologica, Corte_Geologico, Estaciones, Mapa_Localizacion, Indice_Participacion e Isolineas. Específicamente, en el grupo Leyenda_Geologica se tienen dos objetos geográficos, Poligono_Leyenda_GeoVol y Linea_Leyenda_Geo. Igualmente, en el grupo Corte_Geologico se tienen dos objetos, Unidad_Lito_Vol_Corte y Litosoma_Vol_Corte. Finalmente, el grupo Estaciones contiene el objeto geográfico Estacion_Campo, en el que hay cuatro tablas asociadas: Libreta_Campo, Foto_Campo, Muestra, Tipo_Analisis y Datacion_Radiometrica.

(*): Objeto obligatorio (C): Objeto condicional

Estándar geográfico para mapas geológicos de volcanes colombianos

98

Identificación del catálogo (*)

Nombre (*)	Catálogo de objetos y símbolos para la cartografí	Catálogo de objetos y símbolos para la cartografía geológica de volcanes ubicados en el territorio colombiano					
Alcance (*)	Los temas definidos en este catálogo corresponden a los datos geográficos que conforman el mapeo geológico de volcanes en el territorio colombiano. Estos temas también comprenden información tabular espacializable						
Número de la versión (*)	1.0						
Fecha de la versión	Diciembre de 2022						
Tipo de fecha	Publicación						
Productor (*)	·						
Entidad (*)	Servicio Geológico Colombiano	Servicio Geológico Colombiano Ciudad (*) Bogotá					
Cargo (*)	Grupo de Geología de Volcanes	Departamento (*)	Cundinamarca				
Tipo de rol (*)	Autor	País (*)	Colombia				
Dirección (*)	Diagonal 53 n.° 34-53 Teléfono (*) +57(601) 2200 200						
Idioma (*)	Español						
Código identificador							

Tema (*)

Nombre (*)	Geología
Código (*)	01
Definición (*)	Ciencia que estudia la composición y la disposición de los materiales que constituyen la litosfera terrestre, su naturaleza, su situación y las causas o fenómenos que originan esa disposición y de los efectos de los agentes que la alteran
Alias (*)	Geología
Grupos	Geología de Volcanes, Geología Estructural*

Grupo (*)

Nombre (*)	Geologia_Volcanes
Código (*)	0104
Definición (*)	Rama de la geología que se ocupa de la cartografía geológica de las áreas volcánicas, de los estudios geomorfológicos, estructurales y petrológicos asociados; que incluyen la caracterización de los depósitos volcánicos, su relación estratigráfica y la determinación de los mecanismos eruptivos y de transporte. Además, el análisis e interpretación de la actividad histórica, para establecer la evolución e historia eruptiva de los volcanes activos y potencialmente activos en el territorio colombiano
Alias (*)	Geología de volcanes
Objetos (*)	Elemento_Volcanico_PT, Unidad_Lito_Volcanica, Unidad_Lito_Volcanica_HE

Estándar geográfico para mapas geológicos de volcanes colombianos

99

Objeto (*)

Nombre (*)	Elemento_Volcanico_PT
Código (*)	0104001
Definición (*)	Elementos cartográficos volcánicos representados por un punto
Alias (*)	Elemento Volcánico PT
Subtipos	

Atributos

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
ID_ElemVolcanicoPT	Código	010400101	Código	Text	15		Obligatorio	
Tipo	Тіро	010400102	Тіро	Text	15		Obligatorio	Dom_ElementosVolcanicosPT
Nombre	Nombre	010400103	Nombre	Text	50		Opcional	
Anotacion	Anotación	010400104	Anotación	Short Integer	2		Opcional	Dom_AnotElemeVolcanicoPT
Comentarios	Comentarios	010400105	Comentarios	Text	255		Opcional	
Visibilidad	Visibilidad	010400106	Visibilidad	Short Integer	2		Opcional	Dom_Visibilidad
Cita_Bibliografica	Cita Bibliográfica	010400107	Cita bibliográfica	Text	200		Opcional	
Referencia_Bibliografica	Referencia Bibliográfica	010400108	Referencia bibliográfica	Text	600		Opcional	

Dominios (C)

Dominio (*)	Etiqueta (*)	Código	Definición
Dom_ElementosVolcanicosPT	Volcán activo	0104001021	Volcán activo
	Volcán inactivo	0104001022	Volcán inactivo

Dominio (*)	Etiqueta (*)	Código	Definición
Dom_AnotElemeVolcanicoPT	No aplica	1	No aplica
	D	2	D
	Ch	3	Ch
	С	4	С

Dominio (*)	Etiqueta (*)	Código	Definición
Dom_Visibilidad	Si	1	Si
	No	0	No

Objeto (*)

Nombre (*)	Unidad_Lito_Volcanica
Código (*)	0104004
Definición (*)	Cuerpo de roca bien definido y reconocido con base en sus propiedades litológicas y estratigráficas
Alias (*)	Unidad litoestratigráfica volcánica
Subtipos	

Atributos (*)

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
ID_UL	Código unidad litoestratigráfica	010400401	Código identificador de la unidad litoestratigráfica	Text	50		Obligatorio	
Nombre	Nombre unidad litoestratigráfica	010400402	Nombre propio de la unidad litoestratigráfica	Text	100		Obligatorio	
Тіро	Tipo unidad litoestratigráfica	010400403	Tipo de unidad litoestratigráfica de acuerdo a la jerarquías propuestas por Salvador (1994)	Short Integer	2		Obligatorio	Dom_TipoUL
Edad_Absoluta	Edad absoluta	010400404	Edad absoluta de la unidad litoestratigráfica	Text	50		Opcional	
Edad_Relativa	Edad relativa	010400405	Edad relativa de la unidad litoestratigráfica	Text	50		Opcional	
Litosoma	Litosoma	010400406	Litosoma al cual está asociado la unidad litoestratigráfica	Text	50		Obligatorio	
Acronimo	Acrónimo	010400407	Acrónimo para la identificación de la unidad litoestratigráfica	Text	50		Obligatorio	
Descripcion	Descripción	010400408	Descripción de la unidad litoestratigráfica	Text	254		Opcional	
N_Carta_Colores	Número carta de colores	010400409	Número de la carta de colores utilizado para representar la unidad litoestratigráfica	Text	15		Opcional	
N_Carta_Achurados	Número carta de achurados	010400410	Número de la carta de achurados utilizado para representar la unidad litoestratigráfica	Text	15		Opcional	

Dominios (C)

Dominio	Etiqueta	Código	Definición
Dom_TipoUL	Supergrupo	1	Supergrupo
	Grupo	2	Grupo
	Formación	3	Formación
	Miembro	4	Miembro
	Unidad informal	5	Unidad informal

Objeto (*)

Nombre (*)	Unidad_Lito_Volcanica_HE
Código (*)	0104005
Definición (*)	Cuerpo de roca bien definido y reconocido con base en sus propiedades litológicas y estratigráficas que es representado en los mapas esquemáticos de la historia eruptiva
Alias (*)	Unidad litoestratigráfica volcánica historia eruptiva
Subtipos	

(*): Objeto obligatorio (C): Objeto condicional

Atributos (*)

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
ID_UL_HE	Código unidad litoestratigráfica	010400501	Código identificador de la unidad litoestratigráfica representada en la historia eruptiva	Text	50		Obligatorio	
Nombre	Nombre unidad litoestratigráfica	010400502	Nombre propio de la unidad litoestratigráfica representada en la historia eruptiva	Text	100		Obligatorio	
Тіро	Tipo unidad litoestratigráfica	010400503	Tipo de unidad litoestratigráfica representada en la historia eruptiva	Short Integer	2		Obligatorio	Dom_TipoUL
Acronimo	Acrónimo	010400504	Acrónimo para la identificación de la unidad litoestratigráfica representada en la historia eruptiva	Text	50		Obligatorio	
Edad_Absoluta	Edad absoluta	010400505	Edad absoluta de la unidad litoestratigráfica	Text	50		Opcional	
Edad_Relativa	Edad relativa	010400506	Edad relativa de la unidad litoestratigráfica	Text	50		Opcional	
N_Carta_Colores	Número carta de colores	010400507	Número de la carta de colores utilizado para representar la unidad litoestratigráfica	Text	15		Opcional	
N_Carta_Achurados	Número carta de achurados	010400508	Número de la carta de achurados utilizado para representar la unidad litoestratigráfica	Text	15		Opcional	

Dominios (C)

Dominio	Etiqueta	Código	Definición
Dom_TipoUL	Supergrupo	1	Supergrupo
	Grupo	2	Grupo
	Formación	3	Formación
	Miembro	4	Miembro
	Unidad informal	5	Unidad informal

Tema (*)

Nombre (*)	Geomorfología
Código (*)	02
Definición (*)	Ciencia que trata con la configuración general de la superficie de la Tierra; específicamente, es el estudio de clasificación, descripción, naturaleza, origen y desarrollo de las formas actuales de la Tierra y su relación con las estructuras que subyacen, y de la historia de los cambios geológicos como han quedado registrados con estos rasgos superficiales
Alias (*)	Geomorfología
Grupos	Jerarquía Geomorfologica, Rasgos Geomorfológicos

Grupo (*)

Nombre (*)	Jerarquía Geomorfológica
Código (*)	0201
Definición (*)	Categorías geomorfológicas homogéneas fáciles de mapear a la escala requerida en una región en particular. Son la expresión superficial del terreno, de la interacción dependiente de los materiales que las constituyen y su disposición estructural, de los procesos geomórficos que interactúan según el ambiente morfogenético especifi- co donde se desarrollan, y el tiempo de duración de la acción de los mencionados procesos
Alias (*)	Jerarquía Geomorfológica
Objetos (*)	Unidad Geomorfológica, Subunidad Geomorfológica

(*): Objeto obligatorio (C): Objeto condicional

Objeto (*)

Nombre (*)	Unidad_Geomorfologica
Código (*)	0201004
Definición (*)	Geoforma individual genéticamente homogénea, generada por un proceso geomórfico construccional o destruccional (acumulación o erosión), típico de un ambiente morfogenético dado. Está determinada con criterios genéticos, morfológicos y geométricos en función de la escala de trabajo propuesta
Alias (*)	Unidad Geomorfológica
Subtipos	

Atributos (*)

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
ID_UGmf	Código unidad geomorfológica	020100401	Código identificador de la unidad geomorfológica	Text	50		Obligatorio	
Nombre_UGmf	Nombre unidad geomorfológica	020100402	Nombre de la unidad geomorfológica	Text	12		Obligatorio	Dom_UnidadesGmf
Clasificacion_Ambiente	Ambiente Morfogenético	020100403	Clasificación de la unidad geomorfológica según su ambiente	Short Integer	2		Obligatorio	Dom_AmbientesMorfogeneticos
N_Carta_Colores	Número carta de colores	020100404	Número del color utilizado para representar la unidad geomorfológica	Text	15		Obligatorio	
N_Carta_Achurados	Número carta achurados	020100405	Número de la carta achurados	Text	15		Opcional	
Descripcion	Descripción unidad geomorfológica	020100406	Descripción unidad geomorfológica	Text	100		Obligatorio	
Proceso_Genetico_ UGmf	Proceso genético unidad geomorfológica	020100407	Proceso genético de la unidad geomorfológica	Short Integer	1		Opcional	Dom_ProcesoGenUGmf
Modelado_UGmf	Modelado unidad geomorfológica	020100408	Modelado de la unidad geomorfológica	Short Integer	1		Opcional	Dom_ModeladoUGmf
Edad_UGmf	Edad unidad geomorfológica	020100409	Edad unidad geomorfológica	Text	50		Opcional	
N_Foto_Aerea	Número fotos aéreas	020100410	Número de las fotos aéreas que contienen la unidad geomorfológica	Text	150		Opcional	
N_Vuelo_FA	Número vuelo	020100411	Número de vuelo al cual pertenecen las fotos áreas que contienen la unidad geomorfológica	Text	150		Opcional	
Escala_FA	Escala fotos aéreas	020100412	Escala de las fotos aéreas que contienen la unidad geomorfológica	Text	50		Opcional	
N_Imagen_Satelital	Número imagen satelital	020100413	Identificador de las imágenes satelitales que contienen la unidad geomorfológica	Text	150		Opcional	
Observaciones	Observaciones	020100414	Observaciones adicionales	Text	254		Opcional	

Estándar geográfico para mapas geológicos de volcanes colombianos

103

Dominios (C)

Dominio (*)	Etiqueta (*)	Código	Definición
	Denudacional	1	Ambiente denudacional
	Morfoestructural	2	Ambiente morfoestructural
	Fluvial y lagunar	3	Ambiente fluvial y lagunar
	Glacial y periglaciar	4	Ambiente glacial y periglaciar
Dom_AmbientesMorfogeneticos	Eólico	5	Ambiente eólico
	Marino y costero	6	Ambiente marino y costero
	Volcánico	7	Ambiente volcánico
	Kárstico	8	Ambiente kárstico
	Antropogénico	9	Ambiente antropogénico

Dominio (*)	Etiqueta (*)	Código	Definición
Dave Decade Over 10 and	Endógeno	0	Endógeno
Dom_ProcesoGenOGmi	Exógeno	1	Exógeno

Dominio (*)	Etiqueta (*)	Código	Definición
Dom Madaladal (Cmf	Degradacional	0	Degradacional
	Agradacional	1	Agradacional

Dominio (*)	Etiqueta (*)	Código	Definición
	Escarpe de abanico clástico	Deac	Escarpe de abanico clástico
	Escarpe de abanico clástico aterrazado	Escarpe de abanico clástico aterrazado Deaca E	
	Escarpe de lóbulo clástico	Delc	Escarpe de lóbulo clástico
	Escarpe de lóbulo clástico aterrazado	Delca	Escarpe de lóbulo clástico aterrazado
	Abanico clástico	Facl	Abanico clástico
	Abanico clástico aterrazado	Faca	Abanico clástico aterrazado
	Lóbulo clástico	Flc	Lóbulo clástico
	Lóbulo clástico aterrazado	Flca	Lóbulo clástico aterrazado
	Fondo de valle glaciar	Gfvg	Fondo de valle glaciar
Dom_UnidadesGmf	Ladera volcánica glaciada	Glvg	Ladera volcánica glaciada
	Abanico de lava	Val	Abanico de lava
	Abanico lahárico	Valh	Abanico lahárico
	Abanico lahárico aterrazado	Valha	Abanico lahárico aterrazado
	Abanico piroclástico	Vapc	Abanico piroclástico
	Abanico piroclástico aterrazado	Vapca	Abanico piroclástico aterrazado
	Abanico volcanoclástico	Vav	Abanico volcanoclástico
	Abanico volcanoclástico aterrazado	Abanico volcanoclástico aterrazado Vavca Abanico volcanoclás	
	Anillo piroclástico	Vap	Anillo piroclástico
	Anillo piroclástico erosionado	Vapce	Anillo piroclástico erosionado

(*): Objeto obligatorio (C): Objeto condicional

Servicio Geológico Colombiano

Estándar geográfico para mapas geológicos de volcanes colombianos

Dominio (*)	Etiqueta (*)	Código	Definición
	Bloque toreva	Vbt	Bloque toreva
	Caldera	Vcr	Caldera
	Caldera erosionada	Vcae	Caldera erosionada
	Campo de conos de salpicadura	Vccs	Campo de conos de salpicadura
	Campo de montículos (hummocks)	Vch	Campo de montículos (hummocks)
	Campo fumarólico	Vcf	Campo fumarólico
	Cono de salpicadura	Vcs	Cono de salpicadura
	Cono de salpicadura erosionado	Vcse	Cono de salpicadura erosionado
	Cono de toba	Vct	Cono de toba
	Cono de toba erosionado	Vcte	Cono de toba erosionado
	Cono piroclástico (cono de escoria o cono cinerítico)	Vcp	Cono piroclástico (cono de escoria o cono cinerítico)
	Cono piroclástico erosionado (cono de escoria o cono cinerítico erosionado)	Vcpe	Cono piroclástico erosionado (cono de escoria o cono cinerítico erosionado)
	Cráter volcánico	Vc	Cráter volcánico
	Cráter volcánico erosionado	Vcre	Cráter volcánico erosionado
	Criptodomo	Vcd	Criptodomo
	Cuello volcánico	Vcv	Cuello volcánico
	Cuello volcánico erosionado	Vcve	Cuello volcánico erosionado
	Diatrema	Vdtr	Diatrema
	Domo de lava	Vd	Domo de lava
	Domo de lava remanente	Vdr	Domo de lava remanente
	Domo tipo colada	Vdc	Domo tipo colada
Dom_UnidadesGmf	Domo tipo peleano o en espina	Vdpe	Domo tipo peleano o en espina
	Domo tipo pistón	Vdpi	Domo tipo pistón
	Domo tipo torta	Vdt	Domo tipo torta
	Escarpe de abanico de lava	Veal	Escarpe de abanico de lava
	Escarpe de abanico lahárico	Vealh	Escarpe de abanico lahárico
	Escarpe de abanico lahárico aterrazado	Vealha	Escarpe de abanico lahárico aterrazado
	Escarpe de abanico piroclástico	Veapc	Escarpe de abanico piroclástico
	Escarpe de abanico piroclástico aterrazado	Veapca	Escarpe de abanico piroclástico aterrazado
	Escarpe de abanico volcanoclástico	Veav	Escarpe de abanico volcanoclástico
	Escarpe de caldera	Veca	Escarpe de caldera
	Escarpe de cráter volcánico	Vecr	Escarpe de cráter volcánico
	Escarpe de cráter volcánico erosionado	Vecre	Escarpe de cráter volcánico erosionado
	Escarpe de lóbulo lahárico	Vellh	Escarpe de lóbulo lahárico
	Escarpe de lóbulo lahárico aterrazado	Vellha	Escarpe de lóbulo lahárico aterrazado
	Escarpe de lóbulo piroclástico	Velp	Escarpe de lóbulo piroclástico
	Escarpe de lóbulo piroclástico aterrazado	Velpa	Escarpe de lóbulo piroclástico aterrazado
	Escarpe de lóbulo volcanoclástico	Velvc	Escarpe de lóbulo volcanoclástico
	Escarpe de lóbulo(s) de lava	Vell	Escarpe de lóbulo(s) de lava
	Escarpe de mantos de piroclastos	Vemp	Escarpe de mantos de piroclastos
	Escarpe de meseta(s) de lava(s)	Veml	Escarpe de meseta(s) de lava(s)
	Escarpe en herradura	Veh	Escarpe en herradura
	Ladera volcánica	VI	Ladera volcánica

(*): Objeto obligatorio (C): Objeto condicional

Dominio (*)	Etiqueta (*)	Código	Definición
	Ladera volcánica remanente	Vir	Ladera volcánica remanente
	Lóbulo lahárico	VIfI	Lóbulo lahárico
	Lóbulo lahárico aterrazado	VIIha	Lóbulo lahárico aterrazado
	Lóbulo piroclástico	Vlp	Lóbulo piroclástico
	Lóbulo piroclástico aterrazado	Vlpa	Lóbulo piroclástico aterrazado
	Lóbulo(s) de lava	VII	Lóbulo(s) de lava
	Lóbulo(s) de lava aa	Vllaa	Lóbulo(s) de lava aa
	Lóbulo(s) de lava almohadillada	Vllal	Lóbulo(s) de lava almohadillada
	Lóbulo(s) de lava en bloques	VIIb	Lóbulo(s) de lava en bloques
	Lóbulo(s) de lava pahoehoe	VIIph	Lóbulo(s) de lava pahoehoe
	Lóbulo(s) volcanoclástico	Vlvc	Lóbulo(s) volcanoclástico
Dam UnidadaaCmf	Maar	Vm	Maar
Dom_UnidadesGmf	Maar erosionado	Vme	Maar erosionado
	Manto de piroclastos	Vmp	Manto de piroclastos
	Meseta(s) de lava(s)	Vml	Meseta(s) de lava(s)
	Meseta(s) de lavas escalonadas	Vmle	Meseta(s) de lavas escalonadas
	Volcán compuesto	Vco	Volcán compuesto
	Volcán compuesto erosionado	Vcer	Volcán compuesto erosionado
	Volcán en escudo pequeño	Vesp	Volcán en escudo pequeño
	Volcán en escudo pequeño erosionado	Vepe	Volcán en escudo pequeño erosionado
	Volcán escudo	Ves	Volcán escudo
	Volcán escudo erosionado	Vese	Volcán escudo erosionado
	Volcán o edificio volcánico	Ve	Volcán o edificio volcánico
	Volcán o edificio volcánico erosionado	Vespe	Volcán o edificio volcánico erosionado

Estándar geográfico para mapas geológicos de volcanes colombianos

Objeto (*)

Nombre (*)	Subunidad_Geomorfologica
Código (*)	0201005
Definición (*)	Categoría que corresponde a una subdivisión de las unidades geomorfológicas. Está determinada fundamentalmente por los contrastes morfológicos y morfométricos, que relacionan el tipo de material o la disposición estructural de estos con la correspondiente topografía del terreno. Está definida por el contraste dado por las forma- ciones superficiales asociadas a procesos morfodinámicos actuales de meteorización, erosión, transporte y acumulación bien definidos o determinados.
Alias (*)	Subunidad Geomorfológica
Subtipos	

Atributos (*)

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
ID_SUGmf	Código subunidad geomorfológica	020100501	Código identificador de la subunidad geomorfológica	Text	50		Obligatorio	
Nombre_SUGmf	Nombre subunidad geomorfológica	020100502	Nombre de la subunidad geomorfológica	Text	12		Obligatorio	Dom_SubUnidadesGmf
Clasificacion_Ambiente	Ambiente morfogenético	020100503	Clasificación de la subunidad geomorfológica según su ambiente	Short Integer	2		Obligatorio	Dom_AmbientesMorfogeneticos
Nombre_UGmf	Unidad geomorfológica	020100504	Clasificación de la subunidad geomorfológica según su unidad geomorfológica.	Text	12		Obligatorio	Dom_UnidadesGmf
N_Carta_Colores	Número carta de colores	020100505	Número del color utilizado para representar la subunidad geomorfológica.	Text	15		Obligatorio	
N_Carta_Achurados	Número carta achurados	020100506	Número de la carta de achurados	Text	15		Opcional	
Descripcion	Descripción subunidad geomorfológica	020100507	Descripción de la subunidad geomorfológica	Text	100		Obligatorio	
Proceso_Genetico_ SUGmf	Proceso genético subu- nidad geomorfológica	020100408	Proceso genético de la subunidad geomorfológica	Short Integer	1		Opcional	Dom_ProcesoGenUGmf
Modelado_SUGmf	Modelado subunidad geomorfológica	020100409	Modelado de la subunidad geomorfológica	Short Integer	1		Opcional	Dom_ModeladoUGmf
Edad_SUGmf	Edad subunidad geo- morfológica	020100510	Edad de la subunidad geomorfológica	Text	50		Opcional	
N_Foto_Aerea	Número fotos aéreas	020100511	Número de las fotos aéreas que contienen la subunidad geomorfológica	Text	150		Opcional	
N_Vuelo_FA	Número vuelo	020100512	Número de vuelo al cual pertenecen las fotos áreas que contienen la subunidad geomorfológica	Text	150		Opcional	
Escala_FA	Escala fotos aéreas	020100513	Escala de las fotos aéreas que contienen la subunidad geomorfológica	Text	50		Opcional	
N_Imagen_Satelital	Número imagen satelital	020100514	Identificador de las imágenes satelitales que contienen la subunidad geomorfológica	Text	150		Opcional	
Observaciones	Observaciones	020100515	Observaciones adicionales	Text	254		Opcional	

Dominios (C)

Dominio (*)	Etiqueta (*)	Código	Definición
Dom_UnidadesGmf	Escarpe de abanico clástico	Deac	Escarpe de abanico clástico
	Escarpe de abanico clástico aterrazado	Deaca	Escarpe de abanico clástico aterrazado
	Escarpe de lóbulo clástico	Delc	Escarpe de lóbulo clástico
	Escarpe de lóbulo clástico aterrazado	Delca	Escarpe de lóbulo clástico aterrazado
	Abanico clástico	Facl	Abanico clástico
	Abanico clástico aterrazado	Faca	Abanico clástico aterrazado
	Lóbulo clástico	Flc	Lóbulo clástico
	Lóbulo clástico aterrazado	Flca	Lóbulo clástico aterrazado
	Fondo de valle glaciar	Gfvg	Fondo de valle glaciar
	Ladera volcánica glaciada	Glvg	Ladera volcánica glaciada
	Abanico de lava	Val	Abanico de lava
	Abanico lahárico	Valh	Abanico lahárico
	Abanico lahárico aterrazado	Valha	Abanico lahárico aterrazado
	Abanico piroclástico	Vapc	Abanico piroclástico
	Abanico piroclástico aterrazado	Vapca	Abanico piroclástico aterrazado
	Abanico volcanoclástico	Vav	Abanico volcanoclástico

(*): Objeto obligatorio (C): Objeto condicional

Dominio (*)	Etiqueta (*)	Código	Definición
	Abanico volcanoclástico aterrazado	Vavca	Abanico volcanoclástico aterrazado
	Anillo piroclástico	Vap	Anillo piroclástico
	Anillo piroclástico erosionado	Vapce	Anillo piroclástico erosionado
	Bloque toreva	Vbt	Bloque toreva
	Caldera	Vcr	Caldera
	Caldera erosionada	Vcae	Caldera erosionada
	Campo de conos de salpicadura	Vccs	Campo de conos de salpicadura
	Campo de montículos (hummocks)	Vch	Campo de montículos (hummocks)
	Campo fumarólico	Vcf	Campo fumarólico
	Cono de salpicadura	Vcs	Cono de salpicadura
	Cono de salpicadura erosionado	Vcse	Cono de salpicadura erosionado
	Cono de toba	Vct	Cono de toba
	Cono de toba erosionado	Vcte	Cono de toba erosionado
	Cono piroclástico (cono de escoria o cono cinerítico)	Vcp	Cono piroclástico (cono de escoria o cono cinerítico)
	Cono piroclástico erosionado (cono de escoria o cono cinerítico erosionado)	Vcpe	Cono piroclástico erosionado (cono de escoria o cono cinerítico erosionado)
	Cráter volcánico	Vc	Cráter volcánico
	Cráter volcánico erosionado	Vcre	Cráter volcánico erosionado
	Criptodomo	Vcd	Criptodomo
	Cuello volcánico	Vcv	Cuello volcánico
	Cuello volcánico erosionado	Vcve	Cuello volcánico erosionado
	Diatrema	Vdtr	Diatrema
om UnidadesGmf	Domo de lava	Vd	Domo de lava
Dom_OnidadesGini	Domo de lava remanente	Vdr	Domo de lava remanente
	Domo tipo colada	Vdc	Domo tipo colada
	Domo tipo peleano o en espina	Vdpe	Domo tipo peleano o en espina
	Domo tipo pistón	Vdpi	Domo tipo pistón
	Domo tipo torta	Vdt	Domo tipo torta
	Escarpe de abanico de lava	Veal	Escarpe de abanico de lava
	Escarpe de abanico lahárico	Vealh	Escarpe de abanico lahárico
	Escarpe de abanico lahárico aterrazado	Vealha	Escarpe de abanico lahárico aterrazado
	Escarpe de abanico piroclástico	Veapc	Escarpe de abanico piroclástico
-	Escarpe de abanico piroclástico aterrazado	Veapca	Escarpe de abanico piroclástico aterrazado
	Escarpe de abanico volcanoclástico	Veav	Escarpe de abanico volcanoclástico
	Escarpe de caldera	Veca	Escarpe de caldera
	Escarpe de cráter volcánico	Vecr	Escarpe de cráter volcánico
	Escarpe de cráter volcánico erosionado	Vecre	Escarpe de cráter volcánico erosionado
	Escarpe de lóbulo lahárico	Vellh	Escarpe de lóbulo lahárico
	Escarpe de lóbulo lahárico aterrazado	Vellha	Escarpe de lóbulo lahárico aterrazado
	Escarpe de lóbulo piroclástico	Velp	Escarpe de lóbulo piroclástico
	Escarpe de lóbulo piroclástico aterrazado	Velpa	Escarpe de lóbulo piroclástico aterrazado
	Escarpe de lóbulo volcanoclástico	Velvc	Escarpe de lóbulo volcanoclástico
	Escarpe de lóbulo(s) de lava	Vell	Escarpe de lóbulo(s) de lava
	Escarpe de mantos de piroclastos	Vemp	Escarpe de mantos de piroclastos

Estándar geográfico para mapas geológicos de volcanes colombianos

(*): Objeto obligatorio (C): Objeto condicional

Veml

Escarpe de meseta(s) de lava(s)

Escarpe de meseta(s) de lava(s)

Servicio Geológico Colombiano
Dominio (*)	Etiqueta (*)	Código	Definición
	Escarpe en herradura	Veh	Escarpe en herradura
	Ladera volcánica	VI	Ladera volcánica
	Ladera volcánica remanente	VIr	Ladera volcánica remanente
	Lóbulo lahárico	VIfI	Lóbulo lahárico
	Lóbulo lahárico aterrazado	VIIha	Lóbulo lahárico aterrazado
	Lóbulo piroclástico	Vlp	Lóbulo piroclástico
	Lóbulo piroclástico aterrazado	Vlpa	Lóbulo piroclástico aterrazado
	Lóbulo(s) de lava	VII	Lóbulo(s) de lava
	Lóbulo(s) de lava aa	Vllaa	Lóbulo(s) de lava aa
	Lóbulo(s) de lava almohadillada	Vllal	Lóbulo(s) de lava almohadillada
	Lóbulo(s) de lava en bloques	VIIb	Lóbulo(s) de lava en bloques
	Lóbulo(s) de lava pahoehoe	Vllph	Lóbulo(s) de lava pahoehoe
Dom UnidedeeCmf	Lóbulo(s) volcanoclástico	Vlvc	Lóbulo(s) volcanoclástico
Doni_OnidadesGini	Maar	Vm	Maar
	Maar erosionado	Vme	Maar erosionado
	Manto de piroclastos	Vmp	Manto de piroclastos
	Meseta(s) de lava(s)	Vml	Meseta(s) de lava(s)
	Meseta(s) de lavas escalonadas	Vmle	Meseta(s) de lavas escalonadas
	Volcán compuesto	Vco	Volcán compuesto
	Volcán compuesto erosionado	Vcer	Volcán compuesto erosionado
	Volcán en escudo pequeño	Vesp	Volcán en escudo pequeño
	Volcán en escudo pequeño erosionado	Vepe	Volcán en escudo pequeño erosionado
	Volcán escudo	Ves	Volcán escudo
	Volcán escudo erosionado	Vese	Volcán escudo erosionado
	Volcán o edificio volcánico	Ve	Volcán o edificio volcánico
	Volcán o edificio volcánico erosionado	Vespe	Volcán o edificio volcánico erosionado

Estándar geográfico para mapas geológicos de volcanes colombianos

Dominio (*)	Etiqueta (*)	Código	Definición
	Denudacional	1	Ambiente denudacional
	Morfoestructural	2	Ambiente morfoestructural
	Fluvial y lagunar	3	Ambiente fluvial y lagunar
	Glacial y periglaciar	4	Ambiente glacial y periglaciar
Dom_AmbientesMorfogeneticos	Eólico	5	Ambiente eólico
	Marino y costero	6	Ambiente marino y costero
	Volcánico	7	Ambiente volcánico
	Kárstico	8	Ambiente kárstico
	Antropogénico	9	Ambiente antropogénico

Dominio (*)	Etiqueta (*)	Código	Definición
Dom_SubUnidadesGmf	Escarpe de abanico clástico	Deac	Escarpe de abanico clástico
	Escarpe de abanico clástico aterrazado	Deaca	Escarpe de abanico clástico aterrazado
	Escarpe de lóbulo clástico	Delc	Escarpe de lóbulo clástico

(*): Objeto obligatorio (C): Objeto condicional

109
102

Dominio (*)	Etiqueta (*)	Código	Definición
	Escarpe de lóbulo clástico aterrazado	Delca	Escarpe de lóbulo clástico aterrazado
	Abanico clástico	Facl	Abanico clástico
-	Abanico clástico aterrazado	Faca	Abanico clástico aterrazado
	Lóbulo clástico	Flc	Lóbulo clástico
	Lóbulo clástico aterrazado	Flca	Lóbulo clástico aterrazado
	Fondo de valle glaciar	Gfvg	Fondo de valle glaciar
	Ladera volcánica glaciada	Glvg	Ladera volcánica glaciada
	Abanico de lava	Val	Abanico de lava
	Abanico lahárico	Valh	Abanico lahárico
	Abanico lahárico aterrazado	Valha	Abanico lahárico aterrazado
	Abanico piroclástico	Vapc	Abanico piroclástico
	Abanico piroclástico aterrazado	Vapca	Abanico piroclástico aterrazado
	Abanico volcanoclástico	Vav	Abanico volcanoclástico
	Abanico volcanoclástico aterrazado	Vavca	Abanico volcanoclástico aterrazado
	Anillo piroclástico	Vap	Anillo piroclástico
	Anillo piroclástico erosionado	Vapce	Anillo piroclástico erosionado
	Bloque toreva	Vbt	Bloque toreva
	Caldera	Vcr	Caldera
Dom_SubUnidadesGmf	Caldera erosionada	Vcae	Caldera erosionada
	Campo de conos de salpicadura	Vccs	Campo de conos de salpicadura
	Campo de montículos (hummocks)	Vch	Campo de montículos (hummocks)
	Campo fumarólico	Vcf	Campo fumarólico
	Cono de salpicadura	Vcs	Cono de salpicadura
	Cono de salpicadura erosionado	Vcse	Cono de salpicadura erosionado
	Cono de toba	Vct	Cono de toba
	Cono de toba erosionado	Vcte	Cono de toba erosionado
	Cono piroclástico (cono de escoria o cono cinerítico)	Vcp	Cono piroclástico (cono de escoria o cono cinerítico)
	Cono piroclástico erosionado (cono de escoria o cono cinerítico erosionado)	Vcpe	Cono piroclástico erosionado (cono de escoria o cono cinerítico erosionado)
	Cráter volcánico	Vc	Cráter volcánico
	Cráter volcánico erosionado	Vcre	Cráter volcánico erosionado
	Criptodomo	Vcd	Criptodomo
	Cuello volcánico	Vcv	Cuello volcánico
	Cuello volcánico erosionado	Vcve	Cuello volcánico erosionado
	Diatrema	Vdtr	Diatrema
	Domo de lava	Vd	Domo de lava
	Domo de lava remanente	Vdr	Domo de lava remanente
	Domo tipo colada	Vdc	Domo tipo colada

Dominio (*)	Etiqueta (*)	Código	Definición
	Domo tipo peleano o en espina	Vdpe	Domo tipo peleano o en espina
	Domo tipo pistón	Vdpi	Domo tipo pistón
	Domo tipo torta	Vdt	Domo tipo torta
	Escarpe de abanico de lava	Veal	Escarpe de abanico de lava
	Escarpe de abanico lahárico	Vealh	Escarpe de abanico lahárico
	Escarpe de abanico lahárico aterrazado	Vealha	Escarpe de abanico lahárico aterrazado
	Escarpe de abanico piroclástico	Veapc	Escarpe de abanico piroclástico
	Escarpe de abanico piroclástico aterrazado	Veapca	Escarpe de abanico piroclástico aterrazado
	Escarpe de abanico volcanoclástico	Veav	Escarpe de abanico volcanoclástico
	Escarpe de caldera	Veca	Escarpe de caldera
	Escarpe de cráter volcánico	Vecr	Escarpe de cráter volcánico
	Escarpe de cráter volcánico erosionado	Vecre	Escarpe de cráter volcánico erosionado
	Escarpe de lóbulo lahárico	Vellh	Escarpe de lóbulo lahárico
	Escarpe de lóbulo lahárico aterrazado	Vellha	Escarpe de lóbulo lahárico aterrazado
	Escarpe de lóbulo piroclástico	Velp	Escarpe de lóbulo piroclástico
	Escarpe de lóbulo piroclástico aterrazado	Velpa	Escarpe de lóbulo piroclástico aterrazado
	Escarpe de lóbulo volcanoclástico	Velvc	Escarpe de lóbulo volcanoclástico
	Escarpe de lóbulo(s) de lava	Vell	Escarpe de lóbulo(s) de lava
Dom_SubUnidadesGmf	Escarpe de mantos de piroclastos	Vemp	Escarpe de mantos de piroclastos
	Escarpe de meseta(s) de lava(s)	Veml	Escarpe de meseta(s) de lava(s)
	Escarpe en herradura	Veh	Escarpe en herradura
	Ladera volcánica	VI	Ladera volcánica
	Ladera volcánica remanente	Vlr	Ladera volcánica remanente
	Lóbulo lahárico	VIfi	Lóbulo lahárico
	Lóbulo lahárico aterrazado	VIIha	Lóbulo lahárico aterrazado
	Lóbulo piroclástico	Vlp	Lóbulo piroclástico
	Lóbulo piroclástico aterrazado	Vlpa	Lóbulo piroclástico aterrazado
	Lóbulo(s) de lava	VII	Lóbulo(s) de lava
	Lóbulo(s) de lava aa	Vllaa	Lóbulo(s) de lava aa
	Lóbulo(s) de lava almohadillada	Vllal	Lóbulo(s) de lava almohadillada
	Lóbulo(s) de lava en bloques	VIIb	Lóbulo(s) de lava en bloques
	Lóbulo(s) de lava pahoehoe	Vllph	Lóbulo(s) de lava pahoehoe
	Lóbulo(s) volcanoclástico	Vlvc	Lóbulo(s) volcanoclástico
	Maar	Vm	Maar
	Maar erosionado	Vme	Maar erosionado
	Manto de piroclastos	Vmp	Manto de piroclastos
	Meseta(s) de lava(s)	Vml	Meseta(s) de lava(s)

(*): Objeto obligatorio (C): Objeto condicional

111

Dominio (*)	Etiqueta (*)	Código	Definición
Dom_SubUnidadesGmf	Meseta(s) de lavas escalonadas	Vmle	Meseta(s) de lavas escalonadas
	Volcán compuesto	Vco	Volcán compuesto
	Volcán compuesto erosionado	Vcer	Volcán compuesto erosionado
	Volcán en escudo pequeño	Vesp	Volcán en escudo pequeño
	Volcán en escudo pequeño erosionado	Vepe	Volcán en escudo pequeño erosionado
	Volcán escudo	Ves	Volcán escudo
	Volcán escudo erosionado	Vese	Volcán escudo erosionado
	Volcán o edificio volcánico	Ve	Volcán o edificio volcánico
	Volcán o edificio volcánico erosionado	Vespe	Volcán o edificio volcánico erosionado

Dominio (*)	Etiqueta (*)	Código	Definición
Dave Decade Card Dowf	Endógeno	0	Endógeno
	Exógeno	1	Exógeno

Dominio (*)	Etiqueta (*)	Código	Definición
Dem Madaladal (Cmf	Degradacional	0	Degradacional
Dom_wodeladooGini	Agradacional	1	Agradacional

Grupo (*)

Nombre (*)	Rasgos geomorfológicos
Código (*)	0202
Definición (*)	Son los rasgos del relieve definidos en sitios puntuales y determinados por la morfometría detallada del terreno. Contiene los elementos geomorfológicos con geome- tría de polígonos, líneas y puntos
Alias (*)	Rasgos geomorfológicos
Objetos (*)	Rasgo_Geomorfologico_PT, Rasgo_Geomorfologico_LN, Rasgo_Geomorfologico_PL

Objeto (*)

Nombre (*)	Rasgo_Geomorfologico_PT
Código (*)	0202001
Definición (*)	Rasgos del relieve definidos en sitios puntuales y determinados por la morfometría detallada del terreno. Representados por una geometría tipo punto
Alias (*)	Rasgo geomorfológico punto
Subtipos	

Atributos

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
ID_RasgoGmfPt	Código rasgo geomorfológico punto	020200101	Código identificador del rasgo geomorfológico punto	Text	50		Obligatorio	

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
Nombre_RasgoGmfPt	Nombre rasgo geomorfológico punto	020200102	Nombre del rasgo geomorfológico punto	Text	12		Obligatorio	Dom_RasgosGmfPt
Coordenada_X	Coordenada Este	020200103	Coordenada este en el sistema de referencia asignado	Double	10,3	Metros	Opcional	
Coordenada_Y	Coordenada Norte	020200104	Coordenada norte en el sistema de referencia asignado	Double	10,3	Metros	Opcional	
Sistema_Coordenadas	Sistema de coordenadas	020200105	Sistema de coordenadas proyectadas asignado	Short Integer	2		Opcional	Dom_SistemaCoordenadas
Clasificacion_Ambiente	Ambiente rasgo geomorfológico	020200106	Clasificación del tipo de rasgo geomorfológico según su ambiente	Short Integer	2		Opcional	Dom_AmbientesMorfogeneticos
Descripcion	Descripción rasgo geomorfológico	020200107	Descripción rasgo geomorfológico	Text	300		Obligatorio	
Visibilidad	Visibilidad	020200108	Visualización del rasgo a escala	Short Integer	2		Obligatorio	Dom_Visibilidad
N_Foto_Aerea	Número fotos aéreas	020200109	Número de las fotos aéreas que contienen el rasgo geomorfológico	Text	150		Opcional	
N_Vuelo_FA	Número vuelo	020200110	Número de vuelo al cual pertenecen las fotos áreas que contienen el rasgo geomorfológico	Text	150		Opcional	
Escala_FA	Escala fotos aéreas	020200111	Escala de las fotos aéreas que contienen el rasgo geomorfológico	Text	50		Opcional	
N_Imagen_Satelital	Identificador imagen satelital	020200112	Identificador de las imágenes satelitales que contienen el rasgo geomorfológico	Text	150		Opcional	
Cod_Municipio	Código municipio DANE	020200113	Código DANE municipio	Text	5		Opcional	Dom_MunicipiosDANE
Observaciones	Observaciones	020200114	Observaciones adicionales	Text	254		Opcional	

Estándar geográfico para mapas geológicos de volcanes colombianos

Dominios (C)

Dominio (*)	Etiqueta (*)	Código	Definición
	Drumlin	020200102404	Drumlin
	Horn	020200102405	Horn
	Kettle	020200102406	Kettle
	Anillo piroclástico	020200102701	Anillo piroclástico
	Cono de salpicadura	020200102705	Cono de salpicadura
Dom_RasgosGmfPt	Cono de toba	020200102706	Cono de toba
	Cono piroclástico	020200102707	Cono piroclástico
	Criptodomo	020200102710	Criptodomo
	Cuello volcánico	020200102711	Cuello volcánico
	Diatrema	020200102712	Diatrema
	Domo de lava	020200102714	Domo de lava

Dominio (*)	Etiqueta (*)	Código	Definición
	Denudacional		Ambiente denudacional
	Morfoestructural	2	Ambiente morfoestructural
Dom_AmbientesMorfogeneticos	Fluvial y lagunar	3	Ambiente fluvial y lagunar
	Glacial y periglaciar	4	Ambiente glacial y periglaciar
	Eólico		Ambiente eólico

113

Dominio (*)	Etiqueta (*)	Código	Definición
	Marino y costero	6	Ambiente marino y costero
Dom AmbienteeMorfegeneticee	Volcánico	7	Ambiente volcánico
Dom_Ambientesinionogeneticos	Kárstico	8	Ambiente kárstico
	Antropogénico	9	Ambiente antropogénico

Dominio (*)	Etiqueta (*)	Código	Definición
	MAGNA_Colombia_Este_Este	1	Proyección MAGNA origen Este Este. Área de cubrimiento: al este de 69°35'W. EPSG 3118
	MAGNA_Colombia_Este	2	Proyección MAGNA origen Este. Área de cubrimiento: de 72°35'W a 69°35'W. EPSG 3117
	MAGNA_Colombia_Bogota	3	Proyección MAGNA origen Bogotá. Área de cubrimiento: de 75°35'W a 72°35'W. EPSG 3116
Dom_SistemaCoordenadas	MAGNA_Colombia_Oeste	4	Proyección MAGNA origen Oeste. Área de cubrimiento: 78°35'W a 75°35'W. EPSG 3115
	MAGNA_Colombia_Oeste_Oeste	5	Proyección MAGNA origen Oeste Oeste. Área de cubrimiento: al oeste de 78°35'W. EPSG 3114
	MAGNA_Colombia_Oeste_Insular	6	Proyección MAGNA origen Oeste Insular. Área de cubrimiento: al oeste de 81°35'W
	MAGNA_Origen_Nacional	7	Proyección MAGNA origen Nacional. Área de cubrimiento: 79°00'W a 67°00'W. EPSG 9377

Dominio (*)	Etiqueta (*)	Código	Definición
	No	0	El rasgo no es visible
Dom_VISIDIIIdad	Si	1	El rasgo es visible

Dominio (*)	Etiqueta (*)	Código	Definición
Dom_MunicipiosDANE**			

** Teniendo en cuenta la extensión del dominio y que hace parte del catálogo de objetos de otra entidad se incluye el dominio en la base de datos, pero no a nivel del documento.

Objeto (*)

Nombre (*)	Rasgo_Geomorfologico_LN
Código (*)	0202002
Definición (*)	Rasgos del relieve definidos en sitios puntuales y determinados por la morfometría detallada del terreno. Representados por una geometría tipo línea
Alias (*)	Rasgo geomorfológico línea
Subtipos	

Atributos (*)

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
ID_RasgoGmfLn	Código rasgo geomorfológico línea	020200201	Código identificador del rasgo geomorfológico línea	Text	50		Obligatorio	
Nombre_RasgoGmfLn	Nombre rasgo geomorfológico línea	020200202	Nombre del rasgo geomorfológico línea	Text	12		Obligatorio	Dom_RasgosGmfLn
Clasificacion_Ambiente	Ambiente rasgo geomorfológico	020200203	Clasificación del tipo de rasgo geomorfológico según su ambiente	Short Integer	2		Opcional	Dom_AmbientesMorfogeneticos

(*): Objeto obligatorio (C): Objeto condicional

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
Descripcion	Descripción rasgo geomorfológico	020200204	Descripción rasgo geomorfológico	Text	100		Obligatorio	
Visibilidad	Visualización a escala	020200205	Visualización del rasgo a escala	Short Integer	2		Obligatorio	Dom_Visibilidad
N_Foto_Aerea	Número fotos aéreas	020200206	Número de las fotos aéreas que contienen el rasgo geomorfológico	Text	150		Opcional	
N_Vuelo_FA	Número vuelo	020200207	Número de vuelo al cual pertenecen las fotos áreas que contienen el rasgo geomorfológico	Text	150		Opcional	
Escala_FA	Escala fotos aéreas	020200208	Escala de las fotos aéreas que contienen el rasgo geomorfológico	Text	50		Opcional	
N_Imagen_Satelital	Identificador imagen satelital	020200209	Identificador de las imágenes satelitales que contiene el rasgo geomorfológico	Text	150		Opcional	
Cod_Municipio	Código municipio DANE	020200210	Código DANE municipio	Text	5		Opcional	Dom_MunicipiosDANE
Observaciones	Observaciones	020200211	Observaciones adicionales	Text	254		Opcional	

Estándar geográfico para mapas geológicos de volcanes colombianos

Dominios (C)

Dominio (*)	Etiqueta (*)	Código	Definición
	Cicatriz de colapso	020200202005	Cicatriz de colapso
	Cicatriz de colapso inferida	020200202006	Cicatriz de colapso inferida
	Escarpe	020200202015	Escarpe
	Monticulo (Hummock)	020200202024	Montículo (Hummock)
	Valle en forma de V	020200202334	Valle en forma de V
	Aristas	020200202403	Aristas
	Circo glaciar	020200202409	Circo glaciar
	Cresta	020200202411	Cresta
	Eskers	020200202420	Eskers
	Lengua glaciar	020200202429	Lengua glaciar
	Línea de cresta de morrena	020200202430	Línea de cresta de morrena
	Línea de cresta de morrena lateral	020200202431	Línea de cresta de morrena lateral
Dom_RasgosGmfLn	Valle colgante	020200202434	Valle colgante
	Valle en forma de U	020200202435	Valle en forma de U
	Borde de centro de emisión/cráter	020200202701	Borde de centro de emisión/cráter
	Borde de centro de emisión inferido/cráter inferido	020200202702	Borde de centro de emisión inferido/cráter inferido
	Borde de centro de emisión inferido cubierto/cráter inferido cubierto	020200202703	Borde de centro de emisión inferido cubierto/cráter inferido cubierto
	Crestas de presión en flujo de lava	020200202710	Crestas de presión en flujo de lava
	Dique	020200202713	Dique
	Dirección de flujos de productos efusivos	020200202715	Dirección de flujos de productos efusivos
	Dirección de flujos de productos volcanoclásticos	020200202716	Dirección de flujos de productos volcanoclásticos
	Fisura volcánica	020200202718	Fisura volcánica
	Fisura volcánica inferida	020200202719	Fisura volcánica inferida
	Frente de flujo de lava	020200202722	Frente de flujo de lava
	Levée u hombrera	020200202724	Levée u hombrera

Dominio (*)	Etiqueta (*) Co		Definición
	Maar	020200202730	Maar
	Maar sin laguna	020200202731	Maar sin laguna
	Margen cubierta de depresión volcanotectónica	020200202732	Margen cubierta de depresión volcanotectónica
Dom Boogoo Cmfl n	Margen de caldera	020200202733	Margen de caldera
Dom_KasgosGmirLn	Margen de caldera inferido	Margen de caldera inferido 020200202735 Margen de caldera inferido	
	Margen de caldera cubierto	020200202736	Margen de caldera cubierto
	Margen de depresión volcanotectónica	020200202737	Margen de depresión volcanotectónica
	Túmulos sobre el flujo de lava	020200202740	Túmulos sobre el flujo de lava

Dominio (*)	Etiqueta (*)	Código	Definición
	Denudacional	1	Ambiente denudacional
	Morfoestructural	2	Ambiente morfoestructural
	Fluvial y lagunar	3	Ambiente fluvial y lagunar
	Glacial y periglaciar	4	Ambiente glacial y periglaciar
Dom_AmbientesMorfogeneticos	Eólico	5	Ambiente eólico
	Marino y costero	6	Ambiente marino y costero
	Volcánico	7	Ambiente volcánico
	Kárstico	8	Ambiente kárstico
	Antropogénico	9	Ambiente antropogénico

Dominio (*)	Etiqueta (*)	Código	Definición
	No	0	El rasgo no es visible
Dom_visibilidad	Si	1	El rasgo es visible

Dominio (*)	Etiqueta (*)	Código	Definición
Dom_MunicipiosDANE**			

** Teniendo en cuenta la extensión del dominio y que hace parte del catálogo de objetos de otra entidad se incluye el dominio en la base de datos, pero no a nivel del documento.

Objeto (*)

Nombre (*)	Rasgo_Geomorfologico_PL
Código (*)	0202003
Definición (*)	Rasgos del relieve definidos en sitios puntuales y determinados por la morfometría detallada del terreno. Representados por una geometría tipo polígono
Alias (*)	Rasgo geomorfológico polígono
Subtipos	

(*): Objeto obligatorio (C): Objeto condicional

Atributos (*)

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
ID_RasgoGmfPl	Código rasgo geomorfológico polígono	020200301	Código identificador del rasgo geomorfológico polígono	Text	50		Obligatorio	
Nombre_RasgoGmfPl	Nombre rasgo geomorfológico polígono	020200302	Nombre del rasgo geomorfológico polígono	Text	12		Obligatorio	Dom_RasgosGmfPl
Clasificacion_Ambiente	Ambiente rasgo geomorfológico	020200303	Clasificación del tipo de rasgo geomorfológico según su ambiente	Short Integer	2		Opcional	Dom_AmbientesMorfogeneticos
Descripcion	Descripción rasgo geomorfológico	020200304	Descripción rasgo geomorfológico	Text	100		Obligatorio	
Visibilidad	Visualización a escala	020200305	Visualización del rasgo a escala	Short Integer	2		Obligatorio	Dom_Visibilidad
N_Foto_Aerea	Número fotos aéreas	020200306	Número de las fotos aéreas que contienen el rasgo geomorfológico	Text	150		Opcional	
N_Vuelo_FA	Número vuelo	020200307	Número de vuelo al cual pertenecen las fotos áreas que contienen el rasgo geomorfológico	Text	150		Opcional	
Escala_FA	Escala fotos aéreas	020200308	Escala de las fotos aéreas que contienen el rasgo geomorfológico	Text	50		Opcional	
N_Imagen_Satelital	Identificador imagen satelital	020200309	Identificador de las imágenes satelitales que contiene el rasgo geomorfológico	Text	150		Opcional	
Cod_Municipio	Código municipio DANE	020200310	Código DANE municipio	Text	5		Opcional	Dom_MunicipiosDANE
Observaciones	Observaciones	020200311	Observaciones adicionales	Text	254		Opcional	

Dominios (C)

Dominio (*)	Etiqueta (*)	Código	Definición
Dom_RasgosGmfPl	Límite glaciar	020200302401	Límite glaciar
Dominio (*)	Etiqueta (*)	Código	Definición
	Eliqueta ()	oouigo	Definición
	Denudacional	1	Ambiente denudacional
	Morfoestructural	2	Ambiente morfoestructural
	Fluvial y lagunar	3	Ambiente fluvial y lagunar
	Glacial y periglaciar	4	Ambiente glacial y periglaciar
Dom_AmbientesMorfogeneticos	Eólico	5	Ambiente eólico
	Marino y costero	6	Ambiente marino y costero
	Volcánico	7	Ambiente volcánico
	Kárstico	8	Ambiente kárstico
	Antropogénico	9	Ambiente antropogénico
Dominio (*)	Etiqueta (*)	Código	Definición
Dom Visibilidad	No	0	El rasgo no es visible
	Si	1	El rasgo es visible
Dominio (*)	Etiqueta (*)	Código	Definición
Dom_MunicipiosDANE**			

** Teniendo en cuenta la extensión del dominio y que hace parte del catálogo de objetos de otra entidad se incluye el dominio en la base de datos, pero no a nivel del documento.

117

Tema (*)

Nombre (*)	Miscelaneos
Código (*)	25
Definición (*)	Agrupación de objetos que soportan y complementan la información desplegada en el mapa y de objetos geográficos que pueden ser transversales a otras temáticas
Alias (*)	Misceláneos
Grupos	Mapa Base*, Mapa Localización*, Índice Participación*, Corte Geológico, Leyenda Geológica, Estaciones, Isolineas

Grupo (*)

Nombre (*)	Leyenda_Geologica
Código (*)	2502
Definición (*)	Corresponde a la descripción de las unidades que se encuentran en la plancha
Alias (*)	Leyenda Geológica
Objetos (*)	Poligono_Leyenda_GeoVol, Linea_Leyenda_Geo*

Objeto (*)

Nombre (*)	Poligono_Leyenda_GeoVol
Código (*)	2502004
Definición (*)	Representa los polígonos de la leyenda geológica
Alias (*)	Polígonos leyenda geológica
Subtipos	

Atributos (*)

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
ID_Poligono	Código polígono leyenda	250200401	Código identificador del polígono en la leyenda geológica	Text	50		Obligatorio	
Тіро	Tipo de polígono	250200402	Tipo de unidad representada por el polígono	Short Integer	2		Obligatorio	Dom_ TipoPoligonoLeyendaGeoVol
Nombre	Nombre polígono	250200403	Nombre de la unidad que representa el polígono	Text	100		Opcional	
Acronimo	Acrónimo polígono	250200404	Acrónimo de la unidad que representa el polígono	Text	15		Opcional	
Edad	Edad	250200405	Edad de la unidad que representa el polígono	Text	50		Opcional	
N_Carta_Colores	Número carta de colores	250200406	Número de la carta de colores utilizado para representar la unidad en el polígono	Text	15		Opcional	
N_Carta_Achurados	Número carta de achurados	250200407	Número de la carta de achurados utilizado para representar la unidad en el polígono	Text	15		Opcional	
Observaciones	Observaciones	250200408	Observaciones adicionales	Text	254		Opcional	

(*): Objeto obligatorio (C): Objeto condicional

Dominios (C)

Dominio (*)	Etiqueta (*)	Código	Definición
	Litosoma	1	Litosoma
Dom_TipoPoligonoLeyendaGeoVol	Unidad litoestratigráfica	2	Unidad litoestratigráfica
	Inconformidad estratigráfica	3	Inconformidad estratigráfica

Grupo (*)

Nombre (*)	Corte_Geologico
Código (*)	2503
Definición (*)	Dibujo que muestra la estructura interna de una sección, generalmente vertical, de un sector de la litosfera
Alias (*)	Corte Geológico
Objetos (*)	Unidad_Lito_Vol_Corte, Litosoma_Vol_Corte, Falla_Corte_Geologico*, Contacto_Corte*, Linea_Corte_Geo*

Objeto (*)

Nombre (*)	Unidad_Lito_Vol_Corte			
Código (*)	2503007			
Definición (*)	Representa las unidades litoestratigráficas volcánicas asociadas al corte geológico trazado			
Alias (*)	Unidad litoestratigráfica volcánica corte geológico			
Subtipos				

Atributos (*)

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
ID_UL	Código UL corte geológico	250300701	Código identificador de la unidad litoestratigráfica en el corte geológico	Text	50		Obligatorio	
Nombre	Nombre UL corte geológico	250300702	Nombre propio de la unidad litoestratigráfica en el corte geológico	Text	100		Obligatorio	
Тіро	Tipo UL corte geológico	250300703	Tipo de unidad litoestratigráfica en el corte geológico	Short Integer	2		Obligatorio	Dom_TipoUL
Acronimo	Acrónimo UL	250300704	Acrónimo utilizado para la identificación de la unidad litoestratigráfica	Text	50		Obligatorio	
Edad_Absoluta	Edad absoluta UL	250300705	Edad absoluta de la unidad litoestratigráfica	Text	50		Opcional	
Edad_Relativa	Edad relativa UL	250300706	Edad relativa de la unidad litoestratigráfica	Text	50		Opcional	
N_Carta_Colores	Número carta de colores	250300707	Número de la carta de colores utilizado para representar la unidad litoestratigráfica	Text	15		Obligatorio	
N_Carta_Achurados	Número carta de achurados	250300708	Número de la carta de achurados utilizado para representar la unidad litoestratigráfica	Text	15		Opcional	

(*): Objeto obligatorio (C): Objeto condicional

Dominios (C)

Dominio	Etiqueta	Código	Definición
Dom_TipoUL	Supergrupo	1	Supergrupo
	Grupo	2	Grupo
	Formación	3	Formación
	Miembro	4	Miembro
	Unidad informal	5	Unidad informal

Objeto (*)

Nombre (*)	Litosoma_Vol_Corte
Código (*)	2503008
Definición (*)	Representa los litosomas volcánicos asociados al corte geológico trazado
Alias (*)	Litosoma volcánico corte geológico
Subtipos	

Atributos (*)

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
ID_Litosoma	Código litosoma corte geológico	250300801	Código identificador del litosoma en el corte geológico	Text	50		Obligatorio	
Nombre	Nombre litosoma	250300802	Nombre propio del litosoma en el corte geológico	Text	100		Obligatorio	
Acronimo	Acrónimo litosoma	250300803	Acrónimo utilizado para la identificación del litosoma en el corte geológico	Text	50		Obligatorio	
Edad	Rango edad litosoma	250300804	Rango de edad del litosoma	Text	50		Opcional	
N_Carta_Colores	Número carta de colores	250300805	Número de la carta de colores utilizado para representar el litosoma	Text	15		Obligatorio	

Grupo (*)

Nombre (*)	Estaciones
Código (*)	2504
Definición (*)	Agrupación de objetos relacionados con puntos de observación y de trabajo en campo
Alias (*)	Estaciones
Objetos (*)	Estacion_Campo, Corte_Geologico*, Datacion_Radiometrica*

Objeto (*)

Nombre (*)	Estacion_Campo
Código (*)	2504001
Definición (*)	Punto de observación y de recolección en campo de información geológica, geomorfológica, estructural, etc.
Alias (*)	Estación Campo
Subtipos	

Atributos (*)

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
Nombre_Estacion	Nombre de la estación	250400101	Nombre de la estación	Text	25		Obligatorio	
Tipo	Tipo Estación	250400102	Tipo Estación	Short Integer	2		Obligatorio	Dom_EstacionesCampo
Simbolo_UG	Símbolo UG	250400103	Símbolo UG	Text	20		Opcional	
Fecha_Hora	Fecha y hora	250400104	Fecha y hora	Date			Obligatorio	
Nombre_Observador	Nombre del observador	250400105	Nombre del observador	Text	50		Obligatorio	
Muestra_Roca	Muestra de roca	250400106	Muestra de roca	Short Integer	2		Opcional	Dom_MuestraRoca
Coordenada_X	Coordenada Este	250400107	Coordenada X en el sistema de referencia asignado	Double	10,3	Metros	Obligatorio	
Coordenada_Y	Coordenada Norte	250400108	Coordenada Y en el sistema de referencia asignado	Double	10,3	Metros	Obligatorio	
Sistema_Coordenadas	Sistema de coordenadas	250400109	Sistema de coordenadas	Short Integer	3		Opcional	Dom_SistemaCoordenadas
Latitud	Latitud	250400110	Latitud	Double	8,5	Grados Decimales	Obligatorio	
Longitud	Longitud	250400111	Longitud	Double	8,5	Grados Decimales	Obligatorio	
Altura_Sobre_Nivel_Mar	Altura sobre el nivel mar	250400112	Altura sobre el nivel mar (MDE)	Double	6,2	Metros	Obligatorio	
Altura_Elipsoidal	Altura elipsoidal	250400113	Altura elipsoidal (GPS)	Double	6,2	Metros	Opcional	
U_Obser_Campo	UG observada en campo	250400114	UG observada en campo	Text	60		Opcional	
U_Mapa	UG en el mapa	250400115	UG en el mapa	Text	60		Opcional	
Litologia	Litología	250400116	Litología	Text	255		Opcional	
Comentarios	Comentarios	250400117	Comentarios	Text	255		Opcional	
Visibilidad	Visibilidad	250400118	Visibilidad	Short Integer	2		Opcional	Dom_Visibilidad
Localizacion	Localización	250400119	Localización	Text	255		Opcional	
Plancha	Plancha	250400120	Plancha	Text	20		Opcional	
Comision_Campo	Número de comisión de campo	250400121	Número de comisión de campo	Text	20		Opcional	
ID_Libreta	Código libreta	250400122	Código utilizado para la identificación de la libreta de campo	Text	20		Opcional	
Altera_Hidrotermal	Alteración Hidrotermal	250400123	Indica si la estación fue generada en una Alteración Hidrotermal	Text	1		Opcional	Dom_Boolean
Descrip_ AlteraHidrotermal	Descripción Alteración Hidrotermal	250400124	Descripción de la Alteración Hidrotermal	Text	1000		Opcional	
Cita_Bibliografica	Cita Bibliográfica	250400125	Cita bibliográfica	Text	200		Opcional	
Referencia_Bibliografica	Referencia Bibliográfica	250400126	Referencia bibliográfica	Text	600		Opcional	

(*): Objeto obligatorio (C): Objeto condicional

Dominios (C)

Dominio (*)	Etiqueta (*)	Código	Definición
Dom_EstacionesCampo	Geológica	1	Geológica
	Litológica	2	Litológica
	Geomorfológica	3	Geomorfológica
	Control	4	Control
	Estructural	5	Estructural

Dominio (*)	Etiqueta (*)	Código	Definición
Dom_MuestraRoca	Si	1	Sí
	No	0	No

Dominio (*)	Etiqueta (*)	Código	Definición
Dom_SistemaCoordenadas	MAGNA_Colombia_Este_Este	1	Proyección MAGNA origen Este Este. Área de cubrimiento: al este de 69°35'W. EPSG 3118
	MAGNA_Colombia_Este	2	Proyección MAGNA origen Este. Área de cubrimiento: de 72°35'W a 69°35'W. EPSG 3117
	MAGNA_Colombia_Bogota	3	Proyección MAGNA origen Bogotá. Área de cubrimiento: de 75°35'W a 72°35'W. EPSG 3116
	MAGNA_Colombia_Oeste	4	Proyección MAGNA origen Oeste. Área de cubrimiento: 78°35'W a 75°35'W. EPSG 3115
	MAGNA_Colombia_Oeste_Oeste	5	Proyección MAGNA origen Oeste Oeste. Área de cubrimiento: al oeste de 78°35'W. EPSG 3114
	MAGNA_Colombia_Oeste_Insular	6	Proyección MAGNA origen Oeste Insular. Área de cubrimiento: al oeste de 81°35'W.
	MAGNA_Origen_Nacional	7	Proyección MAGNA origen Nacional. Área de cubrimiento: 79°00'W a 67°00'W. EPSG 9377

Dominio (*)	Etiqueta (*)	Código	Definición
Dom_Visibilidad	No	0	No
	Si	1	Sí

Dominio (*)	Etiqueta (*)	Código	Definición
Dom_Boolean	No	0	No
	Si	1	Sí

Tablas asociadas al objeto estación de campo

Tabla

Nombre (*)	Libreta_Campo
Código (*)	2504007
Definición (*)	Libreta donde se registra la información obtenida de las salidas de campo
Alias (*)	Libreta campo
Subtipos (*)	

Atributos (*)

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
ID_Libreta	Código libreta	250400701	Código identificador de la libreta de campo. Los tres primeros caracteres corresponden a las iniciales del nombre del profesional, los tres siguientes a las iniciales del nombre del volcán/proyecto y los tres últimos al número de la libreta de campo	Text	15		Obligatorio	
Entidad_Responsable	Entidad responsable	250400702	Entidad a la que hace parte el proyecto que se desarrolla	Text	50		Obligatorio	
Geologo_Responsable	Geólogo responsable	250400703	Profesional en geología a quien pertenece la libreta	Text	100		Obligatorio	
Zona_Estudio	Zona estudio	250400704	Nombre de la zona que está siendo estudiada	Text	50		Obligatorio	
Nombre_Estacion_Inicio	Nombre estación inicio	250400705	Nombre de estación inicial que ha sido consignada en la libreta	Text	25		Obligatorio	
Nombre_Estacion_Fin	Nombre estación fin	250400706	Nombre de estación final que ha sido consignada en la libreta	Text	25		Obligatorio	
Fecha_Inicial	Fecha inicial	250400707	Fecha inicial en que fue obtenida la información consignada en la libreta	Date			Opcional	
Fecha_Final	Fecha final	250400708	Fecha final en que fue obtenida la información consigna- da en la libreta	Date			Opcional	

Tabla

Nombre (*)	Foto_Campo
Código (*)	2504008
Definición (*)	Fotografías asociadas a cada estación de campo
Alias (*)	Foto campo
Subtipos	

Atributos (*)

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
ID_FotoCampo	Código de la foto	250400801	Código identificador de las fotografías obtenidas en campo para cada estación	Text	50		Obligatorio	
Nombre_Estacion	Nombre estación campo	250400802	Código identificador de una estación de campo. Está compuesto por nueve dígitos separados con guion bajo: Los tres primeros correspondientes a las iniciales del nombre del profesional, los tres siguientes a las iniciales del nombre del volcán y los tres últimos a la numeración de la estación de campo	Text	25		Obligatorio	
Ruta	Enlace URL	250400803	Enlace URL del registro fotográfico	Text	250		Opcional	
Observaciones	Observaciones	250400804	Observaciones adicionales	Text	254		Opcional	

123

Tabla

Nombre (*)	Muestra
Código (*)	2504002
Definición (*)	Porción de material tomado de una gran cantidad, con el propósito de estimar sus propiedades o composición mediante análisis de laboratorio
Alias (*)	Muestra
Subtipos	

Atributos (*)

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
ID_Muestra	Código Muestra	250400201	Código identificador de una muestra tomada en campo. Si es una muestra de lava se utilizan los nueve dígitos ya descritos seguido de un guion bajo y la letra de la capa de la cual se toma la muestra, de lo contrario se añade además un guion bajo y el tipo de muestra: carbón (3C), paleosuelo (3S), madera (3M), arqueológica (3A), turba (3T), fósil (3F) muestra de roca: pómez (2P), escoria (2E), lítico (2L) y matriz (1)	Text	25		Obligatorio	
Tipo_Muestra	Tipo muestra	250400202	Tipo de material geológico recolectado	Text	15		Obligatorio	Dom_TipoMuestra
IGM	Código IGM	250400203	Código único utilizado para la identificación de una muestra en el Servicio Geológico Colombiano. Está compuesto por siete dígitos	Long Integer	10		Opcional	
Numeracion_Muestra_ Campo	Numeración muestra campo	250400204	Numeración de muestra en campo	Text	50		Opcional	
Testigo	Testigo	250400205	Indicador de existencia de testigo	Text	1		Opcional	Dom_Boolean
Litologia_Observada_ Campo	Litología observada campo	250400206	Litología observada en campo	Text	255		Opcional	
Latitud	Latitud	250400207	Latitud	Double	8,5	Grados decimales	Opcional	
Longitud	Longitud	250400208	Longitud	Double	8,5	Grados decimales	Opcional	
Fecha	Fecha	250400209	Fecha	Date			Obligatorio	
Nombre_Estacion	Nombre estación campo	250400210	Código identificador de una estación de campo. Está compuesto por nueve dígitos separados con guion bajo: Los tres primeros correspondientes a las iniciales del nombre del profesional, los tres siguientes a las iniciales del nombre del volcán y los tres últimos a la numeración de la estación de campo	Text	25		Obligatorio	
Nro_Caja_Litoteca	Identificador caja litoteca	250400211	Número identificador de caja en la cual se encuentra almacenada la muestra en la litoteca	Text	50		Opcional	
Grado_Meteorizacion	Grado de meteorización	250400212	Grado de meteorización del depósito	Short Integer	2		Opcional	Dom_GradoMeteorizacion
Clasificacion_Preliminar	Clasificación preliminar	250400213	Clasificación preliminar de la muestra	Text	50		Opcional	
Observaciones	Observaciones	250400214	Observaciones que quieran ser agregadas para complementar la información	Text	600		Opcional	
Codigo_Nro_Litoteca	Código número litoteca	250400215	Código identificador de una muestra en la litoteca	Text	50		Opcional	
Unidad_Litologica	Unidad Litológica	250400216	Unidad litológica donde se localiza la muestra	Text	50		Opcional	
Ruta_Reporte_SD	Ruta Reporte Secciones Delgadas	250400217	Ruta del reporte de laboratorio del análisis de las Secciones Delgadas	Text	250		Opcional	
Cita_Bibliografica	Cita Bibliográfica	250400218	Campo que contiene la cita bibliográfica	Text	200		Opcional	
Referencia_Bibliografica	Referencia Bibliográfica	250400219	Campo que contiene el nombre del producto bibliográfico de referencia	Text	600		Opcional	

124

Dominios (C)

Dominio (*)	Etiqueta (*)	Código	Definición
	Muestra finos	2504002021	Muestra finos
	Concentrado batea	2504002022	Concentrado batea
	Gravas	2504002023	Gravas
	Suelos	2504002024	Suelos
	Arcillas	2504002025	Arcillas
	Esquirlas roca	2504002026	Esquirlas roca
	Sedimentos en lecho seco	2504002027	Sedimentos en lecho seco
	Roca	2504002028	Roca
	Concentrado	2504002029	Concentrado
Dom_TipoMuestra	Fósil	25040020210	Fósil
	Matriz	25040020211	Matriz
	Carbón	25040020212	Carbón
	Paleosuelo	25040020213	Paleosuelo
	Madera	25040020214	Madera
	Turba	25040020215	Turba
	Arqueológica	25040020216	Arqueológica
	Aguas superficiales	25040020217	Aguas superficiales
	Aguas subterráneas	25040020218	Aguas subterráneas
	Mineral	25040020219	Mineral

Dominio (*)	Etiqueta (*)	Código	Definición
Dom_GradoMeteorizacion	Alto	1	Alto
	Medio	2	Medio
	Bajo	3	Вајо

Dominio (*)	Etiqueta (*)	Código	Definición
Dom_Boolean	No	0	No
	Si	1	Sí

Tabla

Nombre (*)	Tipo_Analisis
Código (*)	2504006
Definición (*)	Tipo de análisis realizado a la muestra
Alias (*)	Tipo Análisis
Subtipos	

Atributos (*)

Nombre (*)	Alias	Código	Definición T		Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
ID_TipoAnalisis	Identificador tipo análisis	250400601	Identificador del tipo análisis	Text	50		Obligatorio	
Tipo_Analisis	Tipo de análisis	250400602	Tipo de análisis de laboratorio al cual se somete la muestra	Text	15		Obligatorio	Dom_TipoAnalisis
Observaciones	Observaciones	250400603	Observaciones adicionales	Text	254		Opcional	
ID_Muestra	Código muestra	250400604	Código identificador de una muestra tomada en campo. Si es una muestra de lava se utilizan los nueve dígitos para la denominación de la estación de campo, seguido de un guion bajo y la letra de la capa de la cual se toma la muestra, de lo contrario se añade además un guion bajo y el tipo de muestra: carbón (3C), paleosuelo (3S), madera (3M), arqueológica (3A), turba (3T), fósil (3F), muestra de roca: pómez (2P), escoria (2E), lítico (2L) y matriz (1)	Text	25		Obligatorio	

Dominios (C)

Dominio (*)	Etiqueta (*)	Código	Definición
	Análisis petrográfico	2504006021	Análisis petrográfico
	Análisis químico	2504006022	Análisis químico
	Análisis fisicoquímico	2504006023	Análisis fisicoquímico
	Espectrometría infrarroja	2504006024	Espectrometría infrarroja
	Isotopía	2504006025	Isotopía
	Datación Paleontológica	2504006026	Datación Paleontológica
	Datación Radiométrica	2504006027	Datación Radiométrica
	Mediciones contenidos GMAC	2504006028	Mediciones contenidos GMAC
	Termocronología	2504006029	Termocronología
	Susceptibilidad magnética	25040060210	Susceptibilidad magnética
	Inclusiones fluidas	25040060211	Inclusiones fluidas
	Ensayos Geomecánicos	25040060212	Ensayos Geomecánicos
	Específico de arcillas	25040060213	Específico de arcillas
Dom_TipoAnalisis	Litogeoquímica	25040060214	Litogeoquímica
	Magnetoestratigrafía	25040060215	Magnetoestratigrafía
	Análisis de componentes	25040060216	Análisis de componentes
	Densidad	25040060217	Densidad
	Espectrometria de Absorción Atómica AAS	25040060218	Espectrometria de Absorción Atómica AAS
	Absorción Atómica Generación de Hidruros HGAAS	25040060219	Absorción Atómica Generación de Hidruros HGAAS
	Absorción Atómica Vapor frío CVAAS	25040060220	Absorción Atómica Vapor frío CVAAS
	Absorción Atómica Horno de Grafito GFAAS	25040060221	Absorción Atómica Horno de Grafito GFAAS
	Fluorescencia de rayos X XRF	25040060222	Fluorescencia de rayos X XRF
	Ensayo al fuego	25040060223	Ensayo al fuego
	Espectrografía de Emisión EE	25040060224	Espectrografía de Emisión EE
	Espectrometría de Masas con Plasma de Acoplamiento Inductivo ICP-MS	25040060225	Espectrometría de Masas con Plasma de Acoplamiento Inductivo ICP-MS
	Espectroscopía de Emision Atómica con Plasma de Acoplamiento Inductivo ICP-AES	25040060226	Espectroscopía de Emisión Atómica con Plasma de Acoplamiento Inductivo ICP-AES

(*): Objeto obligatorio (C): Objeto condicional

Dominio (*)	Etiqueta (*)	Código	Definición
	Descomposición térmica y amalgamación con oro	25040060227	Descomposición térmica y amalgamación con oro acoplado a AA
	Activación neutrónica NAA	25040060228	Activación neutrónica NAA
	Espectrometría de Fluorescencia atómica AFS	25040060229	Espectrometría de Fluorescencia atómica AFS
	Colorimetría	25040060230	Colorimetría
	Microsonda Electrónica	25040060231	Microsonda Electrónica
	Catodoluminiscencia	25040060232	Catodoluminiscencia
	Microtermometría	25040060233	Microtermometría
	Capacidad de intercambio iónico CII	25040060234	Capacidad de intercambio iónico CII
	Infrarrojo cercano NIR	25040060235	Infrarrojo cercano NIR
	Cromatografía	25040060236	Cromatografía
	Granulometría	25040060237	Granulometría
	Difracción de rayos X XRD	25040060238	Difracción de rayos X XRD
	Gravimetría	25040060239	Gravimetría
	Qemscan	25040060240	Qemscan
	Fluorescencia de rayos X portatil pXRF	25040060241	Fluorescencia de rayos X portátil pXRF
	Extracciones secuenciales	25040060242	Extracciones secuenciales
	Ión Selectivo	25040060243	Ión Selectivo
	Químico de Cenizas	25040060244	Químico de Cenizas
Dom TipoAnalisis	Caracterización Química	25040060245	Caracterización Química
	Volumetría	25040060246	Volumetría
	Análisis LECO	25040060247	Análisis LECO
	Potenciometria	25040060248	Potenciometría
	Espectrometría de Fluorescencia Atómica de vapor frío CV-AFS	25040060249	Espectrometría de Fluorescencia Atómica de vapor frío CV-AFS
	F-C	25040060250	F-C
	Petrografía Carbones	25040060251	Petrografía Carbones
	Plastometría	25040060252	Plastometría
	Gama espectometría	25040060253	Gama espectometría
	Isotopos Estables	25040060254	Isotopos Estables
	Huellas de Fisión	25040060255	Huellas de Fisión
	Ensayo al Fuego - Lectura ICP-MS	25040060256	Ensayo al Fuego - Lectura ICP-MS
	Ensayo al Fuego - Lectura ICP-AES	25040060257	Ensayo al Fuego - Lectura ICP-AES
	Ensayo al Fuego - Lectura AAS	25040060258	Ensayo al Fuego - Lectura AAS
	Ensayo al Fuego - Gravimetría	25040060259	Ensayo al Fuego - Gravimetría
	Fluoroscopía 25040060260 Fluoro		Fluoroscopía
	Cromatografía Iónica	25040060261	Cromatografía Iónica
	Espectometría de fluorescencia atómica de Generación de hidruros	25040060262	Espectometría de fluorescencia atómica de Generación de hidruros
	Microscopía Electrónica de Barrido SEM	25040060263	Microscopía Electrónica de Barrido SEM

126

(*): Objeto obligatorio (C): Objeto condicional

Grupo (*)

Nombre (*)	Isolineas		
Código (*)	2507		
Definición (*)	Línea trazada sobre un mapa para indicar el lugar geométrico de los puntos en los que determinada propiedad es constante		
Alias (*)	Isolíneas		
Objetos (*)	Isopaca, Isopleta_GeoVol		

Objeto (*)

Nombre (*)	Isopaca
Código (*)	2507001
Definición (*)	Es una línea dibujada en un mapa que une puntos de igual espesor en una unidad estratigráfica determinada o grupo de unidades estratigráficas
Alias (*)	Isópaca
Subtipos	

Atributos (*)

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
ID_Isopaca	Código Contorno	250700101	Código del contorno	Text	50		Obligatorio	
Espesor	Espesor	250700102	Espesor en centímetros (cm) de la unidad litoestratigráfica medida	Double	6,2	Centímetros	Obligatorio	
Unidad_Litoestratigrafica	Unidad litoestratigráfica	250700103	Unidad litoestratigráfica a la que pertenece la isópaca	Text	50		Opcional	
Edad	Edad	250700104	Edad de la unidad (ejemplo perteneciente a una erupción histórica o reciente)	Text	50		Opcional	
Observaciones	Observaciones	250700105	Observaciones adicionales	Text	254		Opcional	

Objeto (*)

Nombre (*)	Isopleta_GeoVol	
Código (*) 2507002		
Definición (*) Es una línea dibujada en un mapa que conectan puntos de igual valor de tamaño de partículas		
Alias (*)	Isopleta Geología Volcanes	
Subtipos		

Atributos (*)

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
ID_Isopleta	Código Contorno	250700201	Código del contorno	Text	50		Obligatorio	
Valor_Isolinea	Valor de la isolínea	250700202	Valor de la isolínea en centímetros	Double	6,2	Centímetros	Obligatorio	
Tam_Fragmento	Tamaño fragmento	250700203	Tamaño de los fragmentos	Short Integer	2		Opcional	Dom_TamFragmento
Tipo_Fragmento	Tipo del fragmento medido	250700204	Tipo de fragmento medido	Short Integer	2		Opcional	Dom_TipoFragmento

Ectándar goográfico	nara manac	goológicos de	volcanoc	colombianoc
			vollaries	COLONIDIANOS
	P	0 0		

Nombre (*)	Alias	Código	Definición	Tipo de dato	Longitud	Unidad de medida	Obligatoriedad (*)	Dominio (C)
Unidad_Litoestratigrafica	Unidad litoestratigráfica	250700205	Unidad litoestratigráfica a la que pertenece la isolínea	Text	50		Opcional	
Edad	Edad	250700206	Edad de la unidad (ejemplo perteneciente a una erupción histórica o reciente)	Text	50		Opcional	
Observaciones	Observaciones	250700207	Observaciones adicionales	Text	254		Opcional	

Dominios (C)

Dominio (*)	Etiqueta (*)	Código	Definición
Dom_TamFragmento	Máximo	1	Máximo
	Mínimo	2	Mínimo
	Promedio	3	Promedio

Dominio (*) Etiqueta (*)		Código	Definición	
Dom_TipoFragmento	Fragmento vesiculado		Fragmento vesiculado	
	Fragmento denso	2	Fragmento denso	

Relaciones entre objetos (C)

Nombre (*)	Código	Definición	Tipo de relación	Cardinalidad	Ordenado	Navegable
EstacionCampo_Muestra	R2504001_2504002	Una estación de campo puede tener una o más muestras	Otras relaciones lógicas	1N	Verdadero	Falso
EstacionCampo_FotoCampo	R2504001_2504008	Una estación de campo puede tener una o más fotos de campo	Otras relaciones lógicas	1N	Verdadero	Falso
LibretaCampo_EstacionCampo	R2504007_2504001	Una libreta de campo puede contener una o más estaciones de campo	Otras relaciones lógicas	1N	Verdadero	Falso
Muestra_TipoAnalisis	R2504002_2504006	Una muestra puede tener uno o más tipos de análisis	Otras relaciones lógicas	1N	Verdadero	Falso

Símbolos y especificaciones

Identificación del catálogo de representación

Nombre	Catálogo de símbolos de geología de volcanes
Alcance	Los símbolos que hacen parte del presente estándar rigen para los datos generados y procesados en el marco de la cartografía geológica de volcanes siendo este su enfoque temático.
Número de la versión	1.0
Fecha de la versión	Diciembre de 2022
Tipo de fecha	Publicación

Demonstel	Nombre de la entidad	Servicio Geológico Colombiano	Ciudad	Bogotá D.C.
	Cargo	Grupo de Geología de Volcanes	Departamento	Cundinamarca
Responsable	Tipo de rol	Autor	País	Colombia
	Dirección	Diagonal 53 n.° 34-53	Teléfono	+57(601) 22002063

Conjunto de símbolos

Código del tema	01	Nombre del tema	Geología
Código del grupo	0104	Nombre del grupo	Geología de volcanes
Código del objeto	0104001	Nombre del objeto	Elemento_Volcanico_PT
Código del atributo	010400102	Nombre del atributo	Тіро

Conjunto de símbolos

Código del símbolo (*)	Nombre del símbolo	Tipo (*)	Muestra gráfica (*)	Propiedades (*)	Descripción (*)	Escala (*)	Recomendaciones de uso
CS0104001021	Volcán activo	Punto		RGB relleno: 0,0,0 Tramado: no RGB contorno: 0,0,0 Estilo contorno: continuo Tamaño: 7,0 mm	Usado para representar un volcán activo	100K	Usado en mapas a escala 1:100 000 o menos
CS0104001022	Volcán inactivo	Punto	\bigtriangleup	RGB relleno: sin relleno Tramado: no RGB contorno: 0,0,0 Estilo contorno: continuo Tamaño: 7,0 mm	Usado para representar un volcán inactivo	100K	detallada

Conjunto de símbolos

Código del tema	02	Nombre del tema	Geomorfología
Código del grupo	0202	Nombre del grupo	Rasgos geomorfológicos
Código del objeto	0202001	Nombre del objeto	Rasgo_Geomorfologico_PT
Código del atributo	020200102	Nombre del atributo	Nombre_RasgoGmfPt
Código del objeto	0202002	Nombre del objeto	Rasgo_Geomorfologico_LN
Código del atributo	020200202	Nombre del atributo	Nombre_RasgoGmfLn
Código del objeto	0202003	Nombre del objeto	Rasgo_Geomorfologico_PL
Código del atributo	020200302	Nombre del atributo	Nombre_RasgoGmfPl

Conjunto de símbolos

Código del símbolo (*)	Nombre del símbolo	Tipo (*)	Muestra gráfica (*)	Propiedades (*)	Descripción (*)	Escala (*)	Recomendaciones de uso
CS020200102404	Drumlin	Punto	-0>	RGB: 0,0,0 Tamaño: 6,0 mm	Forma de relieve glaciar con una pendiente inclinada y otra más suave. La superficie más suave indica hacia donde se mueve el flujo de hielo	25K	
CS020200102405	Hom	Punto	A	RGB: 0,0,0 Tamaño: 6,0 mm	Forma de relieve glaciar denominada también como cuerno glaciar. Son picos con paredes de inclinaciones entre 45°-60°	25K	Se sugiere el color negro.
CS020200102406	Kettle	Punto	*	RGB: 0,0,0 Tamaño: 3,5 mm	Forma de relieve glaciar que forma conjuntos de depresiones más o menos circulares	25K	
CS020200102701	Anillo piroclástico	Punto		RGB: 0,77,168 Tamaño: 10,0 mm	Anillo piroclástico	25K	
CS020200102705	Cono de salpicadura	Punto	*	RGB: 0,77,168 Tamaño: 6,0 mm	Cono de salpicadura	25K	Usado para mapas a escalas 1:25000 o menos
CS020200102706	Cono de toba	Punto	\bigcirc	RGB: 0,77,168 Tamaño: 10,0 mm	Representa la zona de alteración hidrotermal clasificada como propilítica	25K	detalladas. Se sugiere el color azul oscuro.
CS020200102707	Cono piroclástico	Punto	*	RGB: 0,77,168 Tamaño: 6,0 mm	Cono piroclástico	25K	
CS020200102710	Criptodomo	Punto	*	RGB: 0,77,168 Tamaño: 4,0 mm	Criptodomo	25K	Usado para la representación de un criptodomo. Se sugiere el color azul oscuro.

(*): Objeto obligatorio (C): Objeto condicional

131

Código del símbolo (*)	Nombre del símbolo	Tipo (*)	Muestra gráfica (*)	Propiedades (*)	Descripción (*)	Escala (*)	Recomendaciones de uso
CS020200102711	Cuello volcánico	Punto	☆	RGB: 0,77,168 Tamaño: 7,0 mm	Cuello volcánico	25K	Usado para mapas a escalas 1:25000 o menos
CS020200102712	Diatrema	Punto	*	RGB: 0,77,168 Tamaño: 10,0 mm	Diatrema	25K	detalladas. Se sugiere el color azul oscuro.
CS020200102714	Domo de lava	Punto	=0=	RGB: 0,77,168 Tamaño: 7,0 mm	Domo de lava	25K	Usado para la representación de domos volcáni- cos. Se sugiere el color azul oscuro.
CS020200202005	Cicatriz de colapso	Línea		Grosor de la línea: 0,3 mm RGB: 0,77,168	Cicatriz de colapso	25K	Usado para delinear el contorno de cicatrices de colapso no relacionadas al cráter/borde de emisión.
CS020200202006	Cicatriz de colapso inferida	Línea		Grosor de la línea: 0,3 mm RGB: 0,77,168	Cicatriz de colapso inferida	25K	Usado para delinear el contorno de cicatrices de colapso inferidas no relacionadas al cráter/borde de emisión.
CS020200202015	Escarpe	Línea		Grosor de la línea: 0,50 mm RGB: 255,0,0	Escarpe	25K	Usado para delinear contorno de escarpes. Se sugiere el color rojo.
CS020200202024	Montículo (Hummock)	Línea		Grosor de la línea: 1,18 mm RGB: 0,0,0	Montículo (Hummock)	25K	Usado para delinear el contorno de montículos de <i>hummocks</i> .
CS020200202334	Valle en forma de V	Línea	< < < < < < <	RGB: 0,0,0 Tamaño: 2,8 mm	Valle en forma de V	25K	
CS020200202403	Aristas	Línea	+++++++++++++++++++++++++++++++++++++++	RGB: 0,0,0 Grosor de línea: 0,5 mm Grosor líneos verticales: 2,8 mm	Aristas	25K	Se sugiere el color negro.
CS020200202409	Circo glaciar	Línea	- - - -	RGB: 0,0,0 Grosor de línea: 0,21 mm Grosor líneos verticales: 2,11 mm	Circo glaciar	25K	Usado para el contorno de anfieatros formados por erosión glaciar. Se sugiere el color negro.
CS020200202411	Cresta	Línea	****	RGB: 0,0,0 Grosor de línea: 0,24 mm Tamaño de triángulos: 1,4 mm	Cresta	25K	Usado para delinear morfología de crestas. Se sugiere el color negro.
CS020200202420	Eskers	Línea	<><><><><	RGB: 0,0,0 Tamaño: 1,2 mm	Eskers	25K	Usado para indicar depósitos de canal formados encima de la masa de hielo.

(*): Objeto obligatorio (C): Objeto condicional

Código del símbolo (*)	Nombre del símbolo	Tipo (*)	Muestra gráfica (*)	Propiedades (*)	Descripción (*)	Escala (*)	Recomendaciones de uso
CS020200202429	Lengua glaciar	Línea		RGB: 0,77,168 Tamaño: 0,35 mm	Lengua glaciar	25K	Usado para indicar lenguas glaciares. Se sugiere el color azul oscuro.
CS020200202430	Línea de cresta de morrena	Línea	+++++++++++++++++++++++++++++++++++++++	RGB: 0, 0, 0 Grosor líneo horizontal: 0,2 mm Tamaño línea vertical: 1,0 mm Tamaño círculo: 0,7 mm	Línea de cresta de morrena	25K	Se sugiere el color negro.
CS020200202431	Línea de cresta de morrena lateral	Línea	<u>+0+0+0+0-</u>	RGB: 0, 0, 0 Grosor líneo horizontal: 0,2 mm Tamaño línea vertical: 1,5 mm Tamaño círculo: 0,7 mm	Línea de cresta de morrena lateral	25K	Se sugiere el color negro.
CS020200202434	Valle colgante	Línea	>))	RGB: 0, 0, 0 Grosor líneo: 0,4 mm Tamaño punta flecha: 5 mm Tamaño semicírculo: 5 mm Tamaño línea vertical: 2 mm	Valle colgante	25K	Usado para indicar valles glaciares. Se sugiere el color negro.
CS020200202435	Valle en forma de U	Línea		RGB: 0, 0, 0 Tamaño: 3,5 mm	Valle en forma de U	25K	Usado para indicar valles glaciares. Se sugiere el color negro.
CS020200202701	Borde de centro de emisión/ cráter	Línea		RGB: 0,77,168 Grosor líneo: 0,35mm Tamaño triángulo: 1,8mm	Borde de centro de emisión/cráter	25K	
CS020200202702	Borde de centro de emisión inferido/cráter inferido	Línea	<u> </u>	RGB: 0,77,168 Grosor líneo: 0,35mm Tamaño punto: 0,25mm Tamaño triángulo: 1,8mm	Borde de centro de emisión inferido/cráter inferido	25K	Usado para delinear el contorno de un cráter o centro de emisión, inferido, cubierto Se sugiere el color azul oscuro.
CS020200202703	Borde de centro de emisión inferido cubierto/cráter inferido cubierto	Línea	.	RGB: 0,77,168 Grosor líneo: 0,35 mm Tamaño triángulo: 1,3 mm	Borde de centro de emisión inferido cubierto/cráter inferido cubierto	25K	
CS020200202710	Crestas de presión en flujo de lava	Línea		RGB: 255, 0, 0 Grosor líneo: 0,18 mm Tamaño salientes: 1 41 mm	Crestas de presión en flujo de lava	25K	

(*): Objeto obligatorio (C): Objeto condicional

Código del símbolo (*)	Nombre del símbolo	Tipo (*)	Muestra gráfica (*)	Propiedades (*)	Descripción (*)	Escala (*)	Recomendaciones de uso
CS020200202713	Dique	Línea		RGB: 255, 0, 0 Grosor líneo: 0,25 mm Tamaño cuadrado: 1,2 mm	Dique	25K	Usado para escalas 1:25 000.
CS020200202715	Dirección de flujos de productos efusivos	Línea		RGB: 0,77,168 Grosor líneo: 0,7 mm	Dirección de flujos de productos efusivos	25K	Usado para indicar la dirección de flujo. Se sugiere el color azul oscuro.
CS020200202716	Dirección de flujos de productos volcanoclásticos	Línea		RGB: 0,77,168 Grosor líneo: 0,7 mm	Dirección de flujos de productos volcanoclásticos	25K	El espaciado de la línea discontinua puede variar.
CS020200202718	Fisura volcánica	Línea		RGB: 0,77,168 Grosor líneo: 0,25 mm Tamaño triángulo: 2 mm	Fisura volcánica	25K	Usado para delinear fisuras volcánicas. Se
CS020200202719	Fisura volcánica inferida	Línea		RGB: 0,77,168 Grosor líneo: 1 mm Tamaño triángulo: 2 mm	Fisura volcánica inferida	25K	sugiere el color azul oscuro.
CS020200202722	Frente de flujo de lava	Línea		RGB: 0,77,168 Grosor líneo: 0,35 mm	Frente de flujo de lava	25K	Usado para delimitar escarpes formados por frentes de flujos de lava.
CS020200202724	Levée u hombrera	Línea	•••••	RGB: 0, 0, 0 Tamaño: 1,5 mm	Levée u hombrera	25K	El espaciado de la línea discontinua puede variar.
CS020200202730	Maar	Línea		RGB: 0,77,168 Grosor líneo: 0,355 mm Tamaño triángulo: 2,6 mm	Maar	25K	Usado para mapas a escalas 1:25 000 o menos
CS020200202731	Maar sin laguna	Línea		RGB: 0,77,168 Grosor líneo: 0,355 mm Tamaño triángulo: 2,4 mm	Maar sin laguna	25K	detalladas. Se sugiere el color azul oscuro.
CS020200202732	Margen cubierta de depresión volcanotectónica	Línea		RGB: 0,77,168 Grosor líneo: 0,355mm Tamaño cuadrado: 2,0mm	Margen cubierta de depresión volcanotectónica	25K	Usado para delinear depresiones morfológicas por subsidencias tectónicas no asociadas a erupciones volcánicas. Se sugiere el color azul oscuro.
CS020200202733	Margen de caldera	Línea	• •	RGB: 0,77,168 Grosor líneo: 0,4 mm Tamaño triángulo: 2,0 mm	Margen de caldera	25K	
CS020200202735	Margen de caldera inferido	Línea	~~~~	RGB: 0,77,168 Grosor líneo: 0,4 mm Tamaño triángulo: 2,6 mm	Margen de caldera inferido	25K	Usado para delinear el contorno de una caldera, inferido o cubierto se sugiere el color azul oscuro.
CS020200202736	Margen de caldera cubierto	Línea	- • •	RGB: 0,77,168 Grosor líneo: 0,4 mm Tamaño triángulo: 2,0 mm	Margen de caldera cubierto	25K	

(*): Objeto obligatorio (C): Objeto condicional

Código del símbolo (*)	Nombre del símbolo	Tipo (*)	Muestra gráfica (*)	Propiedades (*)	Descripción (*)	Escala (*)	Recomendaciones de uso
CS020200202737	Margen de depresión volcanotectónica	Línea		RGB: 0,77,168 Grosor líneo: 0,355 mm Tamaño cuadrado: 2,0 mm	Margen de depresión volcanotectónica	25K	Usado para delinear depresiones morfológicas por subsidencias tectónicas no asociadas a erupciones volcánicas. Se sugiere el color azul oscuro.
CS020200202740	Túmulos sobre el flujo de lava	Línea	^	RGB: 255, 0, 0 Grosor líneo: 0,18 mm Tamaño salientes: 1,41 mm	Túmulos sobre el flujo de lava	25K	Se sugiere el color rojo.
CS020200302401	Límite glaciar	Polígono		RGB: 0, 0, 0 Grosor líneo: 0,2 mm	Límite glaciar	25K	Usado para delinear el contorno de la masa glaciar. Se sugiere el color negro.

Conjunto de símbolos

Código del tema	25	Nombre del tema	Misceláneos
Código del grupo	2502	Nombre del grupo	Leyenda geológica
Código del objeto	2502004	Nombre del objeto	Poligono_Leyenda_GeoVol
Código del atributo	-	Nombre del atributo	-

Conjunto de símbolos

Código del símbolo (*)	Nombre del símbolo	Tipo (*)	Muestra gráfica (*)	Propiedades (*)	Descripción (*)	Escala (*)	Recomendaciones de uso
CS2502004	Polígono Leyenda GeoVol	Polígono		RGB: 0,0,0 Grosor: 0,25 mm	Polígono Leyenda GeoVol	25K	

Conjunto de símbolos

Código del tema	25	Nombre del tema	Misceláneos
Código del grupo	2504	Nombre del grupo	Estaciones
Código del objeto	2504001	Nombre del objeto	Estacion_Campo
Código del atributo	-	Nombre del atributo	-
Código del objeto	2504002	Nombre del objeto	Muestra
Código del atributo	250400202	Nombre del atributo	Tipo_Muestra
Código del objeto	2504006	Nombre del objeto	Tipo_Analisis
Código del atributo	250400602	Nombre del atributo	Tipo_Analisis

Conjunto de símbolos

Código del símbolo (*)	Nombre del símbolo	Tipo (*)	Muestra gráfica (*)	Propiedades (*)	Descripción (*)	Escala (*)	Recomendaciones de uso
CS2504001	Estación campo	Punto	•	RGB: 0,0,0 Tamaño: 1,23 mm	Estación de campo	25K	
CS2504002021	Muestra finos	Punto	Ð	RGB: 0,0,0 Tamaño: 3,50 mm	Representa la ubicación de la muestra finos	25K	
CS2504002022	Concentrado batea	Punto	Ð	RGB: 0,0,0 Tamaño: 3,50 mm	Representa la ubicación de la muestra tipo concentrado batea	25K	
CS2504002023	Gravas	Punto	\$	RGB: 0,0,0 Tamaño: 4,50 mm	Representa la ubicación de la muestra tipo gravas	25K	
CS2504002024	Suelos	Punto	\$	RGB: 0,0,0 Tamaño: 4,50 mm	Representa la ubicación de la muestra tipo suelos	25K	
CS2504002025	Arcillas	Punto	\$	RGB: 0,0,0 Tamaño: 4,50 mm	Representa la ubicación de la muestra tipo arcillas	25K	
CS2504002026	Esquirlas roca	Punto	Ð	RGB: 0,0,0 Tamaño: 3,50 mm	Representa la ubicación de la muestra tipo esquirlas roca	25K	
CS2504002027	Sedimentos en lecho seco	Punto	•	RGB: 0,0,0 Tamaño: 4,50 mm	Representa la ubicación de la muestra tipo sedimentos en lecho seco	25K	
CS2504002028	Roca	Punto	Ð	RGB: 0,0,0 Tamaño: 3,50 mm	Representa la ubicación de la muestra tipo roca	25K	
CS2504002029	Concentrado	Punto	•	RGB: 0,0,0 Tamaño: 3,50 mm	Representa la ubicación de la muestra tipo concentrado	25K	
CS25040020210	Fósil	Punto	θ	RGB: 0,0,0 Tamaño: 3,50 mm	Representa la ubicación de la muestra tipo fósil	25K	
CS25040020211	Matriz	Punto	Θ	RGB: 0,0,0 Tamaño: 3,50 mm	Representa la ubicación de la muestra tipo matriz	25K	
CS25040020212	Carbón	Punto	۲	RGB: 0,0,0 Tamaño: 3,50 mm	Representa la ubicación de la muestra tipo carbón	25K	
CS25040020213	Paleosuelo	Punto	+	RGB: 0,0,0 Tamaño: 4,50 mm	Representa la ubicación de la muestra tipo paleosuelo	25K	
CS25040020214	Madera	Punto	8	RGB: 0,0,0 Tamaño: 3,50 mm	Representa la ubicación de la muestra tipo madera	25K	
CS25040020215	Turba	Punto	0	RGB: 0,0,0 Tamaño: 3,50 mm	Representa la ubicación de la muestra tipo turba	25K	
CS25040020216	Arqueológica	Punto	0	RGB: 0,0,0 Tamaño: 3,50 mm	Representa la ubicación de la muestra tipo arqueológica	25K	
CS25040020217	Aguas superficiales	Punto	0	RGB: 0,0,0 Tamaño: 3,50 mm	Representa la ubicación de la muestra tipo aguas superficiales	25K	

(*): Objeto obligatorio (C): Objeto condicional

136

Código del símbolo (*)	Nombre del símbolo	Tipo (*)	Muestra gráfica (*)	Propiedades (*)	Descripción (*)	Escala (*)	Recomendaciones de uso
CS25040020218	Aguas subterráneas	Punto	Ø	RGB: 0,0,0 Tamaño: 3,50 mm	Representa la ubicación de la muestra tipo aguas subterráneas	25K	
CS2504006021	Análisis petrográfico	Punto	•	RGB: 230,0,0 Tamaño: 6 mm	Representa la ubicación de la muestra con análisis petrográfico (Sección Delgada)	25K	
CS2504006022	Análisis químico	Punto	•	RGB: 0,0,0 Tamaño: 3,50 mm	Representa la ubicación de la muestra con análisis químico	25K	
CS2504006025	Isotopía	Punto		RGB: 0,0,0 Tamaño: 3,50 mm	Representa la ubicación de la muestra con análisis de isotopía	25K	
CS2504006026	Datación paleontológica	Punto	\otimes	RGB: 0,0,0 Tamaño: 3,50 mm	Representa la ubicación de la muestra con datación paleontológica	25K	
CS25040060210	Susceptibilidad magnética	Punto	Δ	RGB: 255,0,0 Tamaño: 8 mm	Representa la ubicación de la muestra con análisis de Susceptibilidad Magnética	25K	
CS25040060216	Análisis de componentes	Punto		RGB: 0,0,0 Tamaño: 3,50 mm	Representa la ubicación de la muestra con análisis de componentes	25K	
CS25040060217	Densidad	Punto		RGB: 0,112,255 Tamaño: 8 mm	Representa la ubicación de la muestra con análisis de Densidad	25K	
CS25040060222	Fluorescencia de rayos X XRF	Punto	B	RGB: 0,0,0 Tamaño: 6 mm	Representa la ubicación de la muestra con análisis de Fluorescencia	25K	
CS25040060225	Espectrometría de Masas con Plasma de Acoplamiento Inductivo ICP-MS	Punto		RGB: 0,0,0 Tamaño: 6 mm	Representa la ubicación de la muestra con análisis de Espectrometría de Masas	25K	
CS2504006027	Datación Radiométrica	Punto	$\langle \bullet \rangle$	RGB: 0,0,0 Tamaño: 6 mm	Representa la ubicación de la muestra con análisis de Datación Radiométrica	25K	
CS25040060237	Granulometría	Punto	S	RGB: 0,0,0 Tamaño: 6 mm	Representa la ubicación de la muestra con análisis de Granulometría	25K	
CS25040060238	Difracción de rayos X XRD	Punto		RGB: 0,0,0 Tamaño: 6 mm	Representa la ubicación de la muestra con análisis de Difracción de Rayos X	25K	

(*): Objeto obligatorio (C): Objeto condicional

Conjunto de símbolos

Código del tema	25	Nombre del tema	Misceláneos
Código del grupo	2507	Nombre del grupo	Isolíneas
Código del objeto	2507001	Nombre del objeto	Isopaca
Código del atributo	-	Nombre del atributo	-
Código del objeto	2507002	Nombre del objeto	Isopleta_GeoVol
Código del atributo	-	Nombre del atributo	-

Conjunto de símbolos

Código del símbolo (*)	Nombre del símbolo	Tipo (*)	Muestra gráfica (*)	Propiedades (*)	Descripción (*)	Escala (*)	Recomendaciones de uso
CS2507001	Isópaca	Línea		RGB: 0,0,0 Tamaño: 0,2 mm	Isópaca	25K	
CS2507002	Isopleta geología de volcanes	Línea		RGB: 0,0,0 Tamaño: 0,3 mm	Isopleta geología de volcanes	25K	

Índices

Índice de figuras

Figura	1. Esquema interpretativo de litosomas	21
Figura	 Ejemplos de inconformidades en algunos volcanes colombianos 	24
Figura	 Estructura de la geodatabase diseñada para el trabajo en la temática de cartografía geológica de volcanes 	29
Figura	 Estructura general del catálogo de objetos geográficos usado por el Grupo de Geología de Volcanes del SGC 	32
Figura	 Catálogo de símbolos utilizados en cartografía geológica de volcanes 	35
Figura	6. Carta de colores propuesta con sus respectivos RGB, para representación de unidades litoestratigráficas en los mapas geológicos de volcanes colombianos	36
Figura	7. Carta de achurados propuesta para la representación de los depósitos volcanoclásticos y depósitos epiclásticos en los mapas geológicos de volcanes en escala 1: 25 000	37
Figura	8. Ejemplo ilustrativo del uso de la carta de colores y de los achurados	39
Figura	9. Estilos de anotaciones utilizados en los mapas geológicos de volcanes colombianos	41
Figura	10. Plantilla completa para la salida gráfica de mapas geológicos de áreas volcánicas de Colombia	44

Figura	 Plantilla simplificada para la salida gráfica de mapas geológicos de áreas volcánicas de Colombia 	44
Figura	12. Ejemplo de salida gráfica en una plantilla para mapa a escala 1:25000 (anexo 2), adaptada al mapa geológico de la zona proximal del Complejo volcánico Paramillo de Santa Rosa	45
Figura	13. Configuración del rótulo de la plantilla en el <i>Mapa geológico del</i> <i>Complejo volcánico Paramillo de</i> <i>Santa Rosa, zona proximal</i> , con sus respectivos atributos	46
Figura	14. Nombres de los departamentos que abarcan el área cartografiada. Nombre del mapa, que debe coincidir con el nombre que aparece en el rótulo	48
Figura	15. Ejemplo de representación del mapa de localización, sistema de referencia y hojas adyacentes en el <i>Mapa geológico del Complejo volcánico</i> <i>Paramillo de Santa Rosa</i> , con sus respectivos atributos	48
Figura	16. Ejemplo de representación de las convenciones geológicas y cartográficas en el <i>Mapa geológico del Complejo volcánico Paramillo de Santa Rosa,</i> con sus respectivos atributos	50
Figura	17. Ejemplo de presentación de las referencias en el Mapa geológico del Complejo volcánico Paramillo de Santa Rosa, con sus respectivos atributos	51
	•	

139

Figura 18. Ejemplo de representación de		Figura 21. Ejemplo de diagramas que muestran
inconformidades, litosomas, unidades litoestratigráficas, incertidumbre estratigráfica, intervalo de depositación, edad e interpretación en términos de		la variabilidad geoquímica de tres unidades litoestratigráficas (lávicas) del Complejo volcánico Paramillo de Santa Rosa
unidades eruptivas y de unidades de actividad volcánica en el <i>Mapa</i> geológico del Complejo volcánico Paramillo de Santa Rosa, con sus respectivos atributos	53	Figura 22. Ejemplo de representación del corte geológico en el mapa del Complejo volcánico Paramillo de Santa Rosa, con sus atributos
Figura 19. Ejemplo de la representación de mapas esquemáticos de la historia eruptiva	55	Figura 23. Ejemplo de representación del mapa de unidades litoestratigráficas de caídas piroclásticas en el área del Compleio volcánico Paramillo de
Figura 20. Ejemplo de presentación del mapa morfoestructural en el Mapa geológico del Complejo volcánico Paramillo de Santa Rosa	56	Santa Rosa (CVPSR)

Índice de tablas

Tabla 1. Resumen de las categorías y los	
conceptos estratigráficos adoptados	
en la cartografía de áreas volcánicas	

Índice de anexos

18

Anexo 1. Términos y conceptos básicos	81
Anexo 2. Ejemplo de salida gráfica aplicada al mapa geológico del Complejo	
volcánico Paramillo de Santa Rosa	95
Anexo 3. Catálogo de objetos	97

57

57

58