# Batolito de Pueblo Bello

# »Sierra Nevada de Santa Marta Cesar

Gabriel Rodríguez, Juan Pablo Zapata, Ana María Correa Martínez, Diego Ramírez, Gloria Obando, Jimmy Alejandro Muñoz, Lorena del Pilar Rayo y Cindy Lizeth Ureña

Catálogo de las unidades litoestratigráficas de Colombia / Jurásico

Citación: Rodríguez, G., Zapata, J. P., Correa Martínez, A. M., Ramírez, D., Obando, G., Muñoz, J. A., Rayo, L. P. y Ureña, C. L. (2023). Batolito de Pueblo Bello. En *Catálogos de las unidades litoestratigráficas de Colombia: Sierra Nevada de Santa Marta*. Vol. 3. Servicio Geológico Colombiano. Este catálogo es uno de los resultados del proyecto Magmatismo Jurásico de Colombia, que tiene por objeto mejorar la información geológica básica y el conocimiento acerca de los eventos magmáticos jurásicos en el territorio nacional. Para cumplir con este objetivo, desde el 2014 el Servicio Geológico Colombiano (SGC) ha realizado este proyecto, en el cual se han desarrollado actividades de compilación de información, control de campo, muestreo para petrografía, química mineral, geoquímica de roca total y geocronología U-Pb en circón, utilizando la información tanto de las muestras recolectadas en el presente estudio como de los estudios anteriores, y todos aquellos datos que tiene el SGC y que otros investigadores han publicado. Toda esta información se incorpora para realizar una integración e interpretación que permita mejorar la información existente y dar un salto importante en el conocimiento geológico básico, herramienta fundamental para la exploración de minerales y el entendimiento de la evolución geológica de los Andes del norte de Suramérica.

En este catálogo se presenta la información geológica, petrográfica, litogeoquímica y geocronológica del Batolito de Pueblo Bello que aflora en el costado suroriental de la Sierra Nevada de Santa Marta (SNSM), a partir de la interpretación de nuevos análisis petrográficos, químicos de roca total y nuevas dataciones U-Pb en circón. Esta nueva información, junto con la preexistente, permite entender la evolución de este intrusivo y determinar los pulsos de cristalización que lo conforman, el tiempo de actividad magmática, las variaciones composicionales de las rocas desde la petrografía y la química de roca total.

# Proveniencia del nombre, distribución geográfica y reseña histórica

El nombre de Batolito de Pueblo Bello fue tomado del municipio de Pueblo Bello, localizado en las estribaciones de la SNSM, en el departamento del Cesar. El Batolito de Pueblo Bello tiene orientación SW-NE, más o menos paralelo al valle de los ríos Cesar y Ranchería, en los sectores oriental y suroriental de la SNSM, con un área aproximada de 1 400 km<sup>2</sup>. Limita al suroeste con la Falla de Caracolicito, y se extiende desde el municipio de El Copey (Cesar) al suroeste hasta la Cuchilla Monogaca al noreste (figura 1).

Inicialmente, este intrusivo recibió el nombre de Granito de San Sebastián (Gansser, 1955), o Granito Monzonítico de Pueblo Bello y San Sebastián (Radelli, 1962). Posteriormente, fue redefinido por Tschanz *et al.* (1969a), quienes describen dos cuerpos intrusivos de similar composición (Batolito de Pueblo Bello y Batolito de Patillal) que conforman el Cinturón Suroriental de Batolitos; los cuales están conformados por tres facies: facies cuarzo monzonita, facies granito y facies granito granofírico. Estos autores no toman el nombre de Batolito de San Sebastián propuesto por Gansser, porque consideran que los neisses graníticos que se incluyeron en el Batolito de San Sebastián corresponden a granulitas precámbricas, por lo que excluyen estos cuerpos neísicos.

En este trabajo se describe el Batolito de Pueblo Bello en concordancia con la definición de Tschanz *et al.* (1969a).

# 2. Descripción geológica

#### 2.1. Marco geológico

La SNSM está localizada al noroeste de Suramérica, en la zona meridional del Caribe y norte de Colombia. Es un macizo de forma triangular que tiene un área de 1 3 700 km<sup>2</sup> y picos que alcanzan alturas hasta de 5900 m s.n.m., siendo el macizo más alto en el mundo con proximidad a la línea costera. Se encuentra limitado por la Falla Santa Marta-Bucaramanga en su lado suroccidental, por la Falla Oca del lado norte, y por sedimentos clásticos cretáceos a paleocenos de la cuenca Cesar Ranchería en el lado nororiental (Cardona *et al.*, 2010a).



### Leyenda

- Depósitos cuaternarios y aluviales
- Depósitos cuaternarios fluvioglaciares
- Sedimentos de edad Mioceno y Plioceno
- Plutones Paleógenos (Batolito de Santa Marta y otros intrusivos menores)

#### Mesozoico

- Esquistos de Concha, Esquistos de Gaira y Esquistos de San Lorenzo (Cretácico)
- Fm. Molino, Grupo Cogollo, Fm. La Luna y Fm.Portales (Cretácico)
- Pórfidos graníticos y riolíticos hipoabisales (Jurásico)
   Complejo Volcánico de la SNSM
- (Jurásico) Franja Central de Batolitos
- (Jurásico) Batolito de Atánquez (Jurásico)
- Batolito de Pueblo Bello (Jurásico)
- Plutón del Socorro (Jurásico)
- Batolito de Patillal (Jurásico)
- Milonitas y Migmatitas La Secreta (Triásico)

#### Paleozoico



#### Precámbrico



Figura 1. Mapa geológico del sector suroriental de la SNSM incluido el Batolito de Pueblo Bello Fuente: Modificado de Tschanz *et al.* (1969b), Colmenares *et al.* (2007) y este trabajo.

La SNSM es el resultado de la interacción entre las placas del Pacífico, del Caribe y Sudamericana, que se inició desde comienzos del Mesozoico (Kellogg *et al.*, 1995; Taboada *et al.*, 2000; Cardona *et al.*, 2010a; Montes *et al.*, 2010). Esta ha sido considerada como parte de los bloques del Proterozoico asociados a la cordillera Oriental de Colombia, junto con los macizos de Garzón y de Santander (Kroonenberg, 1982; Cediel *et al.*, 2003; Cordani *et al.*, 2005; Ordóñez Carmona *et al.*, 2006; Ramos, 2010) y es parte de los afloramientos de rocas del Proterozoico en Colombia junto con los de San Lucas y La Guajira (Kroonenberg, 1982).

La SNSM tiene un basamento metamórfico de edad neo-proterozoica (Tschanz *et al.*, 1969a; Tschanz *et al.*, 1974; Ordóñez Carmona *et al.*, 2002; Ibáñez Mejía *et al.*, 2011; Piraquive, 2017) representado por unidades como la Granulita de Los Mangos y el Neis de Buritaca, constituidas por neises, neises anortosíticos, anfibolitas, granitoides de anatexia y migmatitas en facies granulita a anfibolita, sobre las cuales reposan discordantes rocas sedimentarias paleozoicas (Tschantz *et al.*, 1969a).

Se presentan cuerpos de gabro y granitoides deformados miloníticos pérmicos que fueron nombrados como granitoides miloníticos (Cardona *et al.*, 2010b), u Ortoneis de El Encanto (Piraquive, 2017), localizados en el límite entre el basamento precámbrico y rocas metamórficas del Jurásico Superior (Neis de los Muchachitos y Esquistos de San Lorenzo; Tschantz *et al.*, 1969a, 1974; Piraquive, 2017).



IGM-901384



IGM-901359

1 cm





IGM-901416

Figura 2. Aspecto macroscópico de rocas con texturas equigranular e inequigranular del Batolito de Pueblo Bello Pl: plagioclasa; Kfs: feldespato de K; Qz: cuarzo; Bt: biotita.



Figura 3. Aspecto macroscópico de los afloramientos de los Batolitos de Pueblo Bello a) Saprolito; b) Cuerpo menor de riolita; c) y d) Enclaves de microdiorita y andesita.

Afloran batolitos jurásicos de composición tonalítica, granodiorítica a monzogranítica, y cuerpos menores de pórfidos dacíticos y riolíticos intruyen las unidades precámbricas y paleozoicas, que son finalmente suprayacidas por rocas volcánicas y piroclásticas del Jurásico Inferior a Medio.

El basamento neoproterozoico hacia el noroeste está en contacto fallado con terrenos metamórficos del Jurásico Superior, conformados por migmatitas con bandas de anfibolitas, neises anfibólicos, granofels de cuarzo feldespático y esquistos cuarzo micáceos, así como con fragmentos pérmicos milonitizados sobre los que reposan discordantes las rocas jurásicas, que parcialmente corresponden a unidades cartografiadas como el Neis de Los Muchachitos y los Esquistos de San Lorenzo (Piraquive, 2017).

Al occidente del cinturón jurásico, la SNSM está conformada por cinturones metamórficos del Cretácico Superior al Paleógeno: una faja costera que consiste de esquistos verdes y filitas y un cinturón interior que comprende esquistos micáceos, esquistos cuarzosericíticos, cuarcitas, esquistos cuarzo-grafitosos y anfibolitas (Tschanz *et al.*, 1969a; Tschanz *et al.*, 1974; Bustamante *et al.*, 2009; Zuluaga y Stowell, 2012; Mora *et al.*, 2017). Ambas fajas metamórficas están separadas por el Batolito de Santa Marta de edad eocena (58-44 Ma, edad K-Ar en Hbl y Bt, Tschanz *et al.*, 1974).

#### 2.2. Características macroscópicas

El Batolito de Pueblo Bello está constituido por rocas de composición monzogranítica a sienogranítica, y subordinadas pueden aparecer localmente cuarzomonzonitas, granodioritas y granitos de feldespato alcalino; las rocas son de color blanco moteado de rosado a rosado moteado de blanco, faneríticas de grano medio a medio-grueso (figura 2). Estas rocas contienen feldespato de potasio, generalmente de color rosado, plagioclasa de color blanco lechoso, cuarzo, biotita y hornblenda subordinada. La biotita forma nidos de hasta 5 mm de diámetro; el feldespato potásico generalmente es más abundante que la plagioclasa.

El Batolito de Pueblo Bello presenta meteorización profunda con desarrollo de un saprolito areno-arcilloso de color blanco crema ligeramente moteado de pardo (figura 3a). Las rocas tienen enclaves de microdioritas y andesitas (figuras 3c y 3d), diques de andesitas, riolitas, granitos aplíticos e intrusiones de stocks subvolcánicos de riolitas porfídicas (figura 3b).

#### 2.3. Características microscópicas

Para el estudio petrográfico del Batolito de Pueblo Bello se tuvieron en cuenta 27 secciones delgadas de granitoides y 8 correspondientes a diques y cuerpos menores intrusivos. Las rocas granitoides se clasificaron como monzogranitos, sienogranitos, granitos de feldespato alcalino, cuarzomonzonitas, granodioritas, cuarzosienitas, cuarzodioritas y cuarzomonzonitas (tabla 1). En general tienen textura holocristalina hipidiomórfica a alotriomórfica granular. El conteo modal se hizo basado en 150 a 300 puntos para su clasificación.

| Image: state | N campo    | IMN    | Coord     | lenada    |      |      |      |      | Con     | tenido | minera | lógico |     |     |     |        | Clasificación              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|-----------|-----------|------|------|------|------|---------|--------|--------|--------|-----|-----|-----|--------|----------------------------|
| ICIALITIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |        | Oeste (m) | Norte (m) | Qz   | PI   | Fsp  | Px   | Hb      | Bi     | Ор     | Ар     | Zr  | Ttn | Ep  | Otros  |                            |
| 246-1         1,630,171         1,014,717         13,4         50,3         19,7         6,7         9,8         0,1         Tr         Tr         0,2         Tr         Cuarzo monzonite           AE-1420         243-1         1,630,572         1,016,134         6,8         5         20         5         30         0,1         Tr         Tr         Tr         Tr         Cuarzo monzonite           AE-1420         243-3         1,630,572         1,016,134         15,6         64.5         20         Tr         Tr         Tr         Tr         Cuarzo dioita piroxie           MA-692         901433         1623822         1018565         17         28         47         2         6         Tr         Tr         Tr         Cuarzo dioita piroxie           AA-110         264         1,633,989         1,021,907         18,8         37         7.1         Tr         5,0         3,3         1,1         Tr         Tr         Cuarzo dioita piroxie           AA-110         264         1,631,267         1,039,348         20,1         5,2         2,1         3,3         1,1         Tr         Tr         Cuarzo dioita piroxie           A1073         1,667,722         1,086,527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |        |           |           |      |      |      | Gra  | nitoide | s      |        |        |     |     |     |        |                            |
| 1080       1,644,451       1,058,173       8,7       55,4       29,8       3       0,1       Tr       Tr       Tr       Tr       Cuarzodiontal homohental homo                                                                                                                          |            | 246-1  | 1,630,171 | 1,014,717 | 13,4 | 50,3 | 19,7 |      | 6,7     | 9,6    | 0,1    | Tr     | Tr  | 0,2 | Tr  |        | Cuarzo monzonita           |
| AE-142A         243-1         1,630,572         1,016,134         6,8         51         39         2,1         0,3         0,1         0,3         Tr         Cuarzodiorita hombiér           AE-142C         243-3         1,630,572         1,016,134         15,6         64,5         20         Tr         U         0,1         Cuarzodiorita hombiér           MIA-692         901433         1623822         1018565         17         28         47         2         6         Tr         Tr         Tr         Tr         Cuarzodiorita hombiér           AA-110         264         1,633,089         1,021,907         18,8         37,11         52,2         21,5         2,3         3,1         Tr         Tr         0,1         0,1         Granodiorita           388         1,631,627         1,039,348         20,1         52,2         21,5         2,3         3,1         Tr         0,1         0,1         Granodiorita           GR-6798         901416         1652461         1,055,422         31,2         2,1         1,3         2,6         1,9         Tr         Tr         0,1         Monzogranito           GR-6796         901414         1653475         1056657 <t< td=""><td></td><td>1080</td><td>1,644,451</td><td>1,058,173</td><td>8,7</td><td>55,4</td><td>29,8</td><td></td><td></td><td>3</td><td>0,1</td><td>Tr</td><td></td><td>Tr</td><td></td><td>3</td><td>Cuarzo monzonita</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 1080   | 1,644,451 | 1,058,173 | 8,7  | 55,4 | 29,8 |      |         | 3      | 0,1    | Tr     |     | Tr  |     | 3      | Cuarzo monzonita           |
| AE-142C         243-3         1,630,572         1,016,134         15,6         64,5         20         Tr         0,1         Cuarzodionita piroxér           MA-692         901433         1623822         1016555         17         28         47         2         6         Tr         Tr         Tr         Tr         Cuarzodionita piroxér           AA-110         284         1,633,989         1,021,907         18,8         9,3         71,1         0,5         0,3         Tr         Tr         Tr         Tr         Cuarzodionita piroxér           388         1,631,267         1,039,348         20,1         52,2         2,3         3,1         Tr         Tr         0,1         0,1         Granodiorita           GR-6786         901416         1662403         1019261         22,7         54,3         1,2         4,1         3,6         1,9         Tr         0,0         Tr         Monzogranito           GR-6781         901344         1653875         1035857         10,3         2,6         1,9         Tr         Tr         Tr         Monzogranito           GR-6761         901344         1653475         1035657         19,7         3,2,6         2,0         7,7<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AE-142A    | 243-1  | 1,630,572 | 1,016,134 | 6,8  | 51   |      |      | 39      | 2,1    | 0,3    | 0,1    |     | 0,3 | Tr  |        | Cuarzodiorita hornbléndica |
| MIA-692         901493         1623822         1018565         17         28         47         2         6         Tr         Tr         Tr         Tr         Cuarzosientia           AA-110         264         1,633,989         1,021,907         18,8         9.3         71,1         0,5         0,3         Tr         Tr         Tr         Cuarzosientia           388         1,661,267         1,039,348         20,1         52,2         21,5         2,3         3,1         Tr         Tr         0,1         0,1         Granodioita           GR-6788         901416         1629403         1019261         22,7         45,3         25,8         0,8         3,1         1,6         Tr         Tr         0,7         Granodioita           GR-6718         901416         1628403         1019261         22,7         45,3         2,6         1,2         4,1         3,8         Tr         Tr         Tr         Monzogranito           GR-6761         901384         1653875         103657         19,7         32,6         42,2         Tr         Tr         Tr         Tr         Monzogranito           GR-6761         901441         1637787         1026867         2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AE-142C    | 243-3  | 1,630,572 | 1,016,134 | 15,6 | 64,5 |      | 20   |         |        | Tr     |        |     | 0,1 |     |        | Cuarzodiorita piroxénica   |
| AA:110         264         1,633,989         1,021,907         18,8         9,3         71,1          0,5         0,3         Tr         Tr         Cuarzosientia           388         1,651,662         1,029,591         23,9         66,3         9,6          0,1         0,1         Granito de Kfs           388         1,631,267         1,036,5121         24,9         47,2         24,8          2,9         0,1          0,1         Tr         Granodiorita           GR-6798         901416         16262,616         1,055,422         31,2         31,7         27,8         1,2         4,1         3,8         Tr         0,2         Tr         Tr         Monzogranito           GR-6798         901414         1683475         1055657         19,7         32,6         1,2         1,4         2,6         1,9         Tr         Tr         Tr         Monzogranito           GR-6798         901414         1633473         1025185         23,2         2,6         3,5         Tr         3,4         7,8         0,5         Tr         Tr         Monzogranito           GR-6792         901410         162140         1021188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MIA-692    | 901493 | 1623822   | 1018565   | 17   | 28   | 47   |      | 2       | 6      | Tr     |        |     | Tr  | Tr  |        | Cuarzomonzonita            |
| 1255         1,656,682         1,029,591         23,9         66,3         9,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AA-110     | 264    | 1,633,989 | 1,021,907 | 18,8 | 9,3  | 71,1 |      |         | 0,5    | 0,3    |        | Tr  |     | Tr  |        | Cuarzosienita              |
| 388         1,631,267         1,039,348         20,1         52,2         21,5         2,3         3,1         Tr         Tr         0,8         Tr         Granodiorita           GR-6738         901416         1629403         1019261         22,7         45,3         25,8         0,8         3,1         1,6         Tr         0,1         Granodiorita         Granodiorita           1072         1,662,616         1.055,422         31,2         31,7         27,8         1,2         4,1         3,8         Tr         0,6         1,8         Monzogranito           GR-6761         901384         1653875         1053657         19,7         32,6         42,2         1,4         2         0,7         Tr         Tr         Monzogranito           GR-6761         901384         1653875         1053657         19,7         32,6         42,2         1,4         2         0,7         Tr         Tr         Tr         Monzogranito           GR-6792         901410         1621400         1021188         24,7         39,2         26         9,6         0,5         Tr         Tr         Tr         Monzogranito           GR-6792         901410         1621400         1021188<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 1255   | 1,656,682 | 1,029,591 | 23,9 |      | 66,3 |      | 9,6     |        |        |        |     | 0,1 | 0,1 |        | Granito de Kfs             |
| 1073         1,667,722         1,056,521         24,9         47,2         24,8         2,9         0,1         0,1         Granodiorita           GR-6798         901416         1629403         1019261         22,7         45,3         25,8         0,8         3,1         1,6         Tr         Tr         0,7         Tr         Monzogranito           1072         1,662,616         1,055,422         31,2         31,7         27,8         1,2         4,1         3,8         Tr         0,2         Tr         Tr         Monzogranito           GR-6761         901384         1653875         1053657         19,7         32,6         42,2         1,4         2         0,7         Tr         Tr         Monzogranito           GR-6792         901414         1653875         1025185         23,2         32,6         7,7         3,4         7,8         0,5         Tr         Tr         Tr         Monzogranito           GR-6792         901410         1621440         1021188         24,7         39,2         2,6         9,6         0,5         Tr         Tr         Tr         Monzogranito           GOE-1066         901614         163787         1026967         2,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 388    | 1,631,267 | 1,039,348 | 20,1 | 52,2 | 21,5 |      | 2,3     | 3,1    |        | Tr     | Tr  | 0,8 |     | Tr     | Granodiorita               |
| GR-6798       901416       1629403       1019261       22,7       45,3       25,8       0,8       3,1       1,6       Tr       Tr       0,7       Tr       Monzogranito         1072       1,662,616       1,055,422       31,2       31,7       27,8       1,2       4,1       3,8       Tr       0,7       Tr       Tr       Monzogranito         GR-6761       901384       1653875       1053657       19,7       32,6       42,2       1,4       2       0,7       Tr       Tr       1,4       Tr       Monzogranito         GR-6761       901384       1653875       1053657       19,7       32,6       42,2       1,4       2       0,7       Tr       Tr       1,4       Tr       Monzogranito         GR-6792       901410       162440       1021188       24,7       39,2       26       9,6       0,5       Tr       Tr       Tr       Monzogranito         GOE-1066       901614       1627787       10226867       29,4       8,4       66,2       1,5       Tr       Tr       Tr       Monzogranito         GOE-1066       901614       1637787       1,02686       23,6       8,4       66,2       1,2 <td< td=""><td></td><td>1073</td><td>1,667,722</td><td>1,056,521</td><td>24,9</td><td>47,2</td><td>24,8</td><td></td><td></td><td>2,9</td><td>0,1</td><td></td><td></td><td>0,1</td><td></td><td></td><td>Granodiorita</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 1073   | 1,667,722 | 1,056,521 | 24,9 | 47,2 | 24,8 |      |         | 2,9    | 0,1    |        |     | 0,1 |     |        | Granodiorita               |
| 1072       1,662,616       1,055,422       31,2       31,7       27,8       1,2       4,1       3,8       Tr       0,2       Tr       Tr       Monzogranito         GR-6761       901384       1653875       1053657       19,7       32,6       42,2       1,4       2       0,7       Tr       Tr       1,4       V       Monzogranito         GR-6761       901384       1653875       1053657       19,7       32,6       42,2       1,4       2       0,7       Tr       Tr       Tr       Monzogranito         GR-6796       901414       1634313       1025185       23,2       32,6       32,5       Tr       3,4       7,8       0,5       Tr       Tr       Tr       Tr       Monzogranito         GOE-1030       901319       1022046       1625971       2,3       31,4       17,5       6,6       2,8       1,8       3,3       U       Monzogranito         GOE-1066       901614       1627787       10,20,863       31,4       47,7       3,8       Tr       Tr       Tr       0,1       Monzogranito         AA-120       267       1,611,021       1,020,863       2,3       8,4       6,2       1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GR-6798    | 901416 | 1629403   | 1019261   | 22,7 | 45,3 | 25,8 |      | 0,8     | 3,1    | 1,6    | Tr     | Tr  | 0,7 |     |        | Monzogranito               |
| 442       1,614,682       1,013,621       19,4       27,5       44,9       1,3       2,6       1,9       Tr       Tr       0,6       1,8       Monzogranito         GR-6761       901384       1653875       1053657       19,7       32,6       42,2       1,4       2       0,7       Tr       Tr       1,4       Monzogranito         GR-6796       901414       1634313       1025185       23,2       32,6       32,5       Tr       3,4       7,8       0,5       Tr       Monzogranito         GOE-1030       90140       1621440       1021188       24,7       39,2       26       9,6       6,1       5,8       1,1       5,8       3,1       Monzogranito         GOE-1066       901614       1637787       1026967       20,4       1,4       22,5       Tr       1,8       1,3       6,6       2,5       Tr       Tr       Tr       Tr       0,1       Monzogranito         GOE-1066       901614       1637777       10,26768       8,6       6,7       7,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 1072   | 1,662,616 | 1,055,422 | 31,2 | 31,7 | 27,8 |      | 1,2     | 4,1    | 3,8    | Tr     |     | 0,2 | Tr  | Tr     | Monzogranito               |
| GR-6761       901384       1653875       19,0       32,6       42,2       1,4       2       0,7       Tr       Tr       1,4       V       Monzogranito         GR-6796       901414       1634313       1025185       23,2       32,6       32,5       Tr       3,4       7,8       0,5       Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 442    | 1,614,682 | 1,013,621 | 19,4 | 27,5 | 44,9 |      | 1,3     | 2,6    | 1,9    | Tr     | Tr  | 0,6 | 1,8 |        | Monzogranito               |
| GR-6796       901414       1634313       1025185       23,2       32,6       32,7       Tr       3,4       7,8       0,5       Tr       Tr <td>GR-6761</td> <td>901384</td> <td>1653875</td> <td>1053657</td> <td>19,7</td> <td>32,6</td> <td>42,2</td> <td></td> <td>1,4</td> <td>2</td> <td>0,7</td> <td>Tr</td> <td>Tr</td> <td>1,4</td> <td></td> <td></td> <td>Monzogranito</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GR-6761    | 901384 | 1653875   | 1053657   | 19,7 | 32,6 | 42,2 |      | 1,4     | 2      | 0,7    | Tr     | Tr  | 1,4 |     |        | Monzogranito               |
| GOE       1020246       1625971       26,3       31,4       17,5       6,1       6,5       2,8       1       3,2       Monzogranito         GR-6792       901410       1621440       1021188       24,7       39,2       26       9,6       0,5       Tr       Tr       Tr       Monzogranito         GOE-1066       901614       1637787       1026967       20,4       18,4       22,5       Tr       18       1,3       6,6       2,5       1       5,8       3,1       Monzogranito         AA-120       267       1,611,021       1,020,863       23,6       8,4       66,2       1,2       1,2       0,5       Tr       Tr       0,1       Monzogranito         1254-1       1,655,164       1,027,688       18,9       16,4       57,7       2,8       1,2       3,3       0,7       5       Tr       Tr       Tr       0,1       Monzogranito         439       1,629,841       1,044,010       24,1       38,1       27,8       1,2       3,6       2,3       2,9       Tr       Tr       Tr       Tr       4,2       Sienogranito         519       1,651,621       1,032,785       26,1       25,9       37,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GR-6796    | 901414 | 1634313   | 1025185   | 23,2 | 32,6 | 32,5 | Tr   | 3,4     | 7,8    | 0,5    | Tr     | Tr  | Tr  | Tr  |        | Monzogranito               |
| GR-6792       901410       1621440       1021188       24,7       39,2       26       9,6       0,5       Tr       Tr       Tr       Monzogranito         GOE-1066       901614       1637787       1026967       20,4       18,4       22,5       Tr       18       1,3       6,6       2,5       1       5,8       3,1       Monzogranito         AA-120       267       1,611,021       1,020,863       23,6       8,4       66,2       1,2       0,5       Tr       Tr       0,1       Monzogranito         1254-1       1,655,164       1,027,688       18,9       16,4       57,7       3,3       0,7       J       1,1       Monzogranito         439       1,629,841       1,044,010       24,1       38,1       27,8       1,2       3,6       2,3       2,9       Tr       Tr       Tr       Monzogranito         449       1,635,891       1,032,785       26,1       25,9       37,8       3,7       2,1       0,1       4,2       Sienogranito         519       1,651,621       1,052,701       26,4       23,9       45,8       0,4       1,6       0,4       Tr       Tr       Tr       Sienogranito       Sienogranit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GOE - 1030 | 901359 | 1020246   | 1625971   | 26,3 | 31,4 | 17,5 |      | 6,1     |        | 6,5    | 2,8    | 1   | 3,2 |     |        | Monzogranito               |
| GOE-1066         901614         1637787         1026967         20,4         18,4         22,5         Tr         18         1,3         6,6         2,5         1         5,8         3,1         Monzogranito           AA-120         267         1,611,021         1,020,863         23,6         8,4         66,2         1,2         0,5         Tr         Tr         0,1         Monzogranito           1254-1         1,655,164         1,027,688         18,9         16,4         57,7         3,3         0,7         Tr         Tr         0,1         Monzogranito           439         1,629,841         1,044,010         24,1         38,1         27,8         1,2         3,6         2,3         2,9         Tr         Tr         Tr         Monzogranito           519         1,651,621         1,032,785         26,1         25,9         37,8         3,1         2,2         1,4         Tr         Tr         Monzogranito           539         1,651,621         1,052,701         26,4         23,9         45,8         0,4         1,6         0,4         Tr         Tr         1,3         0,2         Sienogranito           539         1,651,821         1,027,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GR-6792    | 901410 | 1621440   | 1021188   | 24,7 | 39,2 | 26   |      | 9,6     |        | 0,5    | Tr     | Tr  |     |     |        | Monzogranito               |
| AA-120       267       1,611,021       1,020,863       23,6       8,4       66,2       1,2       0,5       Tr       Tr       0,1       Monzogranito         1254-1       1,655,164       1,027,688       18,9       16,4       57,7       3,3       0,7       5       5       5       1       Tr       0,1       3       Monzogranito         1264       1,618,170       1,045,742       23,1       47,7       28,1       5       Tr       Tr       Tr       1,1       Monzogranito         439       1,629,841       1,044,010       24,1       38,1       27,8       1,2       3,6       2,3       2,9       Tr       Tr       Tr       V.1       Monzogranito         240       1,635,891       1,032,785       26,1       25,9       37,8       3,7       2,1       0,1       V       4,2       Sienogranito         519       1,651,621       1,052,701       26,4       23,9       45,8       0,4       1,6       0,4       Tr       Tr       Tr       Tr       Sienogranito         539       1,638,372       1,047,691       23,1       16,8       58,6       1,2       Tr       Tr       U,3       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GOE-1066   | 901614 | 1637787   | 1026967   | 20,4 | 18,4 | 22,5 | Tr   | 18      | 1,3    | 6,6    | 2,5    | 1   | 5,8 | 3,1 |        | Monzogranito               |
| 1254-1       1,655,164       1,027,688       18,9       16,4       57,7       3,3       0,7       3       Monzogranito         1264       1,618,170       1,045,742       23,1       47,7       28,1       Tr       Tr       Tr       1,1       Monzogranito         439       1,629,841       1,044,010       24,1       38,1       27,8       1,2       3,6       2,3       2,9       Tr       Tr       Tr       Monzogranito         240       1,635,891       1,032,785       26,1       25,9       37,8       3,7       2,1       0,1       0,1       4,2       Sienogranito         519       1,651,621       1,052,701       26,4       23,9       45,8       0,4       1,6       0,4       Tr       Tr       1,3       0,2       Sienogranito         539       1,638,372       1,047,691       23,1       16,8       58,6       1,1       Tr       Tr       Tr       Tr       Sienogranito         269       1,633,945       1,023,719       24,1       23,1       49,3       1,2       Tr       Tr       0,3       6       Tonalita         269       1,633,945       1,023,719       24,1       23,1       69,9 <td>AA-120</td> <td>267</td> <td>1,611,021</td> <td>1,020,863</td> <td>23,6</td> <td>8,4</td> <td>66,2</td> <td></td> <td></td> <td>1,2</td> <td>0,5</td> <td></td> <td>Tr</td> <td>Tr</td> <td>0,1</td> <td></td> <td>Monzogranito</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AA-120     | 267    | 1,611,021 | 1,020,863 | 23,6 | 8,4  | 66,2 |      |         | 1,2    | 0,5    |        | Tr  | Tr  | 0,1 |        | Monzogranito               |
| 1264       1,618,170       1,045,742       23,1       47,7       28,1       Tr       Tr       1,1       Monzogranito         439       1,629,841       1,044,010       24,1       38,1       27,8       1,2       3,6       2,3       2,9       Tr       Tr       Tr       Monzogranito         240       1,635,891       1,032,785       26,1       25,9       37,8       3,7       2,1       0,1       0,1       4,2       Sienogranito         519       1,651,621       1,052,701       26,4       23,9       45,8       0,4       1,6       0,4       Tr       Tr       1,3       0,2       Sienogranito         539       1,638,372       1,047,691       23,1       16,8       58,6       0,4       1,1       Tr       Tr       1,3       0,2       Sienogranito         539       1,638,372       1,047,691       23,1       16,8       58,6       0,4       1,1       Tr       Tr       0,3       6       Tonalita         269       1,633,945       1,023,719       24,1       23,1       49,3       1,2       Tr       0,3       6       Tonalita         269       1,632,689       1,025,110       23,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 1254-1 | 1,655,164 | 1,027,688 | 18,9 | 16,4 | 57,7 |      |         | 3,3    | 0,7    |        |     |     |     | 3      | Monzogranito               |
| 439       1,629,841       1,044,010       24,1       38,1       27,8       1,2       3,6       2,3       2,9       Tr       Tr       Tr       Monzogranito         240       1,635,891       1,032,785       26,1       25,9       37,8       3,7       2,1       0,1       0,1       4,2       Sienogranito         519       1,651,621       1,052,701       26,4       23,9       45,8       0,4       1,6       0,4       Tr       Tr       1,3       0,2       Sienogranito         539       1,614,980       1,021,586       20,6       7,8       64,9       3,1       2,2       1,4       Tr       Tr       Tr       Sienogranito         539       1,638,372       1,047,691       23,1       16,8       58,6       0,4       1,1       Tr       Tr       V       Sienogranito         269       1,633,945       1,023,719       24,1       23,1       49,3       V       1,2       Tr       V       0,3       6       Tonalita         269       1,632,689       1,025,110       23,1       65,9       V       4,6       0,1       V       0,3       6       Tonalita         DB-105       287 <t< td=""><td></td><td>1264</td><td>1,618,170</td><td>1,045,742</td><td>23,1</td><td>47,7</td><td>28,1</td><td></td><td></td><td></td><td>Tr</td><td></td><td></td><td></td><td></td><td>1,1</td><td>Monzogranito</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 1264   | 1,618,170 | 1,045,742 | 23,1 | 47,7 | 28,1 |      |         |        | Tr     |        |     |     |     | 1,1    | Monzogranito               |
| 240         1,635,891         1,032,785         26,1         25,9         37,8         3,7         2,1         0,1         0,1         4,2         Sienogranito           519         1,651,621         1,052,701         26,4         23,9         45,8         0,4         1,6         0,4         Tr         Tr         1,3         0,2         Sienogranito           AA-121         268         1,614,980         1,021,586         20,6         7,8         64,9         3,1         2,2         1,4         Tr         Tr         Tr         Tr         Sienogranito           539         1,638,372         1,047,691         23,1         16,8         58,6         0,4         1,1         Tr         Tr         0,4         1,9         Sienogranito           269         1,633,945         1,023,719         24,1         23,1         49,3         1,2         Tr         0,4         1,9         Sienogranito           449         1,632,689         1,025,110         23,1         65,9         4,6         0,1         0,3         6         Tonalita           DB-105         287         1,612344         1021961         35,1         2,5         3,6         3,2         0,8         Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 439    | 1,629,841 | 1,044,010 | 24,1 | 38,1 | 27,8 | 1,2  | 3,6     | 2,3    | 2,9    | Tr     | Tr  | Tr  |     |        | Monzogranito               |
| 519       1,651,621       1,052,701       26,4       23,9       45,8       0,4       1,6       0,4       Tr       Tr       1,3       0,2       Sienogranito         AA-121       268       1,614,980       1,021,586       20,6       7,8       64,9       3,1       2,2       1,4       Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 240    | 1,635,891 | 1,032,785 | 26,1 | 25,9 | 37,8 |      | 3,7     | 2,1    | 0,1    |        |     | 0,1 |     | 4,2    | Sienogranito               |
| AA-121       268       1,614,980       1,021,586       20,6       7,8       64,9       3,1       2,2       1,4       Tr       Tr       Tr       Tr       Sienogranito       Sienogranito         539       1,638,372       1,047,691       23,1       16,8       58,6       0,4       1,1       Tr       Tr       V       Sienogranito       Sienogranito         269       1,633,945       1,023,719       24,1       23,1       49,3       1,2       Tr       V       0,4       1,9       Sienogranito         449       1,632,689       1,025,110       23,1       65,9       4,6       0,1       V       0,4       1,9       Sienogranito         V       1,632,689       1,025,110       23,1       65,9       4,6       0,1       0,1       0,3       6       Tonalita         V       0       1,025,110       23,1       65,9       P       4,6       0,1       0,1       0,4       1,9       Sienogranito         V       0       1,025,110       23,1       65,9       P       4,6       0,1       0,1       0,3       6       Tonalita         DB-105       287       1612334       1021961       35,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 519    | 1,651,621 | 1,052,701 | 26,4 | 23,9 | 45,8 |      | 0,4     | 1,6    | 0,4    | Tr     | Tr  | 1,3 | 0,2 |        | Sienogranito               |
| 539       1,638,372       1,047,691       23,1       16,8       58,6       0,4       1,1       Tr       Sienogranito         269       1,633,945       1,023,719       24,1       23,1       49,3       1,2       Tr       0,4       1,9       Sienogranito         449       1,632,689       1,025,110       23,1       65,9       4,6       0,1       0,3       6       Tonalita         Deste (m)       Norte (m)       Qz       Pi       Fsp       Px       Hbl       Bt       Op       Ap       Zrn       Ttn       Ep       Matriz         DB-105       287       1612334       1021961       35,1       2,5       3,6       3,2       0,8       Tr       0,2       54,6       Andesita         411       1624105       1038966       42,7       11,5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       55.5       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AA-121     | 268    | 1,614,980 | 1,021,586 | 20,6 | 7,8  | 64,9 |      | 3,1     | 2,2    | 1,4    | Tr     | Tr  |     | Tr  |        | Sienogranito               |
| 269       1,633,945       1,023,719       24,1       23,1       49,3       1,2       Tr       0,4       1,9       Sienogranito         449       1,632,689       1,025,110       23,1       65,9       4,6       0,1       0,3       6       Tonalita         Disense main of the second s                                                                                                                                                                                                                                                         |            | 539    | 1,638,372 | 1,047,691 | 23,1 | 16,8 | 58,6 |      |         | 0,4    | 1,1    |        | Tr  |     |     |        | Sienogranito               |
| 449         1,632,689         1,025,110         23,1         65,9         4,6         0,1         0,3         6         Tonalita           Digues           Deste (m)         Norte (m)         Qz         Pl         Fsp         Px         Hbl         Bt         Op         Ap         Zrn         Ttn         Ep         Matriz           DB-105         287         1612334         1021961         35,1         2,5         3,6         3,2         0,8         Tr         0,2         54,6         Andesita           411         1624105         1038966         42,7         11,5         5         5         5         5         5         5         5         45,8         Andesita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 269    | 1,633,945 | 1,023,719 | 24,1 | 23,1 | 49,3 |      |         | 1,2    | Tr     |        |     |     | 0,4 | 1,9    | Sienogranito               |
| Diques           Oeste (m)         Norte (m)         Qz         Pl         Fsp         Px         Hbl         Bt         Op         Ap         Zrn         Ttn         Ep         Matriz           DB-105         287         1612334         1021961         35,1         2,5         3,6         3,2         0,8         Tr         0,2         54,6         Andesita           411         1624105         1038966         42,7         11,5         5         5         5         45,8         Andesita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 449    | 1,632,689 | 1,025,110 | 23,1 | 65,9 |      |      | 4,6     |        | 0,1    |        |     |     | 0,3 | 6      | Tonalita                   |
| Deste (m)         Norte (m)         Qz         Pl         Fsp         Px         Hbl         Bt         Op         Ap         Zrn         Ttn         Ep         Matriz           DB-105         287         1612334         1021961         35,1         2,5         3,6         3,2         0,8         Tr         0,2         54,6         Andesita           411         1624105         1038966         42,7         11,5         5         5         5         45,8         Andesita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |        |           |           |      |      |      | D    | iques   |        |        |        |     |     |     |        |                            |
| DB-105         287         1612334         1021961         35,1         2,5         3,6         3,2         0,8         Tr         0,2         54,6         Andesita           411         1624105         1038966         42,7         11,5         45,8         Andesita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |        | Oeste (m) | Norte (m) | Qz   | PI   | Fsp  | Px   | Hbl     | Bt     | Ор     | Ар     | Zrn | Ttn | Ep  | Matriz |                            |
| 411 1624105 1038966 42,7 11,5 45,8 Andesita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DB-105     | 287    | 1612334   | 1021961   |      | 35,1 |      |      | 2,5     | 3,6    | 3,2    | 0,8    | Tr  |     | 0,2 | 54,6   | Andesita                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 411    | 1624105   | 1038966   |      | 42,7 |      | 11,5 |         |        |        |        |     |     |     | 45,8   | Andesita                   |
| GR-6791B 901409 1616854 1016745 8,3 76,1 6,8 8,8 Tr Andesita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GR-6791B   | 901409 | 1616854   | 1016745   | 8,3  | 76,1 |      |      | 6,8     |        | 8,8    | Tr     |     |     |     |        | Andesita                   |
| 376 1652961 1064489 2,6 41,6 3,5 0,8 7,4 0,5 Tr Tr Tr 1,3 42,3 Andesita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 376    | 1652961   | 1064489   | 2,6  | 41,6 | 3,5  |      | 0,8     | 7,4    | 0,5    | Tr     | Tr  | Tr  | 1,3 | 42,3   | Andesita                   |
| 403 1612211 1017820 1,9 26,2 6,3 10,8 1,5 3,2 2,1 Tr 48 Andesita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 403    | 1612211   | 1017820   | 1,9  | 26,2 | 6,3  | 10,8 | 1,5     | 3,2    | 2,1    | Tr     |     |     |     | 48     | Andesita                   |
| GR-6765 901386 1648685 1054049 23,6 35,1 35,6 0,6 4,6 0,5 Tr Tr Tr Riolita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GR-6765    | 901386 | 1648685   | 1054049   | 23,6 | 35,1 | 35,6 |      | 0,6     | 4,6    | 0,5    | Tr     | Tr  | Tr  |     |        | Riolita                    |
| 256 1637132 1052629 12,5 19,3 12,6 Tr 55,6 Riolita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 256    | 1637132   | 1052629   | 12,5 | 19,3 | 12,6 |      |         |        | Tr     |        |     |     |     | 55,6   | Riolita                    |
| GR-6764B 1648986 1053812 32,5 32,5 35 Tr Tr Tr Tr Monzogranito                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GR-6764B   |        | 1648986   | 1053812   | 32,5 | 32,5 | 35   |      |         | Tr     | Tr     |        | Tr  |     |     | Tr     | Monzogranito               |

Tr: contenido inferior a 0,1% del mineral. Abreviaturas minerales según Whitney y Evans (2010). Fuente: Geoestudios-Ingeominas (2007) y autores.

Tabla 1. Composición modal de rocas del Batolito de Pueblo Bello

# 2.3.1. Monzogranitos, sienogranitos, granitos de feldespato alcalino, granodioritas y cuarzomonzonitas

El Batolito de Pueblo Bello está constituido, principalmente, por monzogranitos (12), sienogranitos (5) y subordinados granodioritas (2), cuarzomonzonitas (3), cuarzosienita (1) y tonalitas (1); hacia los bordes del plutón pueden aparecer cuarzodioritas (2) (figura 4, tabla 1). Las rocas predominantes son faneríticas de grano medio a grueso, con textura granular e inequigranular, localmente bimodal. Los monzogranitos, sienogranitos, granodioritas, granitos de feldespato alcalino y cuarzomonzonitas están constituidos por cuarzo (13, 4-34,4%), plagioclasas de tipo oligoclasa-andesina An, - An<sub>36</sub> (7,8-55,4%), feldespato potásico (19,7-71,1%), biotita (que puede alcanzar el 9,6%) y hornblenda, que puede estar ausente o alcanzar hasta un 18% del volumen total de la roca (figura 5). Como minerales accesorios se presentan minerales opacos, circón, apatito, titanita y en algunas rocas allanita y clinopiroxeno.

El cuarzo ocurre en cristales anhedrales a subhedrales inequigranulares de tamaños entre 200 µm y 3 mm; con contornos irregulares. Es incoloro, con extinción ondulatoria, frecuentemente intersticial entre los cristales de feldespatos o intercrecido con el feldespato, con el cual desarrolla texturas gráficas. Puede tener microfracturas e inclusiones de feldespato y microcristales a manera de polvo. El cuarzo puede estar como inclusiones en plagioclasa.

La plagioclasa se presenta en cristales euhedrales a subhedrales con formas tabulares, largos y cortos, inequigranulares de 500  $\mu$ m a 3 mm con maclas de albita y albita-Carlsbad. La plagioclasa puede desarrollar bordes de reacción en los contactos con el feldespato alcalino, presenta relieve similar al del bálsamo, con extinción zonada normal y en algunas rocas oscilatoria con alteración hacia el núcleo a arcilla, sericita y saussurita (epidota); tiene inclusiones de biotita, apatito, opacos y ocasionalmente circón. En la mayoría de rocas no se pudo determinar el tipo de plagioclasa; en aquellas que se midió, según el método de Michel-Lévy en macla de albita, dio valores entre An<sub>13</sub> An<sub>36</sub> (oligoclasa a andesina).

El feldespato alcalino es ortosa, y en algunas rocas la ortosa se desdobla a microclina. Se presenta en cristales anhedrales a subhedrales inequigranulares de tamaños menores a 4,5 mm y puede tener maclas de Carlsbad. Algunos cristales tienen pertitas en forma de venillas irregulares y parches e inclusiones de plagioclasa que muestran reacción en los bordes, y en algunas rocas el feldespato presenta intercrecimientos gráficos con cuarzo. Los cristales se encuentran ligeramente empolvados por alteración a caolín, que les da un aspecto sucio de color pardo.



Figura 4. Clasificación modal de rocas del Batolito de Pueblo Bello en el diagrama de Streckeisen (1974)

Las láminas de biotita son euhedrales a subhedrales inequigranulares de tamaños entre 250 µm y 4 mm; son de color marrón, con un pleocroísmo X: amarillo, Y: Z: marrón. Generalmente, la biotita tiene extinción paralela al clivaje en "arce moteado". Las láminas de biotita tienen inclusiones de cuarzo, minerales opacos, apatito, plagioclasa, circón y titanita. Se alteran en los bordes y a lo largo del clivaje a clorita, epidota y esfena residual, y en algunas rocas se presentan junto a cristales de hornblenda.

La hornblenda se presenta en cristales euhedrales a anhedrales inequigranulares de tamaños menores a  $2500 \mu$ m, en cortes basales y longitudinales de color verde, que en algunas rocas es zonado y presenta pleocroísmo X: amarillo claro verdoso, Y: verde y Z: verde oliva. Algunos cristales tienen maclas dobles y polisintéticas, presentan intercrecimientos simplectíticos con cuarzo hacia los bordes a manera de gotas irregulares y conservan núcleos de clinopiroxeno. La hornblenda tiene inclusiones de cristales de cuarzo, biotita, minerales opacos, plagioclasa, apatito y titanita. El ángulo de extinción varía entre 16° y 20°.

Los microcristales de apatito son euhedrales, se presentan en cortes longitudinales y basales hexagonales; en algunas rocas tienen forma de agujas largas y delgadas y se encuentran como inclusiones en biotita, hornblenda y minerales opacos, principalmente.

La titanita ocurre en cristales euhedrales de formas romboides y tabulares y de tamaños de hasta de 1,2 mm; también se presenta como coronas alrededor de los minerales opacos y junto a la biotita y la hornblenda. Los cristales pueden tener microfracturas irregulares, son de color pardo ligeramente pleocroico en tonos claros a medios y pueden tener inclusiones de minerales opacos y apatito.

El circón se presenta en cristales euhedrales prismáticos cortos a subredondeados, junto a los minerales opacos, general y ocasionalmente incluidos en cuarzo y feldespatos de tamaños < 150 µm.

Los minerales opacos son anhedrales a subhedrales, de tamaños <  $600 \mu$ m, con inclusiones de apatito y se presentan junto a titanita, hornblenda y biotita. Además, pueden tener en los bordes microcristales de circón.

# 2.3.2. Rocas de dique y cuerpos hipohabisales menores

El Batolito de Pueblo Bello se encuentra intruido por diques afaníticos a porfídicos de andesitas (figura 6), diques y cuerpos subvolcánicos de riolita y granito con texturas porfídicas y aplíticas sacaroidales.

En el presente estudio se analizaron siete muestras de dique, cuya composición se resume en la tabla 1 y en la figura 7. Corresponden a cuatro andesitas con texturas porfídicas y traquiticas; otros dos diques fueron clasificados como riolita y uno como granito.

Andesitas. Los diques andesíticos presentan texturas porfídicas a microporfídicas; la matriz varía de un dique a otro en su composición y textura, siendo esta micro-



901410-Monzogranito



901416-Monzogranito

Figura 5. Aspecto microscópico y mineralogía de las rocas del Batolito de Pueblo Bello Qz: cuarzo; PI: plagioclasa; Kfs: feldespato alcalino; Bt: biotita; HbI: hornblenda; Tnt: titanita. cristalina felsítica, microlítica, traquitoide, vítrea desvitrificada e intergranular (figura 8). Las andesitas están constituidas por fenocristales y microfenocristales de plagioclasa, pueden tener fenocristales de cuarzo, feldespato alcalino, hornblenda, biotita y clinopiroxeno. Los minerales accesorios más comunes son: apatito, circón, minerales opacos y titanita. Como minerales de alteración son frecuentes: sericita, saussurita, clorita y epidota, a partir de plagioclasa; clorita, epidota, titanita y magnetita residual, a partir de biotita y anfíbol; anfíbol uralítico, a partir de piroxeno; leucoxeno, a partir de minerales opacos, y minerales del grupo de las arcillas a partir de feldespato alcalino.





901409-Andesita

901386-Riolita

Figura 6. Aspecto macroscópico de diques andesíticos y graníticos del Batolito de Pueblo Bello



Figura 7. Clasificación modal de diques y cuerpos menores del Batolito de Pueblo Bello en el diagrama de Streckeisen (1978)

**Riolitas**. Las riolitas se presentan en diques y en stocks subvolcánicos intrusivos en los monzogranitos del Batolito de Pueblo Bello. Buenos ejemplos de los diques se encuentran en el río Badillo y de los stocks riolíticos en los alrededores de Pueblo Bello y sobre la vía Pueblo Bello – Nabusímake.

Las riolitas son de color rosado, moteadas de blanco y negro, rosadas claras y pardas moteadas de negro (figura 9). Presentan una textura porfídica con fenocristales de plagioclasa, cuarzo, feldespato alcalino y biotita. La matriz de las riolitas es felsítica microgranular, y está constituida por cristales de plagioclasa, cuarzo, feldespatos y biotita en cristales anhedrales, que se presentan generalmente mal desarrollados con contornos irregulares, formando un mosaico de cristales de tamaño prome-



IGM-901409



IMN-376

Figura 8. Aspecto microscópico de diferentes diques de andesita Qz: cuarzo, PI: plagioclasa, Bt: biotita, M: matriz. dio entre 150 y 350  $\mu m,$  y es en esta matriz donde flotan los fenocristales.

La plagioclasa se encuentra en fenocristales, glomerofenocristales y como microcristales granulares en la matriz. Los fenocristales son euhedrales a subhedrales con contornos irregulares a cristalinos rectos, de tamaños entre 400  $\mu$ m y 1,4 mm, con maclas de albita, albita-Carlsbad y periclina, y tienen extinción zonada oscilatoria débil a normal, con relieve similar al del bálsamo. Siguiendo el método de Michel-Lévy en macla de albita se obtuvo An<sub>3</sub> a An<sub>20</sub>, ya que están empolvados por alteración a arcilla y sericita. Los cristales de la matriz son anhedrales de formas irregulares, con desarrollo de maclas de albita, albita-Carlsbad, limpios a empolvados por alteración a arcilla y sericita.



IMN-411



IMN-403



IGM-901386-Riolita

INM-256-Riolita

Figura 9. Aspecto microscópico de rocas de dique y cuerpos menores de riolita en el Batolito de Pueblo Bello a) Textura porfídica con fenocristales de cuarzo con bahías y matriz felsítica; b) textura porfídica con fenocristales de cuarzo y plagioclasa en matriz microgranular felsítica. Qz: cuarzo, PI: plagioclasa, Bt: biotita, Fsp: feldespato, M: matriz y Mca: micas.

El cuarzo se presenta en fenocristales anhedrales inequigranulares, de tamaños entre 1,5 y 3 mm, con inclusiones irregulares de plagioclasa, feldespato y biotita, y en algunas rocas como intercrecimientos gráficos en los bordes de los cristales con el feldespato. Generalmente los cristales están limpios, tienen extinción ondulatoria, y pueden tener inclusiones de biotita y apatito. Los microcristales de la matriz son anhedrales granulares junto a plagioclasa y feldespato desarrollando textura felsítica.

El feldespato alcalino se presenta en fenocristales y glomerofenocristales y en microcristales en la matriz. Los fenocristales son euhedrales a subhedrales de entre 4 y 7 mm, algunos con maclas de Carlsbad; tienen relieve menor al del bálsamo, se encuentran levemente alterados a caolín y con desmezclas pertíticas en venillas irregulares. Además, pueden presentar inclusiones de plagioclasa y cuarzo. En la matriz los cristales de feldespato son granulares anhedrales, en algunas rocas son esferulíticos y se encuentran junto a cuarzo y plagioclasa, y pueden estar ligeramente alterados a caolín, el cual le imprime un color pardo claro al mineral, formando mosaicos granulares.

La biotita se encuentra en fenocristales y en microcristalinos en la matriz. Los fenocristales de biotita son de tamaños entre 900 y 1100  $\mu$ m, de color marrón con pleocroísmo X: amarillo, Y: Z: marrón. Los microcristales de la matriz son de tamaños entre 200 y 400  $\mu$ m. Pueden tener inclusiones de minerales opacos, apatito y circón. La biotita está parcial o completamente alterada a clorita, con formación residual de magnetita y esfena a lo largo del clivaje y bordes de los cristales.

La hornblenda es poco frecuente en las dacitas y riolitas, se presenta en cristales anhedrales irregulares de tamaños entre 150 y 350 µm, de color verde claro, en cortes basales y longitudinales, algunos con maclas dobles, con inclusiones de titanita y opacos.

Los minerales opacos corresponden, generalmente, a magnetita, ocurren en cristales anhedrales a euhedrales finos, de formas irregulares; se presentan junto a la biotita o en cristales diseminados finos con circón, titanita y apatito hacia los bordes.

El circón se encuentra en cristales euhedrales prismáticos cortos, generalmente junto a los minerales opacos, con birrefringencia del segundo orden en colores rojos, azules y verdes.

El apatito se presenta en microcristales euhedrales, en cortes longitudinales y basales hexagonales, como inclusiones en biotita, cuarzo y minerales opacos, principalmente.

La titanita puede aparecer como cristales finos euhedrales de formas romboidales, con pleocroísmo moderado en tonos pardos claros a medios, con relieve alto y birrefringencia de color pardo verdoso del tercer orden. Se presentan dispersos en la roca y junto a los minerales opacos, de tamaños hasta 1 mm, con inclusiones de minerales opacos y apatito.

En algunos diques se presentan cristales de allanita de color pardo rojizo. La matriz de las dacitas y riolitas generalmente es microcristalina felsítica, y está constituida por un mosaico de microcristales anhedrales mal desarrollados de cuarzo, feldespatos y biotita. El cuarzo se encuentra limpio y los feldespatos están alterados a minerales arcillosos, imprimiéndole generalmente un aspecto moteado granular a la matriz.

**Granito**. Se analizó una muestra de dique de monzogranito (IGM-901385) que intruye el Batolito de Pueblo Bello. La roca es fanerítica fina de color rosado, con textura holocristalina inequigranular y aplítica (figura 10), y está constituida por cuarzo (32,5 %), feldespato alcalino (35 %), plagioclasa (32,5 %), biotita (< 4 %) y trazas de minerales opacos, circón y moscovita.

Los cristales de cuarzo son anhedrales y localmente subhedrales de tamaño de grano < 1 mm. El feldespato alcalino se clasifica como ortosa, y se presenta en cristales inequigranulares localmente maclados (100 a 1500 um), ligeramente alterado a caolín, además de que en algunos cristales se forman pertitas en parches irregulares. La plagioclasa es de tipo oligoclasa a andesina, se presenta en cristales anhedrales a subhedrales inequigranulares (500 a 1500 um), con extinción recta y maclados según albita y albita-Carlsbad. Pueden estar alterados a minerales de arcilla y sericita. Aparecen trazas de biotita de color marrón con inclusiones de minerales opacos, moscovita en los límites entre cristales de cuarzo y feldespatos y circón en cristales prismáticos cortos a subredondeados.



IGM-901385-Monzogranito

Figura 10. Aspecto microscópico de rocas de dique de composición monzogranítica y sienogranítica

Qz: cuarzo; PI: plagioclasa; Bt: biotita; Kfs: feldespato alcalino.

## 3. Litogeoquímica

La caracterización litogeoquímica del Batolito de Pueblo Bello se realizó a partir de 10 análisis de rocas del plutón y 2 muestras de diques y cuerpos menores intrusivos que atraviesan los granitoides. Los valores de perdidas por ignición (LOI) en la mayoría de muestras son < 2,4 %, valor normal para rocas poco alteradas. Los resultados de óxidos mayores se muestran en la tabla 2.

#### 3.1. Análisis de óxidos mayores

Los valores de SiO, en rocas granitoides del Batolito de Pueblo Bello varían entre 60% y 72,2%, pero la mayoría de ellas presentan valores entre 65 y 70%; los valores de Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, P<sub>2</sub>O<sub>5</sub> y CaO disminuyen con el aumento de SiO<sub>2</sub> (figura 11); el Na<sub>2</sub>O y el K<sub>2</sub>O presentan valores altos y constantes con el aumento de SiO<sub>2</sub>, y el TiO<sub>2</sub> < 0,8 %. Los contenidos de Al<sub>2</sub>O<sub>3</sub> varían entre 17,3 y 13,6 %; el MgO varía entre 0,7 y 2,4 %, presentando un alto contenido de álcalis (Na<sub>2</sub>O+K<sub>2</sub>O>6,2), altas razones K<sub>2</sub>O/Na<sub>2</sub>O > 1 (excepto en las muestras GR-6794 y GR-6792, donde son de 0,7) y el CaO varía entre 1,2 y 4,5 %, (tabla 2). En los diagramas de variación tipo Harker de la figura 11 se puede observar que hay una correlación negativa entre SiO<sub>2</sub> vs TiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, MgO, CaO y P<sub>2</sub>O<sub>5</sub>, sugiriendo cristalización fraccionada del magma. Además, no existe una buena correlación entre SiO<sub>2</sub> vs Na<sub>2</sub>O, K<sub>2</sub>O debido a la alta movilidad de estos elementos.

Para las rocas de dique, el contenido de SiO<sub>2</sub> es muy diferente en ambas muestras. Varía entre 68 y 77,6 %, estando acorde con la diferencia composicional. El dique andesítico tiene valores de SiO<sub>2</sub> de 57,2 %, mientras que el dique granítico presenta un valor de 78,4 %. Los valores de Al<sub>2</sub>O<sub>3</sub> para diques varían de 12,1 % en la andesita a 15,9 % en el dique granítico. Los contenidos de Fe<sub>2</sub>O<sub>3</sub>, MgO, CaO, TiO<sub>2</sub>, MnO y P<sub>2</sub>O<sub>5</sub> se pueden ver en la tabla 2.

Las rocas del Batolito de Pueblo Bello se clasifican químicamente en los campos de los granitos, granodioritas y cuarzomonzonitas, y la muestra GR-6794 en el campo de las dioritas. Todas caen dentro de la serie subalcalina en el diagrama TAS de Middlemost (1994) (figura 12a), mostrando la clasificación química en concordancia con la clasificación petrográfica. La roca de dique GR-6764B cae en el campo de los granitos. Las rocas grafican en el campo de series calcoalcalinas altas en K en el diagrama K<sub>2</sub>O vs SiO<sub>2</sub>, y dos muestras alcanzan la serie shoshonítica (muestras GOE-1066 y GR-6768), con valores más altos de K<sub>2</sub>O. En el diagrama AFM grafi-

| Muestra   | Coorde    | enadas    |                  |                  |                                | Con                            | tenido de | óxidos to | tales             |      |          |      | LOI  | Sum   |
|-----------|-----------|-----------|------------------|------------------|--------------------------------|--------------------------------|-----------|-----------|-------------------|------|----------|------|------|-------|
|           | Oeste (m) | Norte (m) | SiO <sub>2</sub> | TiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | Fe <sub>2</sub> O <sub>3</sub> | MgO       | CaO       | Na <sub>2</sub> O | K₂O  | $P_2O_5$ | MnO  |      |       |
|           |           |           |                  |                  |                                | Granitoide                     | s         |           |                   |      |          |      |      |       |
| GOE-1030  | 1020246   | 1625971   | 69,6             | 0,4              | 14,6                           | 2,9                            | 0,9       | 2,6       | 3,4               | 4,4  | 0,1      | 0,1  | 0,9  | 99,8  |
| GOE-1066  | 1026967   | 1637787   | 65,8             | 0,5              | 16,1                           | 3,9                            | 1,5       | 2,3       | 3,5               | 4,6  | 0,2      | 0,1  | 1,3  | 99,8  |
| GR-6761   | 1053657   | 1653875   | 65,4             | 0,6              | 16,6                           | 3,8                            | 1,3       | 1,2       | 2,5               | 4,3  | 0,2      | 0,1  | 4    | 99,8  |
| GR-6765   | 1054049   | 1648685   | 71,3             | 0,3              | 14,3                           | 2,3                            | 0,7       | 2,3       | 3,4               | 4,5  | 0,1      | 0    | 0,6  | 99,8  |
| GR-6768   | 1058259   | 1643455   | 67,3             | 0,6              | 15,2                           | 3,3                            | 1,1       | 2,5       | 3,9               | 4,6  | 0,2      | 0,1  | 1    | 99,8  |
| GR-6792   | 1021188   | 1621440   | 68,7             | 0,5              | 15                             | 3,1                            | 1,1       | 2,4       | 4,5               | 3,3  | 0,2      | 0    | 0,9  | 99,8  |
| GR-6794   | 1024451   | 1620933   | 59,6             | 0,8              | 17,3                           | 6                              | 2,4       | 4,5       | 3,5               | 2,7  | 0,3      | 0,1  | 2,4  | 99,6  |
| GR-6796   | 1025185   | 1634313   | 65,9             | 0,5              | 15,1                           | 4,5                            | 1,8       | 3,1       | 3,2               | 3,9  | 0,2      | 0,1  | 1,4  | 99,7  |
| GR-6798   | 1019261   | 1629403   | 72,2             | 0,4              | 13,6                           | 2,5                            | 0,8       | 2,5       | 3,4               | 3,8  | 0,1      | 0,1  | 0,6  | 99,9  |
| MIA-692   | 1018565   | 1623822   | 70,4             | 0,4              | 14,5                           | 2,7                            | 0,8       | 2,6       | 3,7               | 4,3  | 0,1      | 0,1  | 0,4  | 99,8  |
|           |           |           |                  |                  |                                | Diques                         |           |           |                   |      |          |      |      |       |
| GR-6764B  | 1053812   | 1648986   | 78,38            | 0,062            | 12,1                           | 0,41                           | 0,1       | 0, 10     | 3,41              | 4,93 | 0,024    | 0,11 | 0,48 | 100,0 |
| GR-6791 B | 1016745   | 1616854   | 57,2             | 1,029            | 15,94                          | 7,02                           | 3,95      | 3,73      | 4,35              | 2,8  | 0,462    | 1,3  | 3,16 | 100,9 |

Tabla 2. Composición de óxidos mayores en rocas granitoides y diques del Batolito de Pueblo Bello

can dentro de las series calcoalcalinas normales (figuras 12b y 12c). Las rocas del Batolito de Pueblo Bello presentan valores de CaO/Na<sub>2</sub>O entre 0,48 y 0,96, excepto la muestra GR-6794 que da un valor de 1,29; la mayoría de muestras grafican en el campo metaluminoso y algunas alcanzan el campo peraluminoso, con valores de A/

NK entre 1 y 2, valores de A/CNK entre 0,8 y 1,1 (figura 12d), que sugieren aporte al magma de material de corteza continental y una moderada diferenciación. La roca de dique granítico cae en el campo peraluminoso y la andesita en el campo metaluminoso.



Figura 11. Diagramas tipo Harcker para granitoides correspondientes al Batolito de Pueblo Bello



Figura 12. Diagramas de clasificación para rocas del Batolito de Pueblo Bello a) Diagrama TAS de Middlemost (1994); b) Diagrama de Peccerillo y Taylor (1976); c) Diagrama AFM de Irvine y Baragar (1971); d) Diagrama de Shand (1943). Negro = granitoides, rojo = diques.

#### 3.2. Análisis de elementos traza

En la tabla 3 se resumen los resultados de los análisis químicos de elementos traza y tierras raras para rocas del Batolito de Pueblo Bello, diques y cuerpos menores que atraviesan el plutón.

Las muestras del Batolito de Pueblo Bello, al ser normalizadas al N-MORB, presentan patrones similares con enriquecimientos de elementos litófilos de alto radio iónico (LILE) respecto a los elementos de alta carga iónica (HFSE) y respecto a las tierras raras (REE). La muestra GOE- 1066 presenta un patrón diferente respecto a las demás muestras (figura 13a), con un valor anormal de Th que puede deberse a un problema analítico.

Las muestras presentan enriquecimientos en Cs, Rb, Ba, Th y Pb, y anomalías negativas de Eu en algunas muestras, con (Eu/Eu)\*<1 y (Eu/Eu)\*>1 en GOE-1066 y GR-6794 (figura 13a). Estas muestras presentan comportamientos similares a los reportados en Quandt *et al.*  (2018) para intrusivos del Batolito de Pueblo Bello y Patillal.

El diagrama multielemental de elementos traza (Sun y McDonough, 1989) muestra anomalía negativa de Nb con respecto al Th y Ce, característica de arcos magmáticos relacionados con ambientes de subducción, con empobrecimiento progresivo hacia los elementos pesados, presentando además anomalía positiva de Pb (figura 13b). Los mayores valores de los LILE Cs, Ba y Th indican afinidad con corteza continental o movilidad. Los elementos traza más móviles (LILE) tienen concentraciones mayores que el N-MORB, mientras los elementos traza menos móviles son comparables al N-MORB. Se observa que el patrón de la muestra GOE-1066 se aparta del patrón de las demás rocas analizadas, mostrando mayor anomalía de Nb.

Los patrones de REE normalizados al condrito de Nakamura (1974) de la figura 13b presentan enrique-

| Muestra  | Coc      | ordena | das      | Elementos trazas |      |        |        |       |         |       |       |        |        |         |          |        |         |        |        |         |         |         |       |      |       |         |       |
|----------|----------|--------|----------|------------------|------|--------|--------|-------|---------|-------|-------|--------|--------|---------|----------|--------|---------|--------|--------|---------|---------|---------|-------|------|-------|---------|-------|
|          | Oeste (r | m) No  | orte (m) | Li               | Ве   | Sc     | с (    | ю     | Ni      | Cu    | Zn    | Ga     | A      | s       | In       | Cs     | Ва      | La     | Ce     | Pr      | Nd      | Sm      | Eu    | C    | Gd    | Tb      | Dy    |
|          |          |        |          |                  |      |        |        |       |         |       |       |        | Gran   | itoides |          |        |         |        |        |         |         |         |       |      |       |         |       |
| GOE-1030 | 102024   | 6 10   | 625971   | 13,79            | 1,5  | 6,8    | 4 18   | ,19   | 7,49    | 9,63  | 54,96 | 6 21,2 | 4 2,   | 22      | 0,02     | 1,11   | 1389,88 | 42,22  | 78,89  | 10,24   | 31,59   | 6,39    | 1,72  | 6,   | ,06   | 0,82    | 5,07  |
| GOE-1066 | 102696   | 7 10   | 637787   | 5,41             | 0,66 | 9,0    | 6      |       | 11,5    | 23,97 | 29,81 | 1 22,8 | 51,    | 53      | 0,03     | 0,06   | 1654,91 | 16,81  | 30,61  | 2,79    | 11,55   | 2,35    | 1,72  |      | 3     | 0,57    | 3,67  |
| GR-6761  | 105365   | 7 16   | 653875   | 20,57            | 2,62 | 10,5   | 55 15  | ,79   | 9,55    | 18,1  | 74,23 | 3 21,0 | 72,    | 72      | 0,05     | 1,67   | 1252,48 | 50,72  | 82,28  | 11,79   | 36,39   | 8,34    | 2,02  | 7,   | ,06   | 0,97    | 5,38  |
| GR-6765  | 105404   | 9 10   | 648685   | 13,01            | 2,06 | 6,0    | 6 15   | ,47   | 5,09    | 75,91 | 41,7  | 17,3   | 2,     | 03      | 0,1      | 1,67   | 1081,67 | 32,29  | 73,32  | 8,97    | 29,47   | 6,12    | 1,36  | 5,   | ,75   | 0,84    | 4,69  |
| GR-6768  | 105825   | 9 10   | 643455   | 17,37            | 2,98 | 8      | 17     | ,75   | 6,85    | 16,32 | 55,8  | 16,6   | i 1,   | 97      | 0,05     | 1,37   | 1514,17 | 46,32  | 93,14  | 11,87   | 39,71   | 8,24    | 2,13  | 7,   | ,49   | 1,12    | 5,83  |
| GR-6792  | 102118   | 8 10   | 621440   | 26,64            | 3,15 | 5,2    | 4 13   | ,44 . | 7,52    | 22,08 | 56,92 | 2 19,2 | 21,    | 15      | 0,03     | 1,36   | 766,28  | 42,6   | 76,92  | 8,93    | 26,31   | 5,36    | 1,55  | 4,   | ,94   | 0,65    | 3,33  |
| GR-6794  | 102445   | 1 16   | 620933   | 32,9             | 2,34 | 14,3   | 36 18  | ,67 - | 10,07   | 33,04 | 63,77 | 7 19,4 | 43,    | 08      | 0,05     | 1,17   | 1692,75 | 25,31  | 58,21  | 7,92    | 25,63   | 6,38    | 2,4   | 5,   | ,87   | 0,88    | 4,63  |
| GR-6796  | 102518   | 5 10   | 634313   | 12,75            | 2,46 | 9,6    | 2 18   | ,63   | 6,64    | 47,74 | 56,39 | 9 18,4 | 41,    | 96      | 0,04     | 0,41   | 1171,81 | 29,57  | 65,04  | 8,59    | 27,03   | 6,1     | 1,83  | 5,   | ,75   | 0,83    | 4,54  |
| GR-6798  | 101926   | 1 10   | 629403   | 19,05            | 2,18 | 5,2    | 2 12   | ,29   | 4,69    | 9,26  | 41,06 | 5 14,4 | 22,    | 02      | 0,03     | 0,7    | 917,37  | 31,28  | 66,22  | 8,37    | 23,57   | 5,46    | 1,46  | 5,   | ,37   | 0,77    | 4,32  |
| MIA-692  | 101856   | 5 10   | 623822   | 21,54            | 2,04 | 5,5    | 1 15   | ,58   | 4,02    | 7,11  | 37,51 | 1 16,9 | B 1,   | 73      | 0,02     | 0,89   | 1174,62 | 30,21  | 66,39  | 7,31    | 19,66   | 4,63    | 1,54  | 4,   | ,57   | 0,64    | 3,69  |
| Muestra  | Но       | Er     | Tm       | Yb               | Lu   | ті     | Pb     | Th    | U       | Nb    | Cd    | v      | Rb     | Sr      | Zr       | Y      | Eu/Eu   | * Lat  | Ybn L  | .aN/SmN | EuN/YbN | Sum_R   | EE S  | r/Y  | Th/Yb | Nb/Yb   | #MgO  |
|          |          |        |          |                  |      |        |        |       |         |       |       |        | Gran   | itoides |          |        |         |        |        |         |         |         |       |      |       |         |       |
| GOE-1030 | 1,03     | 3,17   | 0,46     | 3,14             | 0,44 | 0,62   | 18,01  | 7,78  | 1,84    | 8,3   | 0,14  | 66     | 109,4  | 338,9   | 176,4    | 22     | 0,85    | 8      | ,98    | 4,06    | 1,56    | 191,2   | 3 1   | 5,4  | 2,48  | 2,65    | 32,37 |
| GOE-1066 | 0,86     | 2,81   | 0,45     | 3,05             | 0,48 | 0,17   | 6,02   | 0,1   | 0,1     | 6     |       | 49     | 61,94  | 219,3   | 3 225    | 20     | 1,99    | З      | ,68    | 4,41    | 1,61    | 80,72   | 2 10  | ,97  | 0,03  | 1,97    | 41,06 |
| GR-6761  | 1,03     | 3,19   | 0,49     | 3,79             | 0,54 | 0,69   | 12,58  | 8,24  | 2,2     | 11,2  | 0,09  | 66     | 126,7  | 222     | 221,3    | 20,7   | 0,81    | 8      | ,93    | 3,74    | 1,52    | 213,9   | 7 10  | ,72  | 2,18  | 2,96    | 36,24 |
| GR-6765  | 0,96     | 3      | 0,45     | 3,02             | 0,44 | 0,75   | 13,62  | 9,67  | 1,66    | 9,1   | 0,17  | 66     | 144,8  | 266,8   | 178,9    | 27,6   | 0,71    | 7      | ,14    | 3,24    | 1,29    | 170,6   | 69,   | 67   | 3,21  | 3,02    | 28,43 |
| GR-6768  | 1,21     | 3,64   | 0,51     | 3,33             | 0,5  | 0,54   | 12,9   | 10,82 | 2,06    | 13    | 0,11  | 66     | 133,1  | 289,8   | 303      | 37,4   | 0,84    | g      | ,27    | 3,46    | 1,83    | 225,04  | 47,   | 75   | 3,25  | 3,9     | 34,03 |
| GR-6792  | 0,67     | 1,93   | 0,26     | 1,67             | 0,25 | 0,72   | 13,19  | 14,22 | 1,76    | 14,9  | 0,11  | 66     | 101,6  | 268,2   | 254      | 16,4   | 0,93    | 1      | 6,99   | 4,89    | 2,66    | 175,3   | 6 16  | ,35  | 8,51  | 8,92    | 35,36 |
| GR-6794  | 0,95     | 2,69   | 0,38     | 2,52             | 0,36 | 0,57   | 7,65   | 4,69  | 1,32    | 7,3   | 0,2   | 106,43 | 72,6   | 662,5   | 297,9    | 22,6   | 1,21    | 6      | ,69    | 2,44    | 2,72    | 144,13  | 3 29  | ,31  | 1,86  | 2,9     | 42,27 |
| GR-6796  | 0,92     | 2,82   | 0,42     | 2,79             | 0,42 | 0,62   | 11,32  | 5,67  | 1,69    | 9,6   | 0,08  | 84,02  | 111,4  | 386,2   | 162,7    | 20,9   | 0,95    | 7      | ,07    | 2,98    | 1,88    | 156,6   | 2 18  | ,48  | 2,03  | 3,44    | 41,85 |
| GR-6798  | 0,91     | 2,83   | 0,42     | 2,9              | 0,43 | 0,56   | 13,54  | 7,27  | 1,81    | 8,3   | 0,08  | 66     | 100,2  | 287,1   | 161,1    | 21,4   | 0,83    | 7      | ,18    | 3,52    | 1,43    | 154,3   | 3 13  | ,42  | 2,5   | 2,86    | 32,95 |
| MIA-692  | 0,78     | 2,45   | 0,35     | 2,46             | 0,38 | 0,61   | 14,18  | 7,26  | 1,6     | 7,3   | 0,08  | 66     | 109,8  | 324,2   | 157,6    | 18,4   | 1,03    | 8      | ,19    | 4,01    | 1,78    | 145,0   | 6 17  | ,62  | 2,95  | 2,97    | 31,38 |
|          |          |        |          |                  |      |        |        |       |         |       |       |        | Die    | ques    |          |        |         |        |        |         |         |         |       |      |       |         |       |
| M        | uestra   |        | E        |                  | N    | Li     | Be     | Sc    | Co      |       | Ni    | Cu     | Zn     | G       | ia As    | In     | Cs      | Ва     | La     | Ce      | Pr      | Nd S    | Sm    | Eu   | Gd    | Tb      | Dy    |
| GF       | R-6764B  |        | 1053812  | 164              | 8986 | 2,34   | 1 2,26 | 2,04  | 12,27   |       | 1,98  | 18,45  | 11,66  | 6 14    | ,53 0,53 | 3 0,01 | 0,74    | 486,29 | 24,8   | 28,09   | 1,91    | 4,08 0  | ,49   | 0,24 | 0,66  | 0,07    | 0,46  |
| GR       | -6791 B  |        | 1016745  | 161              | 6854 | 94,5   | 4 2,52 | 14,0  | 8 24,19 |       | 32    | 73,29  | 134,3  | 8 20    | ,83 2,28 | 3 0,06 | 1,29    | 998,11 | 45,06  | 89,16   | 11,31   | 40,15 8 | ,08   | 2,46 | 7,54  | 0,99    | 4,91  |
|          |          |        |          |                  |      |        |        |       |         |       |       |        | Die    | ques    |          |        |         |        |        |         |         |         |       |      | 0     |         |       |
| Muestra  |          | Но     | Er       | Tm               | Yb   | ) Lu   | TI     | Pb    | Th      | U     | J     | Nb     | Cd     | V F     | b        | Sr     | Zr      | Y      | Eu/Eu* | LaN/Yb  | N LaN/  | /SmN    | EuN/Y | ′bN  | RE    | n_<br>E | #MgO  |
| GR-6764  | В        | 0,12   | 0,44     | 0,09             | 0,8  | 1 0,18 | 3 0,92 | 21,5  | 8 22,87 | 3,9   | 94    | 6,8 (  | 0,11 6 | 6 15    | 7,1 5    | 8,5    | 47,9    | 4,7    | 1,28   | 20,46   | 31      | ,45     | 0,83  | 3    | 62,   | 41      | 24,49 |

Tabla 3. Elementos traza correspondientes a muestras del Batolito de Pueblo Bello

cimiento en tierras raras livianas (LREE), respecto a las tierras raras pesadas (HREE), con valores (La/Yb)<sub>N</sub> entre 3,6 y 17, relaciones (La/Sm)<sub>N</sub> entre 2,4 4,9 y Sr/Y entre 3,7 y 329,3 (tabla 3). La muestra GOE-1066 presenta un patrón diferente a las demás muestras.

El diagrama de elementos de las REE, normalizado a condrito según los valores de Nakamura (1974), muestra, para rocas granitoides del Batolito de Pueblo Bello, al menos dos patrones diferentes de REE, los cuales podrían sugerir diferentes eventos o pulsos magmáticos a nivel del mismo plutón (figura 13b). El comportamiento general es comparable a rocas generadas en ambientes de subducción por encima de la placa subducida (arco). Tiene un enriquecimiento en LREE y empobrecimiento hacia las HREE, con anomalía negativa de Eu, probablemente debido al fraccionamiento de la plagioclasa en el magma, y relación (La/Sm)<sub>N</sub>>2,4, que evidencia un enriquecimiento de las LREE con relación a las HREE en todas las muestras. El diagrama multielemental de tierras raras (Sun y McDonough, 1989) para los diques del Batolito de Pueblo Bello muestra anomalía negativa de Nb; con respecto al Th y Ce presenta anomalía positiva de Pb (figura 14a), signatura geoquímica típica de magmas originados en ambientes tectónicos relacionados a arcos. Los mayores valores de los LILE Cs, Ba y Th indican una afinidad de corteza continental (márgenes convergentes), con empobrecimiento progresivo hacia los elementos pesados. Los elementos traza más móviles (LILE) tienen concentraciones mayores que el N-MORB, mientras los elementos traza menos móviles están por debajo del N-MORB. La roca GR-6764B, clasificada como granito, presenta un patrón muy diferente al patrón de la muestra GR-6791B.

Los diques muestran dos patrones diferentes en el diagrama de REE normalizado al condrito de Nakamura (1974), y ambos presentan enriquecimiento en LREE y empobrecimiento hacia las HREE (figura 14b). La roca clasificada como andesita (muestra GR-6791B) tiene un

GB-6764B

a 1000

100





Figura 13. Diagramas multielementales para rocas del Batolito de Pueblo Bello

 a) Diagrama multielemental normalizado al NMORB (Sun y McDonough, 1989); b) Diagrama de REE normalizado respecto al condrito (Nakamura, 1974). Figura 14. Diagramas multielementales para diques del Batolito de Pueblo Bello

 a) Diagrama multielemental normalizado al NMORB (Sun y McDonough, 1989);
 b) Diagrama de REE normalizado respecto al condrito (Nakamura, 1974).



Figura 15. Diagramas de discriminación de ambiente tectónico para rocas (negro) y diques del Batolito de Atánquez (rojo) a) Diagrama de Condie y Kröner (2013); b) Diagrama de Pearce *et al.* (1984).

patrón con pendiente negativa y continua con enriquecimiento de LREE, que progresivamente se empobrece hacia las HREE, similar a rocas generadas en ambiente de arco. La muestra GR-6764B clasificada como granito tiene un patrón diferente, con anomalía positiva de Eu, empobrecimiento progresivo en las LREE entre La y Dy, y un enriquecimiento de las HREE entre Dy y Lu (figura 14b), con contenido de SiO<sub>2</sub> de 78,38 %, y sumatorias de REE de 62,4.

Los diagramas de elementos traza y tierras raras exhiben anomalías negativas de Nb para las rocas granitoides y diques, y positivas de Pb. El empobrecimiento de Nb se explica por la presencia de rutilo residual, que retiene el Nb en la región fuente de la losa subducida, y por la baja solubilidad del Nb en los fluidos ricos en agua y en los magmas, ambos generados en las partes someras de las zonas de subducción (Briqueu *et al.*, 1984; Baier *et al.*, 2007).

#### 3.3. Discriminación tectónica

Las muestras correspondientes a rocas plutónicas del Batolito de Pueblo Bello, en el diagrama de discriminación geoquímica y ambiente tectónico de Condie y Kröner (2013), se localizan en el campo de los arcos continentales (figura 15a). Las muestras tienen aumento de Th/Yb vs Nb/Yb>1, relacionado con la entrada de material reciclado de la corteza por procesos de subducción (Pearce, 2008). La muestra GOE-1066 presenta un valor anormal de Th que sugiere un problema analítico, y se localiza en el diagrama por debajo del campo de las cortezas oceánicas (figura 15b). Para este conjunto de muestras, el #MgO (MgO\*100/ $Fe_2O_3$ +MgO) es mayor a 28,4 (tabla 3). Al graficar las muestras en el diagrama de Sr/Y vs (La/Yb)<sub>N</sub> (Condie y Kröner, 2013), se puede ver que ambas relaciones son altas y corresponden a ambientes de plutones formados en arcos continentales (figura 15a). En el diagrama de Pearce *et al.* (1984), todas caen en el campo de granitos de arco volcánico (VAG) (figura 15b).

## 4. Posición estratigráfica y edad

El Batolito de Pueblo Bello presenta contactos intrusivos con la granulita de los Mangos y el Batolito de Atánquez, el cual le intruye, y está cubierto discordantemente por la Riolita de Golero (Colmenares *et al.*, 2007). Algunas edades reportadas anteriormente para este cuerpo, por los métodos K-Ar en hornblenda (Tschanz *et al.*, 1974) y U-Pb en circón, son asociadas al Jurásico (Tschanz *et al.*, 1974; Quandt *et al.*, 2018; Leal Mejía, 2011; tabla 4).

En este estudio se realizó la datación de nueve muestras de rocas y saprolitos mediante el método U-Pb LA-ICP-MS en circones, previa descripción petrográfica y análisis litogeoquímico de la mayoría de las muestras. Dos dataciones U-Pb se realizaron en rocas de dique y el resto en las rocas granitoides. Los resultados se resumen en la tabla 5 y la localización de las muestras se presenta en la figura 1. Los resultados de este estudio reportan edades para el Batolito de Pueblo Bello entre 170-188 Ma. Estas edades son similares a las edades reportadas por Leal-Mejía (2011) y Quandt *et al.* (2018).

Para el Batolito de Pueblo Bello, las edades K-Ar publicadas son de 172 ± 6 Ma, 174 ± 7 Ma, 181 ± 6 Ma, 179 ± 8 Ma (en biotita), 189±19 Ma (en anfíbol), interpretadas como edades de enfriamiento del sistema K-Ar de los plutones, a temperaturas aproximadas de 280-530°C, y como edades de cristalización en Tschanz *et al.* (1974), con resultados similares a las edades reportadas por el metodo U-Pb en circones (Leal-Mejía, 2011; Quandt *et al.*, 2018 y en este trabajo).

Las edades de trazas de fisión en apatito (Villagómez, 2010), para las muestras SN35, SN36 y SN37, fueron interpretadas y modeladas en HeFty. Las muestras SN36 y SN37 fueron localizadas en un bloque fallado dentro de la SNSM, sobre elevaciones entre 1927-2721 msnm, con edades medias cercanas a 43 Ma sobreimponiéndose a la edad de la muestra SNM35 (Villagómez, 2010).

# 4.1. Geocronología U-Pb en rocas granitoides del Batolito de Pueblo Bello

De las rocas graníticas del Batolito de Pueblo Bello se dataron nueve muestras por el método U-Pb LA-ICPMS, las cuales están relacionadas en la tabla 5. La datación U-Pb en circón se realizó en el Laboratorio de Ablación Láser del SGC, utilizando un espectrómetro de masas de plasma de acoplamiento inductivo ELEMENT 2 <sup>™</sup>, acoplado a un sistema de ablación láser Photon Machines con un láser de excitación de 193 nm. Los tiempos de integración de 0-38 s se utilizaron para la línea de base, mientras que los tiempos de integración de 32,5-8 s se utilizaron para las muestras y los estándares de referencia. Los puntos de ablación fueron de 20  $\mu$ m de diámetro; como estándares de referencia se utilizaron: Plešovice (337,13±0,37 Ma; Sláma *et al.*, 2008), 91500 (1065 Ma; Wiedenbeck *et al.*, 1995) y Dromedary (Schoene *et al.*, 2015). La reducción de los datos se realizó utilizando el software Iolite IGORPro, y los resultados se corrigieron para obtener una pista común, según el modelo de Stacey y Kramers (1975).

La muestra GR-6796 se clasificó petrográficamente como un monzogranito (figura 16a). Los circones son prismáticos, cortos, achatados, de tamaños entre 50 y 100  $\mu$ m e incoloros. Presentan en las imágenes de catodoluminiscencia (CL) texturas de zonación concéntrica con núcleos claros homogéneos y bordes concéntricos en tonos de gris claro y oscuro. Tienen edades diferentes entre los núcleos y bordes en el mismo circón, siendo ligeramente más antiguos los núcleos que los bordes (figura 16b).

En la muestra GR-6796, se realizaron 51 ablaciones (anexo 1) para un total de 50 circones, de los cuales se tuvieron en cuenta 28 ablaciones para la interpretación. Las edades obtenidas y aceptadas varían en un rango entre 164,19 Ma y 217 Ma. En el diagrama del cálculo de la media y la desviación estándar se observa que, al reunir

| Tabla 4 | <ol> <li>Trazas</li> </ol> | de fisiór | n en apatito | en el Batol | lito de Pueble | o Bello |
|---------|----------------------------|-----------|--------------|-------------|----------------|---------|
|---------|----------------------------|-----------|--------------|-------------|----------------|---------|

|            | s de lision en apa | allo en el Dalolilo |                          |                |                              |                               |
|------------|--------------------|---------------------|--------------------------|----------------|------------------------------|-------------------------------|
| Muestra    | Oeste (m)          | Norte (m)           | Unidad                   | Edad           | Método                       | Fuente                        |
| 30         | 1051005            | 1653805             | Batolito de Pueblo Bello | 172 ± 6        | K–Ar                         | Tschanz <i>et al</i> . (1974) |
| SN35       | 1052998            | 1658858             | Batolito de Pueblo Bello | $40,6 \pm 5,8$ | Huellas de fisión en Apatito | Villagómez (2010)             |
| SN37       | 1055748            | 1654896             | Batolito de Pueblo Bello | 42,5 ± 9,4     | Huellas de fisión en Apatito | Villagómez (2010)             |
| SN36       | 1053035            | 1657161             | Batolito de Pueblo Bello | 44,4 ± 7,2     | Huellas de fisión en Apatito | Villagómez (2010)             |
| JRQ-33-75L | 1016006            | 1616361             | Batolito de Pueblo Bello | 182,2 ± 1      | U-Pb LAICPMS                 | Quandt <i>et al.</i> (2018)   |
| 12033367   | 1018972            | 1619611             | Batolito de Pueblo Bello | 179,8 ± 3,3    | U-Pb LAICPMS                 | Leal Mejía (2011)             |

Tabla 5. Edades U/Pb para muestras de los Batolito de Pueblo Bello

| N campo  | Coorde    | enadas    | Clasificación        | Edad U/Pb (Ma.  | MSWD | Herencias                                                                                                                                              |
|----------|-----------|-----------|----------------------|-----------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Oeste (m) | Norte (m) |                      |                 |      |                                                                                                                                                        |
| GR-6796  | 1025185   | 1634313   | Monzogranito         | 188,4 ± 2,3     | 2,3  | 216-204,6 (n=2)                                                                                                                                        |
| GR-6761  | 1053657   | 1653875   | Monzogranito         | 181,5 ± 1,2     | 1,13 | 961,7 ± 31 - 816,9 ± 32 (n=2)                                                                                                                          |
| GOE-1030 | 1020246   | 1625971   | Monzogranito         | 178,7 ± 1,4     | 3,8  | $645,4 \pm 14,3 \ (n=1); \ 193,4 \pm 2,6 \ (n=13)$                                                                                                     |
| GR-6837  | 1048678   | 1643441   | Cuarzomonzonita      | 176,9 ± 2,6     | 2,8  | $962,9 \pm 29-736,3 \pm 26 \ (n=1); \ 193,8 \pm 3,4 \ (n=4)$                                                                                           |
| JGB-513  | 1040287   | 1626144   | Monzogranito         | 176,4 ± 1,0     | 1,5  | $\begin{array}{c} 1022 \pm 25,1 \ \text{Ma} - 632 \pm 14 \ \text{Ma} \ (n\!=\!7); 214,8 - 196,7 \ (n\!=\!4); \\ 188,0 \pm 2,0 \ (n\!=\!9) \end{array}$ |
| GR-6792  | 1021188   | 1621440   | Monzogranito         | $172,3 \pm 2.0$ | 2,5  | 187,3 ± 2,5 (n=8)                                                                                                                                      |
| GR-6768  | 1058259   | 1643455   | Monzogranito gráfico | 170,1 ± 1,5     | 1,8  | 186,9±2,8 (n=5)                                                                                                                                        |
|          |           |           | Roc                  | as de dique     |      |                                                                                                                                                        |
| GR-6765  | 1054049   | 1648685   | Riolita              | 168,0 ± 2,3     | 1,9  | 210,6±8,4 (n=1), 194,8±4,1 (n=3); 180,2±1,7 (n=17)                                                                                                     |
| GR-6764A | 1053812   | 1648986   | Andesita             | 175,1 ± 1,7     | 1,4  | 199,2±7 y 197,8±9,8 (n=2);                                                                                                                             |



Figura 16. Cálculo de la edad de las muestras GR-6796

a) Aspecto microscópico de la roca; b) Imágenes de CL y edades U-Pb en circones; c) Diagrama de concordia Wetherill; d) Diagrama de edad promedio ponderada.

la datación de cada circón, se obtienen rangos moderadamente dispersos (figura 16c) que se pueden integrar en un valor de edad promedio de 188,4±2,3 Ma con un MSWD = 2,3, lo que se interpreta como la edad de cristalización de esta roca (figura 16d). La relación Th/U de los circones aceptados varía entre 0,46 y 1,38 y sugiere que se formaron por cristalización ígnea (Rubatto, 2002).

La muestra GR-6837 se obtuvo a partir de un saprolito clasificado macroscópicamente como monzonita. Los circones son prismáticos, cortos y achatados; hay escasos circones prismáticos en forma de tallos, de tamaños entre 50 y 100  $\mu$ m, incoloros, que presentan en las imágenes de CL texturas de zonación concéntrica con núcleos claros, homogéneos y bordes concéntricos en tonos de gris claro y oscuro, y algunos parecen tener núcleos heredados corroídos en sus bordes por crecimiento concéntrico posterior (figura 17a). La edad de la muestra GR-6837 se obtuvo a partir de 52 circones y 55 ablaciones (anexo 1). Se interpreta como la edad de cristalización de esta roca, con una población n = 20, que varían entre 186,6 Ma y 168,5 Ma (figura 17a), lo que arrojó una edad promedio ponderada de 176,0±2,6 Ma, con un MSWD=2,8 (figura 17c). Se separó una segunda población n = 4, los cuales corresponden a núcleos de circones de color gris claro, homogéneos, que se interpretan como antecristales y arrojan una edad media ponderada de 193,8±3,4 Ma, con MSWD=1 (figura 17d). La muestra tiene un xenocristal subredondeado que arrojó una edad concordante con un núcleo de 962,9±29 Ma, mientras que el borde sobrecrecido arrojó una edad de 736,3±26 Ma; este circón presenta relación Th/U > 0,1 sugiriendo que es de un protolito ígneo.



Figura 17. Cálculo de la edad de las muestras GR-6837

a) Diagrama de concordia Wetherill; b) Imágenes de CL y edades U-Pb en circones; c) Diagrama de edad promedio ponderada para dataciones que varían entre 186,6 Ma y 168,5 Ma; d) Diagrama de edad promedio ponderada para núcleos de circones de antecristales.

La muestra GR-6761 corresponde a un monzogranito (figura 18a). Los circones son euhedrales, inequigranulares, de tamaños entre 130 y 50  $\mu$ m, prismáticos, cortos y largos, algunos achatados, desde incoloros hasta violeta pálido. Las imágenes de CL muestran texturas de zonación concéntrica con núcleos de color gris claro, homogéneos y con bordes concéntricos en tonos de gris claro a medio (figura 18b).

De la muestra GR-6761, se montaron 58 circones y se les realizaron 54 puntos de ablación (anexo 1). La edad de cristalización de esta roca se obtuvo a partir de una población n = 36, con edades que varían entre 175,6 Ma y 197,4 Ma (figura 18c), lo que arrojó una edad promedio ponderada de 181,5±1,2 Ma, con un MSWD=1,13 (figura 18d); la relación Th/U varía entre 0,5 y 1,6, sugiriendo que son circones ígneos (Rubatto, 2002). La muestra tiene dos xenocristales ligeramente discordantes que arrojaron edades neoproterozoicas de 816,9±32 Ma y 961,7±31 Ma, con relaciones Th/U cercanas a 0,3, que sugieren origen ígneo para ambos circones.

La muestra GR-6792 se obtuvo a partir de un monzogranito (figura 19a). Los circones son prismáticos, cortos, achatados y escasos; los circones prismáticos en forma de tallos, de tamaños entre 40 y 120  $\mu$ m, incoloros con tinciones de óxidos de hierro, presentan en las imágenes de CL texturas de zonación concéntrica con núcleos de color gris claro y bordes concéntricos en tonos de gris claro y oscuro (figura 19b).

Se realizó un filtro de los datos, para descartar los circones con valores discordantes (discordancia > 15%) y con errores de edad corregida > 5. Las dataciones concordantes varían entre 192,6 y 164,2 Ma (figura 19c), produciendo una edad ponderada, a partir de una población n=29, de 174,7±2,6 Ma, con un MSWD=5,3, lo que sugiere la inclusión de más de una población de edades. Se diferencian dos poblaciones: una primera con valores



Figura 18. Cálculo de la edad de las muestras GR-6761

a) Aspecto microscópico de la roca; b) Imágenes de CL y edades U-Pb en circones; c) Diagrama de concordia Wetherill; d) Diagrama de edad promedio ponderada.

entre 192,6 y 183,1 Ma, que arrojó una edad promedio ponderada de 187,3±2,5 Ma, con MSWD=0,68 a partir de una población n = 8 (figura 19e), y que se interpreta como la edad de los antecristales correspondientes a pulsos anteriores; y una segunda población con valores entre 179,9 y 164,2 Ma, lo que arrojó una edad promedio de 172,3±2,0 Ma, con MSWD=2,5 a partir de una población n=21, considerada como la edad de cristalización de la roca (figura 19d).

Los valores de la relación Th/U varían entre 0,4 hasta 2,0, sugiriendo que los circones son producto de cristalización magmática (Rubatto, 2002).

Los circones de la muestra GR-6768 se obtuvieron a partir de una roca clasificada como monzogranito gráfico (figura 20a). Algunos son prismáticos, cortos, achatados, y otros prismáticos, largos y en forma de tallos, de tamaños entre 80 y 150  $\mu$ m, incoloros; presentan en las imágenes de CL texturas de zonación concéntrica con núcleos de color gris claro y bordes concéntricos en tonos de gris claro y oscuro, característico de rocas ígneas (figura 20b).

De la muestra GR-6768, se montaron 58 circones y se les realizaron 62 puntos de ablación (anexo 1). Las dataciones concordantes varían entre 191,01 y 160,5 Ma (figura 20e), produciendo una edad ponderada de 170,2±1,9 Ma, con un MSWD=3,6, a partir de una población n=37, lo que sugiere que la edad de la muestra GR-6768 presenta dos poblaciones de datos que se insinúan en el diagrama de densidad de probabilidad (figura 20c). La edad de cristalización de esta roca corresponde a una población n=32, con edades entre 160,5 Ma y 178,1 Ma, lo que arrojó una edad promedio ponderada de 170,1±1,5 Ma, con un MSWD=1,8 (figura 20d). Se definió una población de n=5, con edades entre 191,01 y 182,7 Ma, arrojando una edad promedio ponderada de 186,9±2,8 Ma, con un MSWD=1,07 (figura 20e), lo cual se interpretó como un evento de cristalización anterior. La relación Th/U varía entre 0,47 y 1,6 con la mayoría de valores cercanos a 1,0, indicio de cristalización ígnea (Rubatto, 2002).



Figura 19. Cálculo de la edad de las muestras GR-6792

a) Aspecto microscópico de la roca; b) Imágenes de CL y edades U-Pb en circones; c) Diagrama de concordia Wetherill; d) Diagrama de edad promedio ponderada para dataciones que varían entre 179,9 y 164,2 Ma; e) Diagrama de edad promedio ponderada para núcleos de circones de antecristales



G





b

Figura 20. Cálculo de la edad de las muestras GR-6768

a) Aspecto microscópico de la roca; b) Imágenes de CL y edades U-Pb en circones; c) Diagrama de densidad de probabilidad; d) Diagrama de edad promedio ponderada para dataciones que varían entre 179,9 y 164,2 Ma; de) Diagrama de edad promedio ponderada para núcleos de circones de antecristales; e) Diagrama de concordia Wetherill; f) Diagrama de edad promedio ponderada para dataciones que varían entre 160,5 Ma y 178,1 Ma.

Los circones de la muestra GOE-1030 se obtuvieron a partir de un saprolito clasificado en campo como monzogranito. Son prismáticos, cortos, achatados, y algunos prismáticos en forma de tallos, incoloros, traslúcidos, con tamaños entre 30 a 110  $\mu$ m; algunos con inclusiones de color pardo a negro presentan en las imágenes de CL texturas de zonación concéntrica con núcleos de color gris claro y bordes concéntricos en tonos de gris claro y oscuro, característico de rocas ígneas (figura 21a). La relación Th/U varía entre 0,6 y 2,3, con la mayoría de valores alrededor de 1,0, lo que sugiere cristalización ígnea de los circones (Rubatto, 2002).

De la muestra GOE-1030 se montaron 68 circones a los cuales se les realizaron 83 dataciones (anexo 1). Los cristales presentan dataciones concordantes que varían entre 210,6 y 169,7 Ma (figura 21b), arrojando una edad promedio ponderada de 181, $3\pm1$ ,9 con MSWD=9,4, lo cual sugiere que la edad de la muestra GOE-1030 tiene, al menos, dos poblaciones de datos. La primera población, con trece dataciones y edades entre 210,6 y 189,4 Ma, arrojó una edad promedio ponderada de 193,4±2,6 Ma, con un MSWD=2,8 (figura 21c), interpretada como la edad de antecristales correspondientes a un pulso magmático anterior.

La edad de cristalización de la muestra GOE-1030 corresponde a una segunda población n=40, con edades entre 185,6 Ma y 169,7 Ma, lo que arrojó una edad promedio ponderada de 178,7 ±1,4, con un MSWD=3,8 (figura 21d), y que se interpreta como la edad de cristalización de esta muestra. Se presenta además un núcleo heredado que arrojó una datación de 645,4±14,3 Ma.

Los circones de la muestra JGB-513 se obtuvieron a partir de un saprolito clasificado en campo como monzogranito (anexo 1). Son euhedrales de caras cristalinas



Figura 21. Cálculo de la edad de las muestras GOE-1030

a) Imágenes de CL y edades U-Pb en circones; b) Diagrama de concordia; c) Diagrama de edad promedio ponderada para dataciones que varían entre 210,6 y 189,4 Ma; d) Diagrama de edad promedio ponderada para para dataciones que varían entre 185,6 Ma y 169,7 Ma.

rectas, de tonalidad amarilla a púrpura tenue, con moderadas inclusiones, de tamaños entre 80-100 µm; presentan en las imágenes de CL texturas de zonación concéntrica con núcleos de color gris claro a gris oscuro y bordes concéntricos en tonos de gris claro y oscuro. En algunos se observan alteraciones, inclusiones, microfracturas y núcleos heredados con bordes de sobrecrecimiento ígneo. La mayoría presentan estructuras características de rocas ígneas (figura 22a).



Figura 22. Cálculo de la edad de las muestras JGB-513

a) Imágenes de CL y edades U-Pb en circones; b) Diagrama de concordia; c) Diagrama de concordia para dataciones entre 214,8 y 167,7 Ma; d) Diagrama de edad promedio ponderada para dataciones que varían entre 193,2 y 182, 2 Ma; e) Diagrama de edad promedio ponderada para dataciones que varían entre 189,8 y 167,7 Ma.

De la muestra JGB-513, se montaron 88 circones a los cuales se les realizaron 88 dataciones (anexo 1). Las dataciones son concordantes y varían entre 1022 y 167,7 Ma (figura 22b). Se presenta una población de 49 dataciones, con edades entre 214,8 y 167,7 Ma (figura 22c), lo que arroja una edad promedio ponderada de 177,3±1,4 con MSWD=3,6, sugiriendo que la edad de la muestra JGB-513 presenta al menos tres poblaciones de datos. Se definió una primera población de n=4, con edades entre 214,8 y 196,7 Ma, y una segunda población con n=9, con edades entre 193,2 y 182, 2 Ma, que arrojó una edad promedio ponderada de 188,0±2,0, con un MSWD=1,08 (figura 22d); ambas poblaciones se interpretan como edades de antecristales, correspondientes a pulsos magmáticos anteriores. Algunos de estos cristales presentan núcleos metamórficos heredados del Neoproterozoico (figura 22b), con relación Th/U < 0,1 y bordes ígneos con estructura concéntrica, con relación Th/U que varía entre 0,26 y 0,69 de acuerdo a Rubatto (2002). Los núcleos neoproterozoicos presentan edades entre 1022 ± 25,1 Ma y 632 ± 14 Ma (n = 7). La edad de 632 Ma tiene relación Th/U=0,4, sugiriendo origen ígneo; el resto de edades tienen relaciones de Th/U < 0,15, sugiriendo que son de origen metamórfico, y para la edad de 1022 la relación Th/U=0,5 (anexo 1).

La edad de cristalización de la muestra JGB-513 corresponde a una población de n=36, con edades entre 189,8 y 167,7 Ma, y cuya edad promedio ponderada fue de 176,4±1,0, con un MSWD=1,5 (figura 22e), lo que se interpreta como la edad de cristalización de la muestra.

Las dataciones de antecristales y de cristales que definen la edad de cristalización de la roca tienen relación Th/U > 0,1 con la mayoría de valores alrededor de 1, indicio de cristalización ígnea (Rubatto, 2002).

# 4.2. Edades en rocas de dique y cuerpos subvolcánicos menores que intruyen el Batolito de Pueblo Bello

Se dataron, por el método U-Pb LA-ICP-MS en circones, una muestra de dique andesítico y un cuerpo subvolcánico riolítico que intruyen el Batolito de Pueblo Bello (GR-6764A y GR-6765), cuyos resultados se resumen en la tabla 5.

La muestra GR-6764A corresponde a un dique de composición andesítica. Los circones de esta muestra se obtuvieron a partir de saprolito, son cristales euhedrales prismáticos cortos y achatados, escasos ovalados subredondeados, incoloros, algunos con fracturas internas e inclusiones; presentan en las imágenes de CL texturas de zonación concéntrica con núcleos más oscuros y bordes concéntricos en tonos de gris claro y oscuro, y en algunos se observan alteraciones, inclusiones, microfracturas y núcleos heredados con bordes de sobrecrecimiento ígneo (figura 23a). La mayoría de los cristales de circón conserva estructuras características de su formación ígnea.

De la muestra GR-6764A, se separaron 51 circones a los cuales se les realizaron 72 dataciones (anexo 1). Las dataciones concordantes varían entre 1129 y 165,4 Ma (figura 23b). Se presenta una población de 48 dataciones, con edades entre 199,2 y 165,4 Ma (figura 23c), lo que arroja una edad promedio ponderada de  $175,1\pm1,7$ , con MSWD = 2,9, y sugiere que la edad de la muestra GR-6764A presenta tres poblaciones de datos con relación Th/U > 0,1 y valores alrededor de 1,0, correspondientes a circones ígneos (Rubatto, 2002). Se separaron dos circones con edades de 199,2 ± 7 y 197,8 ± 9,8, y se definió una población n=6 con edades entre 188,4 y 183,4 Ma, que arrojaron una edad promedio de 186,4±2 con MSWD de 0,29, por lo cual se interpretan como cristales heredados que podrían ser antecristales, pues corresponden a un pulso magmático anterior (figura 23d). Algunos xenocristales metamórficos heredados tienen edades del Neoproterozoico, con relación Th/U < 0,1, entre 1029,8±47,8 May 938,8±31,5 Ma (n=6).

La edad de cristalización de la muestra GR-6764A corresponde a una población de 40 dataciones que tienen edades entre 180,7 y 165,4 Ma, arrojando una edad promedio ponderada de 173,4 $\pm$ 1,3 Ma, con un MSWD=1,4 (figura 23e), la cual se interpreta como la edad de cristalización de este dique.

La muestra GR-6765 corresponde a un cuerpo subvolcánico de riolita porfídica (figura 24a) que intruye el Batolito de Pueblo Bello. Los circones de esta muestra se obtuvieron a partir de saprolito. Son cristales euhedrales prismáticos cortos y achatados de tamaños entre 40 y 80  $\mu$ m, incoloros, algunos con fracturas internas e inclusiones, que presentan en las imágenes de CL texturas de zonación concéntrica con núcleos claros y bordes concéntricos en tonos de gris, característico de circones cristalizados en rocas ígneas (figura 24b).

De la muestra GR-6765, se separaron 49 circones a los que se les realizaron 54 dataciones (anexo 1). Los datos de la muestra GR-6765 se desplazan a lo largo del intersecto; por tal razón, se filtraron datos con discordancia < 90% y con errores de edad corregida < 5%. Las dataciones concordantes varían entre 635 y 159,1 Ma (figura 24c). Se presentan, al menos, tres poblaciones de datos, como se puede ver en el diagrama de densidad de probabilidad (figura 24d), las cuales tienen relación Th/U > 0,5, indicio de cristalización ígnea (Rubatto, 2002).

Se definió una datación de 210,6 Ma y una población n=3, que arrojó una edad promedio de 194,8 ± 4,1, con MSWD de 0,17, por lo cual se interpretaron como cristales heredados de pulsos anteriores. De acuerdo con lo determinado por la función Unmix Ages, en el conjunto de datos restante hay dos componentes de edades: uno con edad próxima a 179 Ma y el otro a 167,4 Ma. Estos circones presentan relaciones Th/U entre 0,4 y 1,3, propias de circones ígneos. El primero comprende edades en el rango entre 184,6 y 176,4 Ma, que arrojan una edad promedio ponderada de 180,2  $\pm$ 1,7 Ma (n=17), con un MSWD de 0,54 (figura 24e), lo que se interpreta como la edad de cristalización final de la roca. El segundo conjunto está compuesto por edades entre 174,4 y 159,1 Ma, que podrían representar la cristalización de circones en la etapa final del magmatismo; para este intervalo (n=17) se obtuvo una edad promedio ponderada de 168,0  $\pm$ 2,3 Ma, con un MSWD de 1,9 (figura 24e).



Figura 23. Cálculo de la edad de las muestras GR-6764A

a) Imágenes de CL y edades U-Pb en circones; b) Diagrama de concordia; c) Diagrama de concordia para dataciones entre 199,2 y 165,4 Ma; d) Diagrama de edad promedio ponderada para dataciones que varían entre 188,4 y 183,4 Ma; e) Diagrama de edad promedio ponderada para para dataciones que varían entre 180,7 y 165,4 Ma.











Figura 24. Cálculo de la edad de las muestras GR-6765

a) Microfotografía de riolita; b) Imágenes de CL y edades U-Pb en circones; c) Diagrama de concordia Tera-wasserburg; d) Diagrama de densidad de probabilidad; d) Diagrama de edad promedio ponderada para dataciones que varían entre 184,6 y 176,4 Ma; y f) Diagrama de edad promedio ponderada para para dataciones que varían entre 184,6 y 176,4 Ma; y f) Diagrama de edad promedio ponderada para para dataciones que varían entre 184,6 y 176,4 Ma; y f) Diagrama de edad promedio ponderada para para dataciones que varían entre 184,6 y 176,4 Ma; y f) Diagrama de edad promedio ponderada para para dataciones que varían entre 174,4 y 159,1 Ma.

145

## 5. Correlaciones

Las unidades plutónicas jurásicas de la SNSM se correlacionan geocronológica e isotópicamente con las similares de la alta Guajira, el flanco oriental de la serranía de San Lucas, el Valle Superior del Magdalena y el flanco SE de la cordillera Central. Además, se considera que los plutones de estos bloques tuvieron un origen común, relacionado al mismo arco, y fueron dispersados a lo largo de la paleomargen de Suramérica después de su cristalización.

Tschanz *et al.* (1969a) consideran que los batolitos de Pueblo Bello y Patillal tienen la misma litología y hacen parte de un mismo magmatismo, estando separados por el Batolito de Atánquez. Las edades obtenidas y la química de la roca total sugieren que son cuerpos generados en el mismo arco, con edades comparables de cristalización.

Las correlaciones que se hacen del Batolito de Pueblo Bello corresponden a los plutones que fueron generados en el mismo arco y posteriormente dispersados a lo largo del paleomargen suramericano. Los pulsos magmáticos que generan los diferentes plutones de este arco pueden cambiar de un plutón a otro, según su localización espacial dentro de un periodo de tiempo comprendido entre 195 y 164 Ma.

El Batolito de Pueblo Bello se correlaciona en la alta Guajira con la Granodiorita de Ipapure (Radelli, 1960; Rodríguez y Londoño, 2002; Ingeominas-UNAL, 2009); en la SNSM con los batolitos de Patillal, Atánquez, Aracataca, Bolívar y Central, la Cuarzomonzonita de Palomino y el Plutón de Nueva Lucha (Tschanz et al., 1969a, 1969b; Colmenares et al., 2007). En el flanco oriental de la serranía de San Lucas se correlaciona con las rocas plutónicas de los batolitos de Norosí y Guamocó (Bogotá y Aluja, 1981; Leal Mejía, 2011; González et al., 2015). En el Valle Superior del Magdalena se correlaciona con el Monzogranito de Algeciras (Ferreira et al., 2001; Rodríguez et al., 2022c), la Cuarzolatita de Teruel (Arango et al., 2022c), el Granito de Garzón (Velandia et al., 2001; Rodríguez et al., 2022d), el Monzogranito de Altamira (Arango et al., 2022d), la Cuarzomonzonita de Sombrerillo (Rodríguez et al., 2015a) y el Monzogranito de Mocoa (Arango *et al.*, 2022e).

Teniendo en cuenta la posición dentro del arco y la edad, el Batolito de Atanquéz también se correlaciona con el del Valle Superior del Magdalena con algunos pulsos de cristalización de las cuarzomonzonitas de Anchique (Cossio *et al.*, 1994; Arango *et al.*, 2022a), San Cayetano (Carvajal *et al.*, 1983; Bermúdez *et al.*, 2022), Los Naranjos (Rodríguez y Fuquen, 1989; Velandia *et al.*, 2001; Rodríguez *et al.*, 2022a), las cuarzomonzodioritas del Páez (Zapata *et al.*, 2022) y El Astillero (Velandia *et al.*, 2001; Rodríguez *et al.*, 2022b) y la Monzonita de Las Minas (Velandia *et al.*, 2001; Arango *et al.*, 2022b).

# 6. Localidad tipo

La exposición de más fácil acceso, como localidad tipo del Batolito de Pueblo Bello, se encuentra en el carreteable que conduce de Pueblo Bello a Nabusímake, donde se presentan afloramientos altamente meteorizados. Una sección alterna es a lo largo del río San Sebastián.

#### 7. Génesis

El Batolito de Pueblo Bello corresponde a un granito de la serie calco-alcalina, que varía de metaluminoso a peraluminoso. La mineralogía es característica de granitoides tipo I, lo que sugiere un origen que involucra una placa inferior básica de la subcorteza con diferentes grados de fusión y contaminación cortical, con presencia de cuarzo, feldespato potásico rosado, plagioclasa, biotita parda, escasa hornblenda y presencia de magnetita, común en plutones altamente diferenciados de acuerdo a Chappell y White (2001). Además, presenta gabarros de rocas ígneas intermedias y subvolcánicas.

Las muestras de este cuerpo intrusivo presentan enriquecimientos de LILE respecto a REE, y patrones de elementos trazas con anomalías de Nb-Ti características de granitos originados en una zona de subducción de margen continental.

Los patrones de elementos de las tierras raras (REE), normalizados a condrito según los valores de Nakamura (1974), muestran para rocas granitoides del Batolito de Pueblo Bello al menos dos patrones diferentes, los cuales podrían sugerir diferentes eventos o pulsos magmáticos a nivel del mismo plutón, en concordancia con las edades de cristalización de las rocas, que sugieren que este batolito está conformado por varios pulsos magmáticos que se cristalizaron en diferentes momentos, formado en un ambiente de arco que generó cuerpos plutónicos entre 195 y 164 Ma.

Quandt *et al.* (2018) sugieren contribución de manto litosférico y asimilación de la corteza en los magmas de arco en la SNSM. Rodríguez *et al.* (2019) consideran que el magmatismo triásico-jurásico de Colombia está relacionado con tres arcos diferentes, siendo el más extenso el que aparece en el Valle Superior del Magdalena, la serranía de San Lucas y la SNSM, emplazados en un basamento neo-proterozoico del Terreno Chibcha y dispersado posterior a la cristalización a lo largo de la paleomargen suramericana.

Tschanz *et al.* (1969a) consideraron que los plutones jurásicos que conforman los cinturones jurásicos (Central y Suroriental) corresponden a magmas generados a diferente profundidad de manera simultánea a lo largo del plano de Benioff; además, consideran que la serie de plutones calcoalcalinos de color gris cristalizaron a mayor profundidad que la serie de plutones rosados del Cinturón Suroriental. Quandt (2013) describe para los plutones del Cinturón Central presiones de cristalización entre 5,3-5,9 kbar, y para los plutones del Cinturón Suroriental entre 1,2-1,7 kbar.

Las edades de cristalización del Cinturón Central de plutones de la SNSM varían entre 188 y 172 Ma (n=13), con picos máximos a 186 y 176 Ma. En el Cinturón Suroriental de la SNSM, del cual hace parte el Batolito de Pueblo Bello, las edades varían entre 192 y 164 Ma (n=36), con picos máximos a 189, 179, 172 y 170 Ma (figura 25). Las edades de cristalización de ambos cinturones sugieren que el plutonismo migró ligeramente de oeste a este, de acuerdo con los cambios composicionales de los plutones, y que estos fueron formados por varios pulsos magmáticos.

## 8. Recursos minerales

El Batolito de Pueblo Bello, por su coloración rosada moteada de blanco y negro, podría ser utilizado como roca ornamental. Este plutón en algunos sectores se presenta moderadamente fracturado y la roca inalterada.

El Batolito de Pueblo Bello corresponde a un plutón formado en un arco de margen continental con una duración ~ 30 Ma, que no exhibe características petrográficas y geoquímicas indicativas de una alteración hidrotermal en los sitios visitados ni en las muestras analizadas. Con el fin de evaluar el potencial mineral de la unidad, se interpretaron datos de los resultados de química de roca total a partir de diez muestras analizadas, utilizando diagramas que son conocidos como indicadores de fertilidad para depósitos de Cu y depósitos de Sn. En el diagrama de V/Sc versus SiO<sub>2</sub> (Loucks, 2014; figura 26a), se eliminaron las muestras con valores de Eu/Eu\* < 1,3 y se obtuvo que el Batolito de Pueblo Bello es fértil para depósitos de Cu, teniendo en cuenta las muestras con anomalías Eu/Eu\* < 1, patrones REE con pendiente negativa, baja relación La/ Yb entre 10 y 14 y valores de V/Sc > 10. En el diagrama de Rb versus Ba (figura 26b), adaptado por El-Sheshtawi et al. (1999) del diagrama original de Mason (1966), se aprecia que las muestras caen en el campo de los granitos estériles para Sn.

#### 9. Conclusiones

El Batolito de Pueblo Bello está compuesto principalmente por monzogranitos y sienogranitos, y subordinadas pueden aparecer localmente cuarzomonzonitas, granodioritas y granitos de feldespato alcalino con textura general holocristalina hipidiomórfica a alotriomórfica granular; presenta gabarros de andesitas y microdioritas, y está atravesado por diques de andesitas, riolitas, granitos aplíticos e intrusiones de stocks subvolcánicos de riolitas porfídicas.



Figura 25. Histogramas de densidad de probabilidad de las edades de cristalización U-Pb de los plutones jurásicos de la SNSM



Figura 26. Diagramas de fertilidad en composición de roca total para el Batolito de Pueblo Bello a) Diagrama de V/Sc versus SiO2 (Lockus, 2014); b) Diagrama de variación de Rb versus Ba (Mason, 1966 adaptado por El-Sheshtawi *et al.*, 1999).

Los monzogranitos, sienogranitos, cuarzomonzonitas, granodioritas y granitos de feldespato alcalino están constituidos por cuarzo, plagioclasas, feldespato potásico, biotita y escasa hornblenda, y como minerales accesorios se presentan: minerales opacos, circón, apatito, titanita y en algunas rocas allanita.

Las rocas del Batolito de Pueblo Bello se clasifican químicamente como granitos tipo I, conformados por granitos, granodioritas y cuarzomonzonitas de la serie subalcalina y calcoalcalina altas en K; son metaluminosas y algunas alcanzan el campo peraluminoso, pues están formadas en un ambiente de arco de margen continental.

El Batolito de Pueblo Bello tiene anomalía negativa de Nb y empobrecimiento progresivo hacia los elementos pesados con anomalía positiva de Pb. Los diques muestran dos patrones diferentes en el diagrama de REE, normalizados al condrito de Nakamura (1974), con un comportamiento general comparable a rocas generadas en ambientes de subducción por encima de la placa subducida (arco).

Las edades de cristalización U-Pb, en rocas del cuerpo principal, varían en un intervalo amplio de tiempo entre 191 y 169 Ma, sugiriendo que es un plutón compuesto formado por cuatro pulsos magmáticos alrededor de 188, 181, 176 y 170 Ma. Los diques de andesita y granito reportan edades entre 168 y 175 Ma.

El Batolito de Pueblo Bello se correlaciona en la alta Guajira con la Granodiorita de Ipapure; en la SNSM con los batolitos de Pueblo Bello, Atánquez, Aracataca, Bolívar y Central, la Cuarzomonzonita de Palomino y el Plutón de Nueva Lucha; en el flanco oriental de la serranía de San Lucas se correlaciona con las rocas plutónicas de los batolitos de Norosí y Guamocó; en el Valle Superior del Magdalena se correlaciona con el Monzogranito de Algeciras, la Cuarzolatita de Teruel, el Granito de Garzón, el Monzogranito de Altamira, la Cuarzomonzonita de Sombrerillo, el Monzogranito de Mocoa, las cuarzomonzonitas de Anchique, San Cayetano y Los Naranjos, las cuarzomonzodioritas del Páez y El Astillero, y la Monzonita de Las Minas.

# Referencias

- Arango, M. I., Rodríguez, G., Bermúdez, J. G. y Zapata, G. (2022a). Cuarzomonzonita de Anchique. En Catálogos de las unidades litoestratigráficas de Colombia: Valle Superior del Magdalena. Vol. 2. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585313194.7
- Arango, M. I., Rodríguez, G., Bermúdez, J. G. y Zapata, G. (2022b). Monzodiorita de Las Minas. En Catálogos de las unidades litoestratigráficas de Colombia: Valle Superior del Magdalena. Vol. 2. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585313194.4
- Arango, M. I., Rodríguez, G., Zapata, G. y Bermúdez, J. G. (2022c). Cuarzolatita de Teruel. En Catálogos de las unidades litoestratigráficas de Colombia: Valle Superior del Magdalena. Vol. 2. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585313194.9
- Arango, M. I., Rodríguez, G., Zapata, G. y Bermúdez, J. G. (2022d).MonzogranitodeAltamira.En*Catálogosdelas*

*unidades litoestratigráficas de Colombia: Valle Superior del Magdalena.* Vol. 2. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585313194.12

- Arango, M. I., Rodríguez, G., Zapata, G. y Bermúdez, J. G. (2022e). Monzogranito de Mocoa. En Catálogos de las unidades litoestratigráficas de Colombia: Valle Superior del Magdalena. Vol. 2. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585313194.1
- Baier, J., Audetat, A. y Keppler, H. (2007). The Origin of de Negative Niobium Tantalum Anomaly in Subduction Zone Magmas. *Earth and Planetary Science Letters*, 267(1-2), 290-300. https://doi.org/10.1016/j. epsl.2007.11.032
- Bermúdez, J. G., Arango, M. I., Rodríguez, G. y Zapata, G. (2022). Cuarzomonzonita de San Cayetano. En *Catálogos de las unidades litoestratigráficas de Colombia: Valle Superior del Magdalena*. Vol. 2. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585313194.8
- Bogotá, J. y Aluja, J. (1981). Geología de la serranía de San Lucas. *Geología Norandina*, 4, 49-55.
- Briqueu, L., Boagault, H. yJoron J. I. (1984). Quantification of Nb, Ta, Ti and V anomalies in magmas associated with subduction zones: petrogenetic implications. *Earth and Planetary Science Letters*, 68(2), 297-308. https://doi.org/10.1016/0012-821X(84)90161-4
- Bustamante, C., Cardona, A., Saldarriaga, M., García-Casco, A., Valencia, V. y Weber, M. (2009). Metamorfismo de los esquistos verdes y anfibolitas pertenecientes a los Esquistos de Santa Marta (Colombia): ¿Registro de la colisión entre el arco del Caribe y la margen suramericana? *Boletín de Ciencias de la Tierra, 25*, 7-26.
- Cardona, A., Valencia, V., Garzón, A., Montes, C., Ojeda, G., Ruiz, J. y Weber, M. (2010a). Permian to Triassic I to S-type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: tectonic setting and implications within Pangea paleogeography. *Journal of South American Earth Sciences*, 29(4), 772-783. https://doi. org/10.1016/j.jsames.2009.12.005
- Cardona, A., Valencia, V., Bustamante, C., García-Casco, A., Ojeda, G., Ruiz, J. y Weber, M. (2010b). Tectonomagmatic setting and provenance of the Santa Marta Schists, northern Colombia: Insights on the growth and approach of Cretaceous Caribbean oceanic terranes to the South American continent. *Jour*-

*nal of South American Earth Sciences*, 29(4), 784-804. https://doi.org/10.1016/j.jsames.2009.08.012

- Carvajal, C., Fúquen, J. A., Gómez, L. A. y Núñez, A. (1983). Cartografía geológica y prospección geoquímica regional plancha 282-Chaparral [Memoria]. Ingeominas.
- Cediel, F., Shaw, R.P. y Cáceres, C. (2003). Tectonic assembly of the Northern Andean Block. En C. Bartolini, R. T. Buffler y J. Blickwede (eds.), *The circum-Gulf* of Mexico and the Caribbean - hydrocarbon habitats, basin formation, and plate tectonics. AAPG Memoir. American Association of Petroleum Geologists.
- Chappell, B. W. y White, A. J. R. (1974). Two contrasting granite types. *Pacific Geology*, 8(2), 173-174.
- Chappell, B. W. y White, A. J. R. (2001). Two contrasting granite types: 25 years later. *Australian Journal* of Earth Sciences, 48(4), 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
- Colmenares, F., Mesa, A., Roncancio, J., Arciniegas, E., Pedraza, P., Cardona, A., Romero, A., Silva, C., Alvarado, S., Romero, O. y Vargas, A. (2007). Geología de las planchas 11, 12, 13, 14, 18, 19, 20, 21, 25, 26, 27, 33, 34 y 40 Proyecto "Evolución Geohistórica de la Sierra Nevada de Santa Marta. Ingeominas - Invemar -Ecopetrol - ICP - Geosearch, Ltda. Internal report No. PS 025-06). Ingeominas.
- Condie, K. y Kröner, A. (2013). The building blocks of continental crust: Evidence for a major change in the tectonic setting of continental growth at the end of the Archean. *Gondwana Research*, 23(2), 394-402. https://doi.org/10.1016/j.gr.2011.09.011
- Cordani, U. G., Cardona, A., Jiménez, D. M., Liu, D. y Nutman, A. P. (2005). Geochronology of Proterozoic basement inliers in the Colombian Andes: Tectonic history of remnants of a fragmented Grenville belt. Special Publications Vol. 246. Geological Society of London. https://doi.org/10.1144/GSL.SP.2005.246.01.13
- Cossio, U., Rodríguez, G. y Rodríguez, M. (1994). Mapa geológico de la plancha 283-Purificación, departamento Tolima. Escala 1:100.000. Con memoria explicativa. Ingeominas.
- EL-Sheshtawi, Y. A., Youssef, F., Ammar, F. A., Hassaan, M. M. y Sakr, S.M. (1999). Petrography and geochemistry of some granites and their metavolcanic country rocks in the Central Eastern Desert, Egypt. 1 st Seminar of nuclear raw material and their technology, Cairo.

- Ferreira, P., Núñez, A. y Rodríguez, M. (2001). *Memoria explicativa levantamiento geológico de la Plancha 323 Neiva*. Ingeominas.
- Gansser, A. (1955). Ein Beitrag zur Geologie and Petrographie der Sierra Nervada de Santa Marta (Kolumbien, Sudamerika). *Schweizer Mineralogische und petrographische Mitteilungen*, 35(2), 209-279.
- González, H., Maya, M., Camacho, J., Cardona, O. D. y Vélez, W. (2015). Elaboración de la cartografía geológica de un conjunto de planchas a escala 1:100.000 ubicadas en cuatro bloques del territorio nacional, identificados por el Servicio Geológico Colombiano. Plancha 74-Guaranda. Servicio Geológico Colombiano.
- Ibáñez Mejía, M., Ruiz, J., Valencia, V. A., Cardona, A., Gehrels, G. E. y Mora, A. R. (2011). The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: New U–Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America. *Precambrian Research*, 191(1-2), 58-77. https://doi.org/10.1016/j.precamres.2011.09.005
- Ingeominas y Universidad Nacional de Colombia. (2009). Proyecto de Investigación: Cartografía e historia geológica de la Alta Guajira, Implicaciones en la búsqueda de recursos minerales. Memoria de las planchas 2, 3, 5 y 6 (Con parte de las Planchas 4, 10 y 10bis). Acuerdo Específico 030/2006.
- Irvine, T. N. y Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. *Canadian Journal of Earth Sciences*, 8(5), 523-548. https://doi.org/10.1139/e71-055
- Kellogg, J. N., Vega, V., Stallings, T. C. y Aiken, C. L. (1995). Tectonic development of Panama, Costa Rica, and the Colombian Andes: constraints from global positioning system geodetic studies and gravity. En *Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America*. Geological Society of America. https://doi.org/10.1130/SPE295
- Kroonenberg, S. B. (1982). A Grenvillian granulite belt in the Colombian Andes and its relation to the Guiana Shield. *Geologie en Mijnbouw*, 61(4), 325-333.
- Leal Mejía, H. (2011). *Phanerozoic gold metallogeny in the Colombian Andes: A tectono- magmatic approach* (Tesis de posdoctorado). Universitat de Barcelona, España.
- Loucks, R. R. (2014). Distinctive composition of copper-ore-forming arc magmas. *Australian Journal of Earth Sciences*, 61, 5-16. https://doi.org/10.1080/08 120099.2013.865676

Mason, B. (1966). *Principles of Geochemistry*. John Wileys Sons.

- Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. *Earth- Science Reviews*, 37(3-4), 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
- Montes, C., Guzman, G., Bayona, G., Cardona, A., Valencia, V. y Jaramillo, C. (2010). Clockwise rotation of the Santa Marta massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Ranchería basins. *Journal of South American Earth Sciences*, 29(4), 832-848. https://doi.org/10.1016/j.jsames.2009.07.010
- Mora, J. A., Ibánez Mejia, M., Oncken, O., de Freitas, M., Vélez, V., Mesa, A. y Serna, L. (2017). Structure and age of the Lower Magdalena Valley basin basement, northern Colombia: New reflection-seismic and U-Pb-Hf insights into the termination of the central andes against the Caribbean basin. *Journal of South American Earth Sciences*, 74, 1-26. https://doi.org/10.1016/j.jsames.2017.01.001
- Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. *Geochimica et Cosmochimica Acta*, 38(5), 757-775. https://doi.org/10.1016/0016-7037(74)90149-5
- Ordóñez Carmona, O., Pimentel, M. M. y De Moraes, R. (2002). Granulitas de Los Mangos: un fragmento grenviliano en la parte SE de la Sierra Nevada de Santa Marta. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 26(99), 169-179.
- Ordóñez Carmona, O., Álvarez, J. J. R. y Pimentel, M. M. (2006). Geochronological and isotopical review of pre-Devonian crustal basement of the Colombian Andes. *Journal of South American Earth Sciences*, 21(4), 372-382. https://doi.org/10.1016/j. jsames.2006.07.005
- Pearce, J. A., Harris, N. W. y Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. *Journal of Petrology*, 25(4), 956-983. https://doi.org/10.1093/petrology/25.4.956
- Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. *Lithos*, 100(1-4), 14-48. https://doi.org/10.1016/j. lithos.2007.06.016

- Peccerillo, A. y Taylor, T.S. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey. *Contributions to Mineralogy and Petrology*, 58, 63-81. https://doi.org/10.1007/BF00384745
- Piraquive, A. (2017). Marco estructural, deformaciones y exhumación de los Esquistos de Santa Marta: la acreción e historia de deformación de un terreno caribeño al norte de la Sierra Nevada de Santa Marta (Tesis de doctorado). Universidad Nacional de Colombia.
- Quandt, D. (2013). *The magmatic evolution of the Sierra Nevada de Santa Marta during the Jurassic* (Tesis de maestría). University of Potsdam.
- Quandt D., Trumbull R., Altenberger W., Cardona A., Romer R., Bayona G., Ducea M., Valencia V., Vásquez M., Cortes, E. y Guzman G. (2018). The geochemistry and geochronology of Early Jurassic igneous rocks from the Sierra Nevada de Santa Marta, NW Colombia, and tectono-magmatic implications. *Journal of South American Earth Sciences*, 86, 216-230. https:// doi.org/10.1016/j.jsames.2018.06.019
- Radelli, L. (1960). El basamento cristalino de la península de La Guajira. *Boletín Geológico*, 8(1-3), 5-23. https://doi. org/10.32685/0120-1425/bolgeol8.1-3.1960.346
- Radelli, L. (1962). Introducción al estudio de la geología y de la petrografía del macizo de Santa Marta, Magdalena-Colombia. *Geología Colombiana*, (2), 41-115.
- Ramos, V. A. (2010). El continente de Gondwana a través del tiempo: Una introducción a la Geología Histórica por Juan L. Benedetto. *Ameghiniana*, 47(2).
- Rodríguez, G. y Fuquen, J. A. (1989). *Geología y prospección geoquímica de la Plancha 302-Aipe (Huila)*. Ingeominas.
- Rodríguez, G. y Londoño, A. C. (2002). *Memoria explicativa del Mapa Geológico del Departamento de la Guajira. Geología, Recursos Minerales y Amenazas Potenciales.* Ingeominas.
- Rodríguez, G., Arango, M. I., Zapata, G. y Bermúdez, J. G. (2015a). Caracterización magmática del Jurásico del Valle Superior del Magdalena y cuenca Putumayo. Servicio Geológico Colombiano.
- Rodríguez, G., Arango, M. I., Bermúdez, J. G. y Zapata, G. (2022a). Cuarzomonzonita de Los Naranjos. En *Catálogos de las unidades litoestratigráficas de Colombia: Valle Superior del Magdalena*. Vol. 2. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585313194.6

- Rodríguez, G., Arango, M. I., Zapata, G. y Bermúdez, J. G. (2022b). Cuarzomonzodiorita del Astillero. En Catálogos de las unidades litoestratigráficas de Colombia: Valle Superior del Magdalena. Vol. 2. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585313194.5
- Rodríguez, G., Zapata, G., Arango, M. I. y Bermúdez, J. G. (2022c). Monzogranitode Algeciras. En Catálogos delas unidades litoestratigráficas de Colombia: Valle Superior del Magdalena. Vol. 2. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585313194.10
- Rodríguez, G., Arango, M. I., Zapata, G. y Bermúdez, J. G. (2022d). Granito de Garzón. En Catálogos de las unidades litoestratigráficas de Colombia: Valle Superior del Magdalena. Vol. 2. Servicio Geológico Colombiano https://doi.org/10.32685/9789585313194.11
- Rodríguez G., Correa Martínez A. M., Zapata G., Arango M. I., Obando-Erazo G., Zapata-Villada J. P. y Bermúdez J. G. (2019). Diverse Jurassic magmatic arcs of the Colombian Andes: Constraints from petrography, geochronology and geochemistry. En J. Gómez y A. O. Pinilla-Pachón (eds.), *The geology of Colombia* (vol. 2, pp. 101-132). Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.04
- Rubatto, D. (2002). Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. *Chemical Geology*, 184(1-2), 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2
- Shand, S. J. (1943). Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. John Wiley y Sons.
- Sláma, J., Košler, J., Condon, D., Crowley, J., Gerdes, A., Hanchar, J., Horstwood, M., Morris, G., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. y Whitehouse, M. J. (2008). Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. *Chemical Geology*, 249(1-2), 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005
- Schoene, B., Samperton, K. M., Eddy, M. P., Keller, G., Adatte, T., Adatte, T., Bowring, S. A., Khadri, S. F. R. y Gertsch, B. (2015). U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. *Science*, 347(6218), 182-184. https://doi. org/10.1126/science.aaa0118
- Stacey, J. S. y Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage mo-

del.*Earth and Planetary Science Letters*, 26(2),207-221. https://doi.org/10.1016/0012-821X(75)90088-6

- Streckeisen, A. (1974). Classification and nomenclature of plutonic rocks recommendations of the IUGS subcommission on the systematics of Igneous Rocks. *Geologishe Rundschau*, 63(2), 773-786. https:// doi.org/10.1007/BF01820841
- Streckeisen, A. (1978). IUGS Subcommission on the Systematics of Igneous Rocks: Classification and no-menclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks; recommendation and suggestions. *Neues Jahrbuch für Mineralogie*, 134, 1-14.
- Sun, S. S. y McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Special Publications vol. 42. Geological Society of London. https:// doi.org/10.1144/GSL.SP.1989.042.01.19
- Taboada, A., Rivera, L. A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J y Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation Colombia. *Tectonics*, 19(5), 787-813. https://doi.org/10.1029/2000TC900004
- Tschanz, C. M., Jimeno, A., Cruz, J. (1969a). *Geology of the Sierra Nevada de Santa Marta Colombia* [Preliminary Report]. Ministerio de Minas y Energía, Instituto Nacional de Investigaciones Geológicas y Mineras y U.S. Geological Survey.
- Tschanz, C. M., Jimeno, A. y Cruz, J. (1969b). *Mapa geológico de reconocimiento de la Sierra Nevada de Santa Marta*. Ingeominas y U.S. Geological Survey.
- Tschanz, C., Marvin, R., Cruz, J., Mehnert, H. y Cebula, E. (1974). Geologic Evolution of the Sie-

rra Nevada de Santa Marta Northeastern Colombia. *GSA Bulletin*, 85(2), 273-284. https://doi. org/10.1130/0016-7606(1974)85<273:GEOTS-N>2.0.CO;2

- Velandia, F., Núñez, A. y Marquínez, G. (2001). Mapa geológico departamento del Huila. Escala 1:300 000 [Memoria explicativa]. Ingeominas.
- Villagómez. D. (2010). Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: the tectonic evolution of NW South America (Tesis de doctorado). Université de Genève.
- Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C. y Spiegel, W. (1995). Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. *Geostandards Newsletter*, 19(1), 1-23. https://doi. org/10.1111/j.1751-908X.1995.tb00147.x
- Whitney, D. y Evans, B. (2010). Abbreviations for names of rock-forming minerals. *American Mineralogist*, 95(1), 185-187. https://doi.org/10.2138/ am.2010.3371
- Zapata, G., Rodríguez, G., Arango, M. I. y Bermúdez, J. G. (2022). Cuarzomonzodiorita de Páez. En *Catálogos de las unidades litoestratigráficas de Colombia: Valle Superior del Magdalena*. Vol.
  2. Servicio Geológico Colombiano. https://doi. org/10.32685/9789585313194.3
- Zuluaga, C. y Stowell, H. (2012). Late Cretaceous–Paleocene metamorphic evolution of the Sierra Nevada de Santa Marta: Implications for Caribbean geodynamic evolution. *Journal of South American Earth Sciences*, 34, 1-9. https://doi.org/10.1016/j. jsames.2011.10.001

# Anexos

Anexo1. Edades U-Pb Batolito de Pueblo Bello por muestras

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/206Pb | ±2s    | 207Pb/235U | ±2s    | 206Pb/238U | ±2s     | Correlación<br>errores | 206Pb/238U<br>Edad (Ma) | ±2s  | 207Pb/235U<br>Edad (Ma) | ±2s   | 207Pb/206Pb<br>Edad (Ma) | ±2s |
|--------------|---------|-------------|------|-------------|--------|------------|--------|------------|---------|------------------------|-------------------------|------|-------------------------|-------|--------------------------|-----|
| GR_6796_01   | 52,3    | 45,2        | 1,2  | 0,0738      | 0,0082 | 0,313      | 0,036  | 0,0305     | 0,0011  | 0,1                    | 188,0                   | 8,8  | 273,0                   | 27,0  | 930                      | 210 |
| GR_6796_02   | 41,2    | 26,3        | 1,6  | 0,0496      | 0,0018 | 0,1894     | 0,0079 | 0,02747    | 0,00061 | 0,5                    | 174,7                   | 6,9  | 177,4                   | 6,3   | 173                      | 79  |
| GR_6796_03   | 142,5   | 148         | 1,0  | 0,0546      | 0,0017 | 0,2299     | 0,0086 | 0,03085    | 0,00073 | 0,7                    | 194,8                   | 7,5  | 210,0                   | 7,1   | 385                      | 68  |
| GR_6796_04   | 92,7    | 91,8        | 1,0  | 0,0529      | 0,0023 | 0,2017     | 0,0071 | 0,0281     | 0,00063 | 0,7                    | 177,9                   | 6,9  | 186,4                   | 6,0   | 307                      | 95  |
| GR_6796_05   | 112     | 61,9        | 1,8  | 0,0655      | 0,008  | 0,292      | 0,041  | 0,03213    | 0,00073 | 0,9                    | 200,0                   | 7,7  | 257,0                   | 30,0  | 680                      | 220 |
| GR_6796_06   | 34,5    | 19,6        | 1,8  | 0,0522      | 0,0035 | 0,207      | 0,013  | 0,02929    | 0,00082 | 0,7                    | 185,6                   | 7,6  | 190,0                   | 11,0  | 280                      | 140 |
| GR_6796_07   | 33,2    | 23,3        | 1,4  | 0,0623      | 0,0053 | 0,259      | 0,021  | 0,03002    | 0,00075 | 0,2                    | 187,7                   | 7,5  | 233,0                   | 17,0  | 630                      | 180 |
| GR_6796_08   | 66,4    | 37          | 1,8  | 0,0654      | 0,0055 | 0,267      | 0,025  | 0,02945    | 0,0007  | 0,7                    | 183,5                   | 6,9  | 239,0                   | 19,0  | 720                      | 160 |
| GR_6796_09   | 36,2    | 16,9        | 2,1  | 0,0487      | 0,0031 | 0,2        | 0,012  | 0,02959    | 0,00079 | 0,5                    | 188,2                   | 7,6  | 185,0                   | 10,0  | 130                      | 130 |
| GR_6796_10   | 105,7   | 86,2        | 1,2  | 0,0578      | 0,0026 | 0,2388     | 0,0095 | 0,02975    | 0,00043 | 0,5                    | 187,1                   | 6,3  | 217,2                   | 7,7   | 502                      | 95  |
| GR_6796_11   | 100     | 86          | 1,2  | 0,049       | 0,0016 | 0,199      | 0,0079 | 0,0297     | 0,0011  | 0,6                    | 188,9                   | 8,8  | 184,2                   | 6,7   | 144                      | 69  |
| GR_6796_12   | 165,1   | 97,8        | 1,7  | 0,051       | 0,0013 | 0,1998     | 0,0054 | 0,02827    | 0,00073 | 0,6                    | 179,4                   | 6,9  | 184,9                   | 4,5   | 234                      | 56  |
| GR_6796_13   | 195     | 155         | 1,3  | 0,0547      | 0,0016 | 0,2257     | 0,0078 | 0,02954    | 0,00066 | 0,7                    | 186,5                   | 6,9  | 206,5                   | 6,4   | 391                      | 66  |
| GR_6796_14   | 63      | 29,1        | 2,2  | 0,0513      | 0,0024 | 0,229      | 0,01   | 0,03229    | 0,00086 | 0,5                    | 204,6                   | 7,5  | 208,8                   | 8,4   | 243                      | 99  |
| GR_6796_15   | 43,9    | 24,1        | 1,8  | 0,0528      | 0,0026 | 0,2155     | 0,0096 | 0,02929    | 0,00065 | 0,2                    | 185,4                   | 6,9  | 198,0                   | 8,1   | 310                      | 110 |
| GR_6796_16   | 49,1    | 34,6        | 1,4  | 0,0524      | 0,004  | 0,215      | 0,012  | 0,0306     | 0,0011  | 0,6                    | 193,7                   | 8,8  | 197,2                   | 9,9   | 220                      | 110 |
| GR_6796_17   | 152     | 114         | 1,3  | 0,0537      | 0,0035 | 0,228      | 0,014  | 0,03078    | 0,00085 | 0,0                    | 194,5                   | 7,6  | 209,0                   | 11,0  | 320                      | 120 |
| GR_6796_18   | 142     | 181         | 0,8  | 0,093       | 0,015  | 0,42       | 0,051  | 0,03366    | 0,00087 | 0,1                    | 202,2                   | 9,2  | 360,0                   | 37,0  | 1310                     | 260 |
| GR_6796_19   | 62,1    | 41,8        | 1,5  | 0,0537      | 0,0037 | 0,226      | 0,015  | 0,0306     | 0,0011  | 0,5                    | 193,4                   | 8,8  | 206,0                   | 13,0  | 330                      | 140 |
| GR_6796_20   | 74,6    | 45,7        | 1,6  | 0,051       | 0,0025 | 0,21       | 0,011  | 0,02969    | 0,00064 | 0,5                    | 188,3                   | 6,9  | 193,6                   | 9,3   | 230                      | 110 |
| GR_6796_21   | 49,4    | 53,7        | 0,9  | 0,304       | 0,043  | 1,99       | 0,39   | 0,0455     | 0,0037  | 1,0                    | 197,7                   | 22,1 | 1070,0                  | 150,0 | 3320                     | 270 |
| GR_6796_22   | 44,9    | 28,5        | 1,6  | 0,0747      | 0,0043 | 0,305      | 0,016  | 0,03008    | 0,00072 | 0,5                    | 185,2                   | 7,4  | 270,0                   | 12,0  | 1100                     | 120 |
| GR_6796_23   | 225     | 187         | 1,2  | 0,0545      | 0,0016 | 0,234      | 0,0071 | 0,03123    | 0,00072 | 0,6                    | 197,2                   | 6,9  | 213,4                   | 5,8   | 396                      | 68  |
| GR_6796_24   | 118,3   | 118         | 1,0  | 0,0489      | 0,002  | 0,1955     | 0,0087 | 0,0292     | 0,00051 | 0,5                    | 185,7                   | 6,3  | 181,1                   | 7,4   | 145                      | 88  |
| GR_6796_25   | 142,5   | 133         | 1,1  | 0,0482      | 0,0014 | 0,199      | 0,0057 | 0,02991    | 0,00091 | 0,5                    | 190,4                   | 8,2  | 184,2                   | 4,8   | 114                      | 63  |
| GR_6796_26   | 167,2   | 125         | 1,3  | 0,0525      | 0,0029 | 0,21       | 0,014  | 0,0294     | 0,00098 | 0,7                    | 186,2                   | 8,2  | 193,0                   | 11,0  | 280                      | 120 |
| GR_6796_27   | 161     | 189         | 0,9  | 0,0488      | 0,0022 | 0,1947     | 0,0076 | 0,02884    | 0,00095 | 0,3                    | 183,5                   | 7,6  | 180,5                   | 6,4   | 138                      | 95  |
| GR_6796_28   | 374     | 806         | 0,5  | 0,0552      | 0,0024 | 0,2376     | 0,0086 | 0,03099    | 0,00054 | 0,1                    | 195,5                   | 6,9  | 216,3                   | 7,1   | 424                      | 99  |
| GR_6796_29   | 529     | 674         | 0,8  | 0,0553      | 0,0019 | 0,2292     | 0,0095 | 0,03052    | 0,00068 | 0,6                    | 192,5                   | 6,9  | 209,3                   | 7,8   | 414                      | 74  |
| GR_6796_30   | 395     | 646         | 0,6  | 0,0641      | 0,0027 | 0,25       | 0,011  | 0,0283     | 0,00055 | 0,5                    | 176,7                   | 6,2  | 226,4                   | 8,5   | 748                      | 83  |
| GR_6796_31   | 175,6   | 208         | 0,8  | 0,0516      | 0,0025 | 0,204      | 0,011  | 0,02902    | 0,00084 | 0,3                    | 184,0                   | 7,6  | 188,4                   | 9,7   | 250                      | 110 |
| GR_6796_32   | 428     | 620         | 0,7  | 0,0577      | 0,0047 | 0,248      | 0,018  | 0,03123    | 0,00067 | 0,1                    | 196,4                   | 7,6  | 229,0                   | 16,0  | 470                      | 150 |
| GR_6796_33   | 120,4   | 86,4        | 1,4  | 0,0619      | 0,0053 | 0,247      | 0,024  | 0,0292     | 0,0011  | 0,8                    | 182,8                   | 7,5  | 223,0                   | 19,0  | 610                      | 160 |
| GR_6796_34   | 343     | 270         | 1,3  | 0,0519      | 0,0017 | 0,2168     | 0,0064 | 0,03079    | 0,00088 | 0,5                    | 195,0                   | 8,2  | 199,1                   | 5,3   | 272                      | 72  |
| GR_6796_35   | 171,1   | 104         | 1,6  | 0,094       | 0,011  | 0,394      | 0,053  | 0,03046    | 0,00067 | 0,7                    | 182,9                   | 7,1  | 333,0                   | 37,0  | 1420                     | 230 |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/206Pb | ±2s    | 207Pb/235U | ±2s    | 206Pb/238U | ±2s     | Correlación<br>errores | 206Pb/238U<br>Edad (Ma) | ±2s  | 207Pb/235U<br>Edad (Ma) | ±2s   | 207Pb/206Pb<br>Edad (Ma) | ±2s |
|--------------|---------|-------------|------|-------------|--------|------------|--------|------------|---------|------------------------|-------------------------|------|-------------------------|-------|--------------------------|-----|
| GR_6796_36   | 551     | 458         | 1,2  | 0,0543      | 0,0026 | 0,233      | 0,012  | 0,03098    | 0,00063 | 0,7                    | 195,6                   | 6,9  | 213,0                   | 10,0  | 363                      | 99  |
| GR_6796_37   | 127,7   | 84          | 1,5  | 0,0585      | 0,0029 | 0,237      | 0,014  | 0,02872    | 0,00078 | 0,6                    | 180,5                   | 7,5  | 216,0                   | 11,0  | 530                      | 100 |
| GR_6796_38   | 144,1   | 141         | 1,0  | 0,106       | 0,025  | 0,55       | 0,18   | 0,0333     | 0,0015  | 1,0                    | 196,6                   | 12,4 | 460,0                   | 110,0 | 1750                     | 400 |
| GR_6796_39   | 391     | 330         | 1,2  | 0,0498      | 0,0014 | 0,2074     | 0,0066 | 0,03085    | 0,00075 | 0,6                    | 195,9                   | 6,9  | 191,2                   | 5,6   | 182                      | 63  |
| GR_6796_40   | 165     | 133         | 1,2  | 0,0621      | 0,0038 | 0,247      | 0,016  | 0,02898    | 0,00092 | 0,6                    | 181,3                   | 7,5  | 223,0                   | 13,0  | 640                      | 130 |
| GR_6796_41   | 5,9     | 23,5        | 0,3  | 0,646       | 0,033  | 10,1       | 0,43   | 0,1144     | 0,0052  | 0,3                    | 207,8                   | 31,0 | 2447,0                  | 37,0  | 4626                     | 74  |
| GR_6796_42   | 121     | 39,1        | 3,1  | 0,0671      | 0,005  | 0,303      | 0,028  | 0,0321     | 0,0013  | 0,6                    | 199,4                   | 9,9  | 267,0                   | 22,0  | 790                      | 150 |
| GR_6796_43   | 170,3   | 144         | 1,2  | 0,0534      | 0,0022 | 0,217      | 0,01   | 0,02946    | 0,00094 | 0,6                    | 186,3                   | 7,5  | 198,8                   | 8,5   | 330                      | 89  |
| GR_6796_44   | 144     | 160         | 0,9  | 0,0586      | 0,0042 | 0,233      | 0,016  | 0,02862    | 0,00071 | 0,1                    | 179,9                   | 6,9  | 212,0                   | 13,0  | 510                      | 140 |
| GR_6796_45   | 804     | 1111        | 0,7  | 0,0548      | 0,002  | 0,2243     | 0,0057 | 0,02974    | 0,0004  | 0,0                    | 187,8                   | 6,1  | 205,4                   | 4,7   | 391                      | 78  |
| GR_6796_46   | 500     | 440         | 1,1  | 0,1326      | 0,0034 | 0,644      | 0,025  | 0,0346     | 0,0011  | 0,8                    | 197,0                   | 9,1  | 504,0                   | 16,0  | 2127                     | 46  |
| GR_6796_47   | 153     | 119         | 1,3  | 0,0524      | 0,0025 | 0,2482     | 0,0093 | 0,03432    | 0,00063 | 0,1                    | 217,0                   | 7,5  | 224,9                   | 7,5   | 280                      | 110 |
| GR_6796_48   | 123,8   | 108         | 1,1  | 0,0625      | 0,004  | 0,252      | 0,016  | 0,02916    | 0,00054 | 0,6                    | 182,4                   | 6,3  | 228,0                   | 13,0  | 650                      | 130 |
| GR_6796_49   | 87,8    | 66,2        | 1,3  | 0,0533      | 0,003  | 0,217      | 0,013  | 0,02889    | 0,00077 | 0,4                    | 182,8                   | 6,9  | 199,0                   | 11,0  | 340                      | 130 |
| GR_6796_50   | 131,3   | 93,8        | 1,4  | 0,0921      | 0,0089 | 0,374      | 0,038  | 0,0306     | 0,0012  | 0,9                    | 184,1                   | 8,6  | 320,0                   | 27,0  | 1400                     | 170 |
| GR_6796_51   | 98,2    | 92          | 1,1  | 0,0496      | 0,0028 | 0,195      | 0,01   | 0,02845    | 0,00077 | 0,4                    | 180,9                   | 7,6  | 180,8                   | 8,9   | 170                      | 110 |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/206Pb | ±2s   | 207Pb/235U | ±SS    | 206Pb/238U | ±2s    | Correlación<br>errores | 206Pb/238U Edad<br>(Ma) | ±2s  | 207Pb/235U Edad<br>(Ma) | ±2s  | 207Pb/206Pb Edad<br>(Ma) | ±2s |
|--------------|---------|-------------|------|-------------|-------|------------|--------|------------|--------|------------------------|-------------------------|------|-------------------------|------|--------------------------|-----|
| GR_6761_01   | 92,4    | 95          | 1,0  | 0,0629      | 0,004 | 0,2500     | 0,0200 | 0,0290     | 0,0009 | 0,6                    | 181,4                   | 7,5  | 225,0                   | 16,0 | 690                      | 130 |
| GR_6761_02   | 127,2   | 158,3       | 0,8  | 0,0512      | 0,002 | 0,1993     | 0,0069 | 0,0282     | 0,0004 | 0,6                    | 178,7                   | 5,8  | 184,5                   | 5,8  | 237                      | 80  |
| GR_6761_03   | 220,6   | 216,4       | 1,0  | 0,0509      | 0,001 | 0,1992     | 0,0060 | 0,0283     | 0,0005 | 0,7                    | 179,4                   | 5,9  | 184,3                   | 5,1  | 230                      | 64  |
| GR_6761_04   | 143,8   | 221         | 0,7  | 0,0529      | 0,003 | 0,2160     | 0,0170 | 0,0287     | 0,0004 | 0,7                    | 181,9                   | 6,0  | 198,0                   | 14,0 | 290                      | 130 |
| GR_6761_05   | 97,9    | 140,1       | 0,7  | 0,0506      | 0,002 | 0,2017     | 0,0093 | 0,0287     | 0,0006 | 0,4                    | 182,1                   | 6,9  | 186,4                   | 7,9  | 212                      | 97  |
| GR_6761_06   | 97,5    | 156         | 0,6  | 0,051       | 0,002 | 0,1999     | 0,0095 | 0,0282     | 0,0006 | 0,6                    | 179,0                   | 6,2  | 184,8                   | 8,0  | 229                      | 94  |
| GR_6761_07   | 94,7    | 90,5        | 1,0  | 0,0524      | 0,003 | 0,2060     | 0,0130 | 0,0282     | 0,0005 | 0,6                    | 178,3                   | 6,3  | 190,0                   | 11,0 | 270                      | 130 |
| GR_6761_10   | 43,2    | 40,1        | 1,1  | 0,0516      | 0,005 | 0,2120     | 0,0240 | 0,0284     | 0,0007 | 0,7                    | 180,2                   | 7,0  | 193,0                   | 19,0 | 240                      | 180 |
| GR_6761_11   | 118,9   | 135,4       | 0,9  | 0,0551      | 0,004 | 0,2160     | 0,0150 | 0,0281     | 0,0005 | 0,5                    | 177,7                   | 6,1  | 198,0                   | 12,0 | 390                      | 130 |
| GR_6761_12   | 206     | 252         | 0,8  | 0,0558      | 0,005 | 0,2170     | 0,0160 | 0,0279     | 0,0007 | 0,9                    | 176,2                   | 8,2  | 199,0                   | 12,0 | 400                      | 150 |
| GR_6761_13   | 118     | 105         | 1,1  | 0,0541      | 0,004 | 0,2080     | 0,0180 | 0,0278     | 0,0007 | 0,6                    | 175,6                   | 7,0  | 187,0                   | 11,0 | 330                      | 140 |
| GR_6761_14   | 141     | 71,2        | 2,0  | 0,0498      | 0,002 | 0,1964     | 0,0083 | 0,0283     | 0,0005 | 0,6                    | 179,9                   | 6,3  | 181,9                   | 7,0  | 180                      | 89  |
| GR_6761_15   | 82,1    | 50          | 1,6  | 0,0686      | 0,005 | 0,2830     | 0,0230 | 0,0295     | 0,0007 | 0,8                    | 183,0                   | 6,9  | 252,0                   | 18,0 | 830                      | 160 |
| GR_6761_16   | 67,3    | 49,5        | 1,4  | 0,0545      | 0,004 | 0,2180     | 0,0170 | 0,0284     | 0,0006 | 0,8                    | 179,6                   | 6,3  | 199,0                   | 14,0 | 360                      | 150 |
| GR_6761_17   | 177     | 134         | 1,3  | 0,0573      | 0,003 | 0,2290     | 0,0140 | 0,0286     | 0,0005 | 0,8                    | 180,0                   | 6,0  | 209,0                   | 11,0 | 442                      | 92  |
| GR_6761_18   | 120     | 121,8       | 1,0  | 0,0504      | 0,002 | 0,2039     | 0,0093 | 0,0289     | 0,0007 | 0,6                    | 183,6                   | 6,9  | 189,8                   | 7,4  | 213                      | 78  |
| GR_6761_19   | 97,9    | 68          | 1,4  | 0,0512      | 0,003 | 0,2030     | 0,0110 | 0,0286     | 0,0005 | 0,7                    | 181,2                   | 6,3  | 187,8                   | 9,0  | 230                      | 110 |
| GR_6761_20   | 105,6   | 109,9       | 1,0  | 0,0578      | 0,004 | 0,2230     | 0,0140 | 0,0279     | 0,0006 | 0,4                    | 175,3                   | 6,3  | 204,0                   | 11,0 | 470                      | 150 |
| GR_6761_21   | 68,2    | 22,2        | 3,1  | 0,0727      | 0,001 | 1,6320     | 0,0270 | 0,1612     | 0,0023 | 0,6                    | 961,8                   | 31,1 | 982,0                   | 10,0 | 1004                     | 31  |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/206Pb | ±2s   | 207Pb/235U | ±SS    | 206Pb/238U | ±2s    | Correlación<br>errores | 206Pb/238U Edad<br>(Ma) | ±2s  | 207Pb/235U Edad<br>(Ma) | ±2s  | 207Pb/206Pb Edad<br>(Ma) | ±2s |
|--------------|---------|-------------|------|-------------|-------|------------|--------|------------|--------|------------------------|-------------------------|------|-------------------------|------|--------------------------|-----|
| GR_6761_22   | 260     | 214         | 1,2  | 0,0506      | 0,001 | 0,2260     | 0,0090 | 0,0311     | 0,0006 | 0,4                    | 197,4                   | 6,9  | 206,7                   | 7,5  | 235                      | 58  |
| GR_6761_23   | 113,6   | 165,5       | 0,7  | 0,0493      | 0,002 | 0,1939     | 0,0078 | 0,0284     | 0,0004 | 0,7                    | 180,4                   | 5,8  | 179,8                   | 6,6  | 160                      | 77  |
| GR_6761_24   | 181     | 237         | 0,8  | 0,0543      | 0,002 | 0,2194     | 0,0092 | 0,0290     | 0,0005 | 0,4                    | 183,4                   | 6,3  | 201,2                   | 7,7  | 388                      | 79  |
| GR_6761_25   | 91      | 87          | 1,0  | 0,0509      | 0,002 | 0,2056     | 0,0085 | 0,0295     | 0,0005 | 0,5                    | 187,2                   | 6,3  | 189,7                   | 7,1  | 228                      | 84  |
| GR_6761_26   | 59,7    | 61,9        | 1,0  | 0,0593      | 0,006 | 0,2340     | 0,0270 | 0,0285     | 0,0007 | 0,8                    | 179,0                   | 7,0  | 212,0                   | 22,0 | 550                      | 230 |
| GR_6761_27   | 75,3    | 83,5        | 0,9  | 0,0707      | 0,004 | 0,2820     | 0,0140 | 0,0290     | 0,0006 | 0,7                    | 179,4                   | 6,2  | 252,0                   | 11,0 | 954                      | 88  |
| GR_6761_28   | 61,8    | 56,5        | 1,1  | 0,0648      | 0,005 | 0,2680     | 0,0280 | 0,0291     | 0,0006 | 0,8                    | 181,3                   | 6,3  | 232,0                   | 17,0 | 700                      | 160 |
| GR_6761_29   | 45,5    | 40,5        | 1,1  | 0,087       | 0,014 | 0,3750     | 0,0720 | 0,0307     | 0,0012 | 0,9                    | 186,0                   | 9,1  | 314,0                   | 51,0 | 1270                     | 340 |
| GR_6761_30   | 79,1    | 65,9        | 1,2  | 0,0578      | 0,004 | 0,2290     | 0,0180 | 0,0287     | 0,0006 | 0,8                    | 180,5                   | 6,2  | 208,0                   | 14,0 | 480                      | 130 |
| GR_6761_31   | 282,9   | 246,3       | 1,1  | 0,0527      | 0,001 | 0,2027     | 0,0065 | 0,0281     | 0,0005 | 0,9                    | 177,9                   | 6,0  | 187,3                   | 5,5  | 325                      | 53  |
| GR_6761_32   | 89,6    | 71,7        | 1,2  | 0,0528      | 0,003 | 0,2068     | 0,0092 | 0,0288     | 0,0006 | 0,4                    | 182,2                   | 6,9  | 190,7                   | 7,8  | 310                      | 110 |
| GR_6761_33   | 159     | 125         | 1,3  | 0,0506      | 0,002 | 0,2035     | 0,0080 | 0,0291     | 0,0007 | 0,5                    | 184,9                   | 7,6  | 187,9                   | 6,8  | 217                      | 78  |
| GR_6761_34   | 222,3   | 217         | 1,0  | 0,051       | 0,002 | 0,2021     | 0,0069 | 0,0290     | 0,0005 | 0,5                    | 183,9                   | 6,2  | 186,8                   | 5,8  | 229                      | 84  |
| GR_6761_35   | 56,3    | 50,2        | 1,1  | 0,0538      | 0,004 | 0,2070     | 0,0170 | 0,0281     | 0,0006 | 0,6                    | 177,4                   | 6,3  | 190,0                   | 14,0 | 320                      | 170 |
| GR_6761_36   | 108,9   | 153         | 0,7  | 0,1134      | 0,003 | 0,4640     | 0,0130 | 0,0298     | 0,0004 | 0,4                    | 174,5                   | 5,8  | 386,5                   | 9,4  | 1865                     | 43  |
| GR_6761_37   | 34,1    | 13,84       | 2,5  | 0,053       | 0,006 | 0,2150     | 0,0240 | 0,0294     | 0,0009 | 0,6                    | 186,2                   | 7,6  | 196,0                   | 20,0 | 280                      | 220 |
| GR_6761_38   | 96,4    | 125,9       | 0,8  | 0,0504      | 0,002 | 0,1974     | 0,0071 | 0,0286     | 0,0004 | 0,3                    | 181,3                   | 6,2  | 182,8                   | 6,0  | 204                      | 91  |
| GR_6761_39   | 78,1    | 78,7        | 1,0  | 0,0495      | 0,002 | 0,1947     | 0,0082 | 0,0287     | 0,0006 | 0,5                    | 182,3                   | 6,3  | 180,4                   | 7,0  | 169                      | 84  |
| GR_6761_40   | 91,3    | 109,3       | 0,8  | 0,0491      | 0,002 | 0,1948     | 0,0092 | 0,0284     | 0,0005 | 0,5                    | 180,3                   | 6,3  | 180,5                   | 7,8  | 150                      | 78  |
| GR_6761_41   | 72,3    | 55,1        | 1,3  | 0,0533      | 0,003 | 0,2120     | 0,0140 | 0,0292     | 0,0007 | 0,8                    | 185,0                   | 6,9  | 195,0                   | 11,0 | 310                      | 130 |
| GR_6761_42   | 63,2    | 64,3        | 1,0  | 0,0502      | 0,003 | 0,1920     | 0,0120 | 0,0280     | 0,0005 | 0,3                    | 178,0                   | 6,2  | 178,0                   | 10,0 | 200                      | 140 |
| GR_6761_43   | 39,2    | 34,4        | 1,1  | 0,0563      | 0,004 | 0,2170     | 0,0150 | 0,0285     | 0,0006 | 0,7                    | 179,9                   | 6,9  | 199,0                   | 13,0 | 420                      | 150 |
| GR_6761_44   | 90,6    | 125         | 0,7  | 0,0547      | 0,005 | 0,2180     | 0,0220 | 0,0290     | 0,0006 | 0,5                    | 183,4                   | 7,0  | 199,0                   | 17,0 | 340                      | 170 |
| GR_6761_45   | 98,2    | 134,1       | 0,7  | 0,0509      | 0,002 | 0,1971     | 0,0083 | 0,0284     | 0,0005 | 0,5                    | 180,3                   | 6,3  | 184,0                   | 7,4  | 242                      | 82  |
| GR_6761_46   | 96,1    | 95,8        | 1,0  | 0,0529      | 0,003 | 0,2180     | 0,0110 | 0,0301     | 0,0006 | 0,8                    | 190,6                   | 6,9  | 199,9                   | 9,4  | 300                      | 100 |
| GR_6761_47   | 96,3    | 147         | 0,7  | 0,0503      | 0,002 | 0,1923     | 0,0079 | 0,0278     | 0,0005 | 0,7                    | 176,4                   | 6,0  | 178,4                   | 6,7  | 206                      | 80  |
| GR_6761_48   | 218     | 200,5       | 1,1  | 0,0496      | 0,002 | 0,1970     | 0,0058 | 0,0293     | 0,0006 | 0,7                    | 186,1                   | 6,3  | 182,5                   | 4,9  | 170                      | 68  |
| GR_6761_49   | 55,3    | 68,3        | 0,8  | 0,0512      | 0,003 | 0,1990     | 0,0100 | 0,0283     | 0,0005 | 0,5                    | 179,2                   | 6,3  | 183,9                   | 8,8  | 200                      | 100 |
| GR_6761_50   | 180,6   | 183         | 1,0  | 0,0506      | 0,001 | 0,1995     | 0,0061 | 0,0284     | 0,0006 | 0,7                    | 180,3                   | 6,3  | 184,6                   | 5,1  | 216                      | 61  |
| GR_6761_51   | 122,9   | 48,1        | 2,6  | 0,0724      | 0,001 | 1,3730     | 0,0420 | 0,1361     | 0,0040 | 0,9                    | 816,9                   | 32,5 | 880,0                   | 17,0 | 996                      | 30  |
| GR_6761_52   | 153     | 120         | 1,3  | 0,0573      | 0,002 | 0,2354     | 0,0046 | 0,0298     | 0,0007 | 0,3                    | 187,2                   | 6,2  | 214,6                   | 3,8  | 507                      | 67  |
| GR_6761_53   | 163     | 170         | 1,0  | 0,057       | 0,003 | 0,2500     | 0,0120 | 0,0312     | 0,0004 | 0,1                    | 196,4                   | 6,3  | 226,4                   | 9,5  | 470                      | 100 |
| GR_6761_54   | 115     | 140         | 0,8  | 0,0492      | 0,002 | 0,2071     | 0,0089 | 0,0298     | 0,0005 | 0,3                    | 189,2                   | 6,3  | 190,9                   | 7,5  | 151                      | 83  |
| GR_6761_8    | 114,7   | 157         | 0,7  | 0,0492      | 0,002 | 0,1954     | 0,0083 | 0,0287     | 0,0007 | 0,5                    | 182,6                   | 6,3  | 181,0                   | 7,1  | 155                      | 89  |
| GR_6761_9    | 176     | 208         | 0,8  | 0,0497      | 0,002 | 0,1981     | 0,0089 | 0,0287     | 0,0007 | 0,5                    | 182,1                   | 6,9  | 185,0                   | 7,0  | 160                      | 96  |

# Muestras GOE-1030

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/206Pb | ±2s    | 207Pb/235U | ±2s    | 206Pb/238U | ±2s    | Correlación<br>errores | 206Pb/238U<br>Edad (Ma) | ±2s | 207Pb/235U<br>Edad (Ma) | ±2s | 207Pb/206Pb<br>Edad (Ma) | ±2s |
|--------------|---------|-------------|------|-------------|--------|------------|--------|------------|--------|------------------------|-------------------------|-----|-------------------------|-----|--------------------------|-----|
| GOE_1030_01  | 123,5   | 95,5        | 0,8  | 0,0502      | 0,0018 | 0,2214     | 0,0076 | 0,0320     | 0,0007 | 0,1170                 | 203,0                   | 5,6 | 202,9                   | 6,3 | 183                      | 80  |
| GOE_1030_02  | 133,1   | 83,2        | 0,6  | 0,0515      | 0,0018 | 0,2078     | 0,0070 | 0,0287     | 0,0005 | 0,1276                 | 181,7                   | 4,2 | 191,6                   | 5,9 | 256                      | 79  |
| GOE_1030_03  | 84,4    | 68,6        | 0,8  | 0,0495      | 0,0018 | 0,2063     | 0,0080 | 0,0298     | 0,0006 | 0,2648                 | 189,4                   | 4,9 | 191,5                   | 6,5 | 171                      | 79  |
| GOE_1030_04  | 141,0   | 115,2       | 0,8  | 0,0515      | 0,0014 | 0,2135     | 0,0055 | 0,0302     | 0,0004 | 0,3329                 | 191,3                   | 4,1 | 196,4                   | 4,5 | 257                      | 59  |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/206Pb | ±2s    | 207Pb/235U | ±2s    | 206Pb/238U | ±2s    | Correlación<br>errores | 206Pb/238U<br>Edad (Ma) | ±2s    | 207Pb/235U<br>Edad (Ma) | ±2s  | 207Pb/206Pb<br>Edad (Ma) | ±2s |
|--------------|---------|-------------|------|-------------|--------|------------|--------|------------|--------|------------------------|-------------------------|--------|-------------------------|------|--------------------------|-----|
| GOE_1030_05  | 228,0   | 121,0       | 0,5  | 0,1610      | 0,0200 | 0,8900     | 0,1500 | 0,0372     | 0,0000 | 0,4855                 | 203,4                   | 28,7   | 637,0                   | 78,0 | 2460                     | 230 |
| GOE_1030_06  | 100,5   | 64,5        | 0,6  | 0,0585      | 0,0029 | 0,2420     | 0,0150 | 0,0297     | 0,0006 | 0,7568                 | 186,6                   | 4,8    | 219,0                   | 12,0 | 560                      | 120 |
| GOE_1030_07  | 163,0   | 202,0       | 1,2  | 0,0520      | 0,0018 | 0,2037     | 0,0073 | 0,0289     | 0,0004 | 0,2863                 | 183,1                   | 4,0    | 188,1                   | 6,1  | 274                      | 78  |
| GOE_1030_08  | 465,8   | 476,0       | 1,0  | 0,0661      | 0,0042 | 0,2840     | 0,0200 | 0,0307     | 0,0004 | 0,2816                 | 190,8                   | 4,3    | 253,0                   | 15,0 | 820                      | 130 |
| GOE_1030_09  | 263,9   | 269,0       | 1,0  | 0,0546      | 0,0015 | 0,2336     | 0,0066 | 0,0312     | 0,0006 | 0,3391                 | 196,8                   | 5,1    | 213,1                   | 5,4  | 412                      | 62  |
| GOE_1030_10  | 442,0   | 365,0       | 0,8  | 0,0770      | 0,0050 | 0,2900     | 0,0220 | 0,0269     | 0,0005 | 0,4640                 | 165,3                   | 4,2    | 258,0                   | 17,0 | 1100                     | 130 |
| GOE_1030_11  | 159,3   | 133,7       | 0,8  | 0,0568      | 0,0018 | 0,2390     | 0,0075 | 0,0308     | 0,0007 | 0,2053                 | 194,0                   | 5,4    | 217,5                   | 6,2  | 471                      | 70  |
| GOE_1030_12  | 0,0     | 0,0         | -0,9 | no value    | NAN    | no value   | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ###### | no value                | NAN  | no value                 | NAN |
| GOE_1030_13  | 138,4   | 159,1       | 1,1  | 0,1880      | 0,0150 | 0,9520     | 0,0950 | 0,0363     | 0,0010 | 0,7904                 | 190,8                   | 7,6    | 669,0                   | 51,0 | 2770                     | 120 |
| GOE_1030_14  | 125,3   | 124,5       | 1,0  | 0,0517      | 0,0020 | 0,2035     | 0,0083 | 0,0285     | 0,0005 | 0,3201                 | 181,0                   | 4,2    | 187,9                   | 7,0  | 261                      | 87  |
| GOE_1030_15  | 403,0   | 820,0       | 2,0  | 0,0696      | 0,0053 | 0,2570     | 0,0160 | 0,0274     | 0,0006 | 0,1000                 | 170,2                   | 4,9    | 231,0                   | 13,0 | 850                      | 160 |
| GOE_1030_16  | 104     | 124         | 1,19 | 0,0530      | 0,0023 | 0,2037     | 0,0097 | 0,0275     | 0,0005 | 0,3228                 | 174,0                   | 4,2    | 188,0                   | 8,2  | 354                      | 94  |
| GOE_1030_17  | 117,0   | 141,0       | 1,2  | 0,1130      | 0,0110 | 0,5250     | 0,0670 | 0,0338     | 0,0014 | 0,7453                 | 197,7                   | 9,2    | 421,0                   | 42,0 | 1770                     | 170 |
| GOE_1030_18  | 38,7    | 45,2        | 1,2  | 0,0485      | 0,0047 | 0,1880     | 0,0170 | 0,0282     | 0,0007 | 0,1000                 | 179,6                   | 5,5    | 174,0                   | 14,0 | 120                      | 180 |
| GOE_1030_19  | 324,0   | 414,0       | 1,3  | 0,0525      | 0,0016 | 0,2051     | 0,0068 | 0,0282     | 0,0006 | 0,5372                 | 178,5                   | 5,0    | 189,3                   | 5,7  | 296                      | 72  |
| GOE_1030_20  | 206,0   | 283,0       | 1,4  | 0,0492      | 0,0018 | 0,1859     | 0,0072 | 0,0279     | 0,0009 | 0,4531                 | 177,7                   | 6,3    | 172,9                   | 6,2  | 154                      | 78  |
| GOE_1030_21  | 339,0   | 453,0       | 1,3  | 0,0522      | 0,0015 | 0,2069     | 0,0058 | 0,0290     | 0,0005 | 0,3130                 | 184,0                   | 4,3    | 190,9                   | 4,9  | 285                      | 64  |
| GOE_1030_22  | 108,0   | 111,8       | 1,0  | 0,0575      | 0,0025 | 0,2450     | 0,0120 | 0,0304     | 0,0004 | 0,1000                 | 191,2                   | 4,2    | 222,5                   | 9,4  | 510                      | 110 |
| GOE_1030_23  | 0,6     | 0,5         | 0,9  | 0,1650      | 0,0840 | 1,6000     | 1,1000 | 0,0690     | 0,0140 | 0,9518                 | 372,9                   | 86,3   | 950,0                   | #### | 2440                     | 890 |
| GOE_1030_24  | 69,7    | 53,6        | 0,8  | 0,0547      | 0,0034 | 0,2300     | 0,0120 | 0,0300     | 0,0006 | 0,1000                 | 189,3                   | 4,7    | 209,0                   | 10,0 | 430                      | 130 |
| GOE_1030_25  | 216,0   | 225,0       | 1,0  | 0,0517      | 0,0014 | 0,1980     | 0,0060 | 0,0281     | 0,0006 | 0,5870                 | 178,3                   | 4,8    | 183,4                   | 5,1  | 264                      | 62  |
| GOE_1030_26  | 462,0   | 449,0       | 1,0  | 0,0566      | 0,0021 | 0,2350     | 0,0100 | 0,0298     | 0,0006 | 0,3321                 | 187,4                   | 4,8    | 214,1                   | 8,6  | 486                      | 78  |
| GOE_1030_27  | 278,0   | 437,0       | 1,6  | 0,0560      | 0,0023 | 0,2140     | 0,0100 | 0,0274     | 0,0006 | 0,3300                 | 172,9                   | 4,8    | 197,0                   | 8,6  | 454                      | 96  |
| GOE_1030_28  | 0,0     | 0,0         | -0,3 | no value    | NAN    | no value   | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ###### | no value                | NAN  | no value                 | NAN |
| GOE_1030_30  | 168,1   | 171         | 1,02 | 0,0537      | 0,0027 | 0,2021     | 0,0093 | 0,0275     | 0,0005 | 0,0582                 | 173,8                   | 4,2    | 188,3                   | 8,3  | 340                      | 110 |
| GOE_1030_31  | 690,0   | 1260,0      | 1,8  | 0,0507      | 0,0011 | 0,2032     | 0,0071 | 0,0289     | 0,0010 | 0,7552                 | 183,7                   | 6,9    | 188,8                   | 5,8  | 220                      | 51  |
| GOE_1030_32  | 800,0   | 1095,0      | 1,4  | 0,0518      | 0,0009 | 0,2087     | 0,0056 | 0,0293     | 0,0004 | 0,7602                 | 185,6                   | 4,1    | 192,4                   | 4,7  | 271                      | 39  |
| GOE_1030_33  | 330,7   | 352,0       | 1,1  | 0,0507      | 0,0017 | 0,1975     | 0,0070 | 0,0279     | 0,0003 | 0,2426                 | 176,8                   | 3,5    | 182,9                   | 5,9  | 223                      | 75  |
| GOE_1030_34  | 1173,0  | 2230,0      | 1,9  | 0,0671      | 0,0031 | 0,2700     | 0,0120 | 0,0293     | 0,0005 | 0,0221                 | 182,4                   | 4,6    | 242,2                   | 9,3  | 820                      | 97  |
| GOE_1030_35  | 780,0   | 1930,0      | 2,5  | 0,0560      | 0,0024 | 0,2097     | 0,0099 | 0,0267     | 0,0005 | 0,0436                 | 168,6                   | 4,1    | 193,0                   | 8,2  | 433                      | 90  |
| GOE_1030_36  | 646,0   | 1057,0      | 1,6  | 0,0536      | 0,0011 | 0,2099     | 0,0047 | 0,0284     | 0,0005 | 0,4571                 | 179,5                   | 4,3    | 193,4                   | 4,0  | 350                      | 45  |
| GOE_1030_37  | 40,4    | 37,3        | 0,9  | 0,0535      | 0,0050 | 0,2100     | 0,0190 | 0,0286     | 0,0007 | 0,1000                 | 180,6                   | 5,6    | 193,0                   | 16,0 | 300                      | 190 |
| GOE_1030_38  | 281,0   | 274,0       | 1,0  | 0,0544      | 0,0020 | 0,2389     | 0,0090 | 0,0316     | 0,0009 | 0,4236                 | 199,6                   | 6,9    | 218,6                   | 7,1  | 387                      | 82  |
| GOE_1030_39  | 126,6   | 168         | 1,33 | 0,0536      | 0,0029 | 0,2010     | 0,0110 | 0,0274     | 0,0006 | 0,6838                 | 173,5                   | 4,6    | 185,5                   | 9,6  | 330                      | 120 |
| GOE_1030_40  | 189,0   | 274,0       | 1,4  | 0,0486      | 0,0018 | 0,1877     | 0,0086 | 0,0278     | 0,0005 | 0,5392                 | 176,7                   | 4,5    | 174,5                   | 7,4  | 129                      | 80  |
| GOE_1030_41  | 179,0   | 279,0       | 1,6  | 0,0517      | 0,0018 | 0,2065     | 0,0085 | 0,0291     | 0,0010 | 0,6144                 | 184,5                   | 6,9    | 190,4                   | 7,1  | 277                      | 83  |
| GOE_1030_42  | 177,1   | 301,1       | 1,7  | 0,0534      | 0,0022 | 0,2046     | 0,0083 | 0,0277     | 0,0003 | 0,0012                 | 175,2                   | 3,7    | 188,8                   | 7,0  | 351                      | 96  |
| GOE_1030_43  | 308,4   | 361,0       | 1,2  | 0,0505      | 0,0011 | 0,2115     | 0,0058 | 0,0302     | 0,0004 | 0,5231                 | 191,9                   | 4,2    | 195,6                   | 4,7  | 213                      | 53  |
| GOE_1030_44  | 208,0   | 253,0       | 1,2  | 0,0515      | 0,0023 | 0,2182     | 0,0085 | 0,0305     | 0,0007 | 0,0858                 | 193,6                   | 5,6    | 200,2                   | 7,1  | 247                      | 94  |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/206Pb | ±2s    | 207Pb/235U | ±2s    | 206Pb/238U | ±2s    | Correlación<br>errores | 206Pb/238U<br>Edad (Ma) | ±2s    | 207Pb/235U<br>Edad (Ma) | ±2s  | 207Pb/206Pb<br>Edad (Ma) | ±2s  |
|--------------|---------|-------------|------|-------------|--------|------------|--------|------------|--------|------------------------|-------------------------|--------|-------------------------|------|--------------------------|------|
| GOE_1030_45  | 344,0   | 354,0       | 1,0  | 0,0524      | 0,0015 | 0,2130     | 0,0081 | 0,0293     | 0,0007 | 0,6094                 | 185,3                   | 5,2    | 195,9                   | 6,8  | 295                      | 64   |
| GOE_1030_46  | 413,3   | 816,0       | 2,0  | 0,0542      | 0,0020 | 0,2112     | 0,0076 | 0,0282     | 0,0004 | 0,4447                 | 178,3                   | 4,0    | 194,4                   | 6,4  | 378                      | 86   |
| GOE_1030_47  | 64,0    | 161,0       | 2,5  | 0,1040      | 0,0200 | 1,0000     | 0,4400 | 0,0620     | 0,0130 | 0,9446                 | 364,4                   | 75,7   | 590,0                   | #### | 1530                     | 290  |
| GOE_1030_48  | 0,0     | 0,0         | -3,1 | no value    | NAN    | no value   | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ###### | no value                | NAN  | no value                 | NAN  |
| GOE_1030_49  | 177,0   | 306,0       | 1,7  | 0,0516      | 0,0018 | 0,2010     | 0,0073 | 0,0282     | 0,0006 | 0,3002                 | 179,1                   | 5,0    | 185,9                   | 6,1  | 272                      | 80   |
| GOE_1030_50  | 249,2   | 440         | 1,77 | 0,0517      | 0,0016 | 0,1962     | 0,0069 | 0,0276     | 0,0005 | 0,3789                 | 175,2                   | 4,5    | 183,3                   | 6,5  | 265                      | 67   |
| GOE_1030_51  | 106,2   | 137,6       | 1,3  | 0,0494      | 0,0024 | 0,2100     | 0,0110 | 0,0312     | 0,0006 | 0,4843                 | 197,9                   | 5,1    | 193,5                   | 9,5  | 160                      | 100  |
| GOE_1030_52  | 321     | 554         | 1,73 | 0,0522      | 0,0016 | 0,1971     | 0,0071 | 0,0272     | 0,0004 | 0,5992                 | 172,5                   | 3,7    | 182,5                   | 6    | 286                      | 69   |
| GOE_1030_53  | 443,0   | 1030,0      | 2,3  | 0,0517      | 0,0011 | 0,2362     | 0,0065 | 0,0333     | 0,0006 | 0,6061                 | 210,6                   | 4,9    | 215,2                   | 5,4  | 266                      | 51   |
| GOE_1030_54  | 175,9   | 192,9       | 1,1  | 0,0542      | 0,0021 | 0,2108     | 0,0087 | 0,0282     | 0,0004 | 0,3337                 | 177,9                   | 3,8    | 194,0                   | 7,3  | 381                      | 91   |
| GOE_1030_55  | 217,8   | 284,6       | 1,3  | 0,0514      | 0,0011 | 0,1997     | 0,0042 | 0,0285     | 0,0004 | 0,3398                 | 180,6                   | 4,0    | 184,9                   | 3,5  | 251                      | 50   |
| GOE_1030_56  | 1130,0  | 1790,0      | 1,6  | 0,0598      | 0,0013 | 0,2088     | 0,0070 | 0,0257     | 0,0007 | 0,7480                 | 161,6                   | 5,2    | 192,4                   | 5,8  | 599                      | 46   |
| GOE_1030_57  | 311,9   | 247         | 0,79 | 0,0546      | 0,0023 | 0,2085     | 0,0089 | 0,0277     | 0,0005 | 0,2196                 | 175,0                   | 4,1    | 192,1                   | 7,5  | 378                      | 92   |
| GOE_1030_58  | 805,0   | 992,0       | 1,2  | 0,0496      | 0,0014 | 0,2051     | 0,0057 | 0,0299     | 0,0004 | 0,2973                 | 189,7                   | 4,1    | 189,4                   | 4,8  | 175                      | 63   |
| GOE_1030_59  | 374,2   | 385,0       | 1,0  | 0,0523      | 0,0016 | 0,2096     | 0,0065 | 0,0293     | 0,0004 | 0,4916                 | 185,5                   | 3,9    | 193,1                   | 5,4  | 289                      | 69   |
| GOE_1030_60  | 281,0   | 239,0       | 0,9  | 0,0500      | 0,0020 | 0,2048     | 0,0093 | 0,0292     | 0,0004 | 0,4124                 | 185,6                   | 4,2    | 188,9                   | 7,8  | 188                      | 85   |
| GOE_1030_61  | 384     | 428         | 1,11 | 0,0522      | 0,0018 | 0,1952     | 0,0057 | 0,0274     | 0,0004 | 0,3151                 | 173,4                   | 3,7    | 181,0                   | 4,9  | 281                      | 76   |
| GOE_1030_62  | 252,4   | 281,0       | 1,1  | 0,0597      | 0,0024 | 0,2339     | 0,0098 | 0,0286     | 0,0004 | 0,5204                 | 179,4                   | 3,9    | 213,2                   | 8,0  | 605                      | 87   |
| GOE_1030_63  | 506,0   | 976,0       | 1,9  | 0,0495      | 0,0011 | 0,2085     | 0,0055 | 0,0307     | 0,0006 | 0,6135                 | 195,0                   | 5,0    | 192,2                   | 4,6  | 168                      | 51   |
| GOE_1030_64  | 234,0   | 158,8       | 0,7  | 0,0489      | 0,0015 | 0,1895     | 0,0058 | 0,0280     | 0,0003 | 0,1849                 | 178,2                   | 3,5    | 176,1                   | 5,0  | 141                      | 68   |
| GOE_1030_65  | 196,0   | 165,0       | 0,8  | 0,0503      | 0,0021 | 0,2130     | 0,0110 | 0,0306     | 0,0012 | 0,5981                 | 194,2                   | 8,2    | 195,7                   | 8,8  | 199                      | 89   |
| GOE_1030_66  | 452     | 293         | 0,65 | 0,0524      | 0,0017 | 0,1968     | 0,0077 | 0,0272     | 0,0006 | 0,4693                 | 172,3                   | 4,9    | 182,2                   | 6,5  | 293                      | 71   |
| GOE_1030_67  | 203,0   | 118,5       | 0,6  | 0,0823      | 0,0092 | 0,3490     | 0,0360 | 0,0306     | 0,0006 | 0,1000                 | 186,2                   | 5,1    | 301,0                   | 26,0 | 1100                     | 170  |
| GOE_1030_68  | 777     | 685         | 0,88 | 0,0517      | 0,0013 | 0,1930     | 0,0051 | 0,0271     | 0,0005 | 0,4008                 | 171,8                   | 4,4    | 179,1                   | 4,3  | 277                      | 58   |
| GOE_1030_69  | 466,0   | 458,0       | 1,0  | 0,0511      | 0,0015 | 0,1975     | 0,0050 | 0,0280     | 0,0005 | 0,4120                 | 177,7                   | 4,2    | 182,9                   | 4,2  | 238                      | 64   |
| GOE_1030_70  | 274,0   | 312,0       | 1,1  | 0,0503      | 0,0024 | 0,1965     | 0,0097 | 0,0292     | 0,0009 | 0,4435                 | 185,4                   | 6,3    | 181,9                   | 8,2  | 200                      | 100  |
| GOE_1030_71  | 317,0   | 289,0       | 0,9  | 0,0485      | 0,0019 | 0,1892     | 0,0075 | 0,0287     | 0,0007 | 0,4062                 | 182,7                   | 5,2    | 175,8                   | 6,4  | 127                      | 82   |
| GOE_1030_72  | 271,4   | 234,5       | 0,9  | 0,0590      | 0,0026 | 0,2410     | 0,0120 | 0,0293     | 0,0004 | 0,6622                 | 184,0                   | 4,1    | 218,5                   | 9,9  | 588                      | 96   |
| GOE_1030_73  | 212,0   | 170,0       | 0,8  | 0,0506      | 0,0015 | 0,2098     | 0,0071 | 0,0299     | 0,0004 | 0,4246                 | 189,8                   | 4,0    | 193,3                   | 6,0  | 213                      | 68   |
| GOE_1030_74  | 316,0   | 280,0       | 0,9  | 0,0505      | 0,0016 | 0,1931     | 0,0058 | 0,0278     | 0,0005 | 0,1149                 | 176,8                   | 4,4    | 179,2                   | 4,9  | 226                      | 72   |
| GOE_1030_75  | 126     | 106         | 0,84 | 0,0530      | 0,0023 | 0,1890     | 0,0100 | 0,0268     | 0,0010 | 0,4633                 | 169,7                   | 6,9    | 175,7                   | 8,9  | 310                      | 96   |
| GOE_1030_76  | 297,0   | 99,8        | 0,3  | 0,0650      | 0,0011 | 0,9480     | 0,0210 | 0,1058     | 0,0017 | 0,7252                 | 645,4                   | 14,3   | 679,0                   | 10,0 | 771                      | 37   |
| GOE_1030_77  | 0,4     | 0,4         | 1,0  | 0,2800      | 0,2300 | 5,8000     | 7,1000 | 0,1010     | 0,0780 | 0,9900                 | 457,1                   | 386,0  | 1400,0                  | #### | 2800                     | #### |
| GOE_1030_78  | 155,0   | 119,0       | 0,8  | 0,0572      | 0,0032 | 0,2220     | 0,0130 | 0,0286     | 0,0007 | 0,1894                 | 180,0                   | 5,0    | 203,0                   | 11,0 | 470                      | 120  |
| GOE_1030_79  | 181,9   | 120,8       | 0,7  | 0,0805      | 0,0044 | 0,3200     | 0,0190 | 0,0291     | 0,0005 | 0,7453                 | 177,9                   | 4,1    | 281,0                   | 14,0 | 1180                     | 100  |
| GOE_1030_80  | 332,0   | 266,1       | 0,8  | 0,0527      | 0,0018 | 0,2060     | 0,0077 | 0,0285     | 0,0004 | 0,2144                 | 180,3                   | 3,7    | 190,0                   | 6,5  | 303                      | 77   |
| GOE_1030_81  | 388,0   | 311,0       | 0,8  | 0,0507      | 0,0014 | 0,2019     | 0,0063 | 0,0292     | 0,0004 | 0,5446                 | 185,1                   | 4,1    | 186,7                   | 5,3  | 221                      | 61   |
| GOE_1030_82  | 376,0   | 378,0       | 1,0  | 0,0598      | 0,0024 | 0,2570     | 0,0110 | 0,0311     | 0,0003 | 0,3368                 | 194,9                   | 3,8    | 232,1                   | 9,1  | 591                      | 90   |
| GOE_1030_83  | 208,4   | 243,0       | 1,2  | 0,0690      | 0,0075 | 0,2830     | 0,0350 | 0,0301     | 0,0007 | 0,7065                 | 186,3                   | 5,5    | 251,0                   | 26,0 | 850                      | 210  |

| Muestra GR-68 | 37 |
|---------------|----|

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/206Pb | ±2s    | 207Pb/235U | ±2s    | 206Pb/238U | ±2s    | Correlación<br>errores | 206Pb/238U<br>Edad (Ma) | ±2s  | 207Pb/235U<br>Edad (Ma) | ±2s  | 207Pb/206Pb<br>Edad (Ma) | ±2s |
|--------------|---------|-------------|------|-------------|--------|------------|--------|------------|--------|------------------------|-------------------------|------|-------------------------|------|--------------------------|-----|
| GR_6837_01   | 57,7    | 37,09       | 0,6  | 0,1940      | 0,0250 | 0,7520     | 0,0940 | 0,0293     | 0,0011 | 0,2                    | 152,8                   | 9,9  | 561,0                   | 56,0 | 2230                     | 270 |
| GR_6837_02   | 70,4    | 35,3        | 0,5  | 0,0700      | 0,0170 | 0,2610     | 0,0580 | 0,0280     | 0,0011 | 0,1                    | 173,5                   | 9,5  | 228,0                   | 45,0 | 0                        | 420 |
| GR_6837_03   | 166,4   | 120,2       | 0,7  | 0,0659      | 0,0069 | 0,2570     | 0,0280 | 0,0275     | 0,0006 | 0,3                    | 171,3                   | 6,3  | 221,0                   | 21,0 | 560                      | 190 |
| GR_6837_04   | 166,5   | 210         | 1,3  | 0,0748      | 0,0078 | 0,2990     | 0,0340 | 0,0291     | 0,0007 | 0,5                    | 178,9                   | 7,1  | 253,0                   | 24,0 | 830                      | 210 |
| GR_6837_05   | 188,7   | 190         | 1,0  | 0,0755      | 0,0068 | 0,3160     | 0,0290 | 0,0298     | 0,0007 | 0,3                    | 183,2                   | 7,0  | 272,0                   | 21,0 | 920                      | 170 |
| GR_6837_06   | 106,4   | 154,2       | 1,4  | 0,0620      | 0,0085 | 0,2280     | 0,0330 | 0,0276     | 0,0008 | 0,2                    | 172,6                   | 7,2  | 208,0                   | 27,0 | 390                      | 240 |
| GR_6837_07   | 85,1    | 112,8       | 1,3  | 0,0620      | 0,0110 | 0,2180     | 0,0380 | 0,0262     | 0,0007 | 0,1                    | 164,0                   | 6,7  | 207,0                   | 31,0 | 400                      | 280 |
| GR_6837_08   | 456     | 670         | 1,5  | 0,0522      | 0,0035 | 0,1990     | 0,0140 | 0,0276     | 0,0005 | 0,1                    | 174,8                   | 5,8  | 182,0                   | 12,0 | 250                      | 130 |
| GR_6837_09   | 169,6   | 142,5       | 0,8  | 0,0584      | 0,0054 | 0,2380     | 0,0210 | 0,0283     | 0,0007 | 0,2                    | 177,7                   | 6,4  | 217,0                   | 18,0 | 460                      | 170 |
| GR_6837_10   | 60,6    | 65,3        | 1,1  | 0,0710      | 0,0120 | 0,2880     | 0,0460 | 0,0301     | 0,0010 | 0,0                    | 185,9                   | 8,5  | 229,0                   | 36,0 | 390                      | 290 |
| GR_6837_11   | 288     | 263         | 0,9  | 0,0491      | 0,0042 | 0,1890     | 0,0160 | 0,0280     | 0,0006 | 0,1                    | 178,3                   | 6,2  | 175,0                   | 14,0 | 170                      | 150 |
| GR_6837_12   | 179,6   | 269         | 1,5  | 0,0506      | 0,0044 | 0,2000     | 0,0180 | 0,0288     | 0,0006 | 0,1                    | 183,1                   | 6,3  | 182,0                   | 15,0 | 200                      | 160 |
| GR_6837_13   | 101,6   | 60,7        | 0,6  | 0,0510      | 0,0086 | 0,1920     | 0,0310 | 0,0279     | 0,0007 | 0,0                    | 177,2                   | 7,2  | 167,0                   | 26,0 | 140                      | 240 |
| GR_6837_14   | 197,3   | 312         | 1,6  | 0,0549      | 0,0048 | 0,1960     | 0,0170 | 0,0267     | 0,0005 | 0,1                    | 168,5                   | 5,9  | 185,0                   | 14,0 | 340                      | 160 |
| GR_6837_15   | 87      | 80,1        | 0,9  | 0,0525      | 0,0084 | 0,1950     | 0,0300 | 0,0266     | 0,0006 | 0,1                    | 168,7                   | 6,4  | 172,0                   | 25,0 | 200                      | 250 |
| GR_6837_16   | 115,1   | 92,8        | 0,8  | 0,0534      | 0,0074 | 0,2070     | 0,0270 | 0,0284     | 0,0007 | 0,1                    | 179,8                   | 6,6  | 190,0                   | 22,0 | 210                      | 210 |
| GR_6837_17   | 303,7   | 522         | 1,7  | 0,0481      | 0,0031 | 0,2030     | 0,0130 | 0,0301     | 0,0005 | 0,2                    | 191,6                   | 6,2  | 186,0                   | 11,0 | 170                      | 120 |
| GR_6837_18   | 30,1    | 11,59       | 0,4  | 0,0490      | 0,0210 | 0,1370     | 0,0680 | 0,0280     | 0,0013 | 0,1                    | 178,2                   | 10,5 | 120,0                   | 67,0 | -790                     | 530 |
| GR_6837_19   | 154,5   | 97,9        | 0,6  | 0,0502      | 0,0061 | 0,1950     | 0,0240 | 0,0280     | 0,0006 | 0,2                    | 177,8                   | 6,4  | 177,0                   | 20,0 | 170                      | 190 |
| GR_6837_20   | 69,3    | 42,7        | 0,6  | 0,0940      | 0,0120 | 0,3770     | 0,0450 | 0,0292     | 0,0009 | 0,0                    | 175,4                   | 7,8  | 311,0                   | 33,0 | 1120                     | 250 |
| GR_6837_21   | 190     | 159,7       | 0,8  | 0,0778      | 0,0065 | 0,3070     | 0,0260 | 0,0291     | 0,0006 | 0,3                    | 178,4                   | 6,4  | 263,0                   | 20,0 | 990                      | 160 |
| GR_6837_22   | 207     | 140         | 0,7  | 0,0537      | 0,0045 | 0,2270     | 0,0190 | 0,0303     | 0,0006 | 0,1                    | 191,6                   | 6,4  | 206,0                   | 15,0 | 320                      | 140 |
| GR_6837_23   | 109,7   | 101,4       | 0,9  | 0,0514      | 0,0062 | 0,2270     | 0,0280 | 0,0294     | 0,0008 | 0,3                    | 186,6                   | 7,1  | 204,0                   | 22,0 | 280                      | 200 |
| GR_6837_24   | 105,8   | 109,8       | 1,0  | 0,1020      | 0,0110 | 0,4320     | 0,0470 | 0,0296     | 0,0008 | 0,4                    | 175,7                   | 7,7  | 344,0                   | 32,0 | 1420                     | 210 |
| GR_6837_25   | 67,7    | 76,4        | 1,1  | 0,0490      | 0,0100 | 0,1710     | 0,0380 | 0,0264     | 0,0009 | 0,1                    | 168,1                   | 7,3  | 153,0                   | 31,0 | -50                      | 290 |
| GR_6837_26   | 97      | 81,7        | 0,8  | 0,0484      | 0,0080 | 0,2160     | 0,0350 | 0,0307     | 0,0008 | 0,1                    | 195,4                   | 7,9  | 189,0                   | 27,0 | 50                       | 240 |
| GR_6837_27   | 113,9   | 106,8       | 0,9  | 0,0579      | 0,0066 | 0,2300     | 0,0250 | 0,0288     | 0,0007 | 0,1                    | 181,3                   | 6,5  | 202,0                   | 21,0 | 340                      | 190 |
| GR_6837_28   | 90,9    | 142,3       | 1,6  | 0,0860      | 0,0110 | 0,3290     | 0,0390 | 0,0276     | 0,0008 | 0,0                    | 167,4                   | 7,2  | 284,0                   | 30,0 | 1030                     | 240 |
| GR_6837_29   | 143,5   | 229         | 1,6  | 0,0631      | 0,0058 | 0,2520     | 0,0240 | 0,0287     | 0,0007 | 0,2                    | 179,5                   | 6,4  | 222,0                   | 19,0 | 610                      | 170 |
| GR_6837_30   | 75,5    | 80,9        | 1,1  | 0,0460      | 0,0110 | 0,1740     | 0,0420 | 0,0268     | 0,0009 | 0,2                    | 171,5                   | 8,0  | 169,0                   | 35,0 | 30                       | 310 |
| GR_6837_31   | 70,1    | 64,8        | 0,9  | 0,0540      | 0,0100 | 0,2020     | 0,0370 | 0,0272     | 0,0008 | 0,0                    | 171,9                   | 7,3  | 172,0                   | 32,0 | 60                       | 290 |
| GR_6837_32   | 40      | 37          | 0,9  | 0,0810      | 0,0160 | 0,3740     | 0,0740 | 0,0314     | 0,0013 | 0,2                    | 191,7                   | 10,6 | 294,0                   | 55,0 | 460                      | 380 |
| GR_6837_33   | 80,4    | 58,7        | 0,7  | 0,0630      | 0,0110 | 0,2460     | 0,0400 | 0,0290     | 0,0009 | 0,1                    | 181,1                   | 7,9  | 223,0                   | 31,0 | 470                      | 260 |
| GR_6837_34   | 90,2    | 82,1        | 0,9  | 0,0524      | 0,0094 | 0,2020     | 0,0360 | 0,0274     | 0,0008 | 0,2                    | 173,7                   | 7,2  | 186,0                   | 31,0 | 150                      | 280 |
| GR_6837_35   | 292     | 250         | 0,9  | 0,0495      | 0,0044 | 0,1960     | 0,0180 | 0,0286     | 0,0006 | 0,1                    | 181,8                   | 6,3  | 182,0                   | 15,0 | 200                      | 150 |
| GR_6837_36   | 49      | 44,98       | 0,9  | 0,0660      | 0,0150 | 0,2660     | 0,0580 | 0,0292     | 0,0010 | 0,1                    | 181,8                   | 8,8  | 202,0                   | 48,0 | 150                      | 360 |
| GR_6837_37   | 80,5    | 69,6        | 0,9  | 0,0459      | 0,0090 | 0,1690     | 0,0330 | 0,0277     | 0,0009 | 0,1                    | 176,6                   | 7,9  | 156,0                   | 28,0 | 0                        | 260 |
| GR_6837_38   | 93,4    | 89,3        | 1,0  | 0,0516      | 0,0097 | 0,2240     | 0,0420 | 0,0281     | 0,0008 | 0,4                    | 178,1                   | 7,9  | 172,0                   | 33,0 | 250                      | 280 |
| GR_6837_39   | 59,7    | 43,8        | 0,7  | 0,0760      | 0,0130 | 0,2780     | 0,0450 | 0,0274     | 0,0009 | 0,1                    | 168,3                   | 7,9  | 233,0                   | 34,0 | 530                      | 280 |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U        | 207Pb/206Pb | ±2s    | 207Pb/235U | ±2s    | 206Pb/238U | ±2s    | Correlación<br>errores | 206Pb/238U<br>Edad (Ma) | ±2s  | 207Pb/235U<br>Edad (Ma) | ±2s  | 207Pb/206Pb<br>Edad (Ma) | ±2s |
|--------------|---------|-------------|-------------|-------------|--------|------------|--------|------------|--------|------------------------|-------------------------|------|-------------------------|------|--------------------------|-----|
| GR_6837_40   | 76      | 77,6        | 1,0         | 0,0455      | 0,0087 | 0,1810     | 0,0330 | 0,0267     | 0,0008 | 0,1                    | 170,4                   | 7,2  | 164,0                   | 27,0 | -90                      | 260 |
| GR_6837_41   | 54,3    | 47,1        | 0,9         | 0,1920      | 0,0230 | 0,9600     | 0,1400 | 0,0349     | 0,0016 | 0,7                    | 182,4                   | 12,5 | 577,0                   | 70,0 | 2100                     | 290 |
| GR_6837_42   | 60,5    | 49          | 0,8         | 0,0640      | 0,0140 | 0,2090     | 0,0480 | 0,0275     | 0,0010 | 0,2                    | 171,7                   | 8,7  | 158,0                   | 38,0 | -20                      | 320 |
| GR_6837_43   | 74,6    | 54,2        | 0,7         | 0,0620      | 0,0100 | 0,2270     | 0,0400 | 0,0285     | 0,0009 | 0,2                    | 178,4                   | 7,9  | 205,0                   | 33,0 | 320                      | 270 |
| GR_6837_44   | 46,9    | 37,7        | 0,8         | 0,1010      | 0,0150 | 0,4250     | 0,0620 | 0,0295     | 0,0013 | 0,3                    | 175,5                   | 9,7  | 357,0                   | 43,0 | 1220                     | 300 |
| GR_6837_45   | 102,9   | 106,1       | 1,0         | 0,0509      | 0,0078 | 0,1970     | 0,0290 | 0,0290     | 0,0008 | 0,1                    | 183,7                   | 7,2  | 179,0                   | 24,0 | 120                      | 230 |
| GR_6837_46   | 85,8    | 110,1       | 1,3         | 0,0671      | 0,0098 | 0,2460     | 0,0370 | 0,0267     | 0,0007 | 0,1                    | 166,3                   | 6,6  | 222,0                   | 30,0 | 490                      | 260 |
| GR_6837_47   | 404,4   | 217,2       | 0,5         | 0,0733      | 0,0016 | 1,2190     | 0,0350 | 0,1224     | 0,0027 | 0,7                    | 736,3                   | 26,2 | 808,0                   | 16,0 | 1025                     | 44  |
| GR_6837_48   | 334     | 124,7       | 0,4         | 0,0727      | 0,0015 | 1,6040     | 0,0330 | 0,1614     | 0,0018 | 0,3                    | 962,9                   | 29,0 | 973,0                   | 13,0 | 1001                     | 41  |
| GR_6837_49   | 111,9   | 173         | 1,5         | 0,0563      | 0,0075 | 0,2270     | 0,0290 | 0,0293     | 0,0008 | 0,1                    | 184,4                   | 7,2  | 189,0                   | 23,0 | 200                      | 220 |
| GR_6837_50   | 77,6    | 64,5        | 0,8         | 0,0485      | 0,0091 | 0,2320     | 0,0400 | 0,0313     | 0,0009 | 0,1                    | 199,2                   | 7,9  | 197,0                   | 34,0 | 70                       | 280 |
| GR_6837_51   | 191,9   | 405         | 2,1         | 0,0663      | 0,0073 | 0,2770     | 0,0300 | 0,0307     | 0,0008 | 0,4                    | 191,0                   | 7,7  | 234,0                   | 23,0 | 490                      | 190 |
| GR_6837_52   | 84,2    | 69          | 0,8         | 0,1290      | 0,0150 | 0,5780     | 0,0690 | 0,0325     | 0,0011 | 0,4                    | 186,0                   | 9,2  | 430,0                   | 45,0 | 1600                     | 250 |
| GR_6837_53   | 243     | 180         | 0,7         | 0,0489      | 0,0041 | 0,1860     | 0,0160 | 0,0293     | 0,0007 | 0,2                    | 186,1                   | 7,1  | 169,0                   | 14,0 | 100                      | 150 |
| GR_6837_54   | 128,9   | 128,2       | 1,0         | 0,2820      | 0,0250 | 1,8100     | 0,2300 | 0,0445     | 0,0024 | 0,7                    | 201,0                   | 16,7 | 942,0                   | 81,0 | 3140                     | 160 |
| GR_6837_55   | 150     | 251         | GR-<br>6837 | 0,0584      | 0,0064 | 0,2260     | 0,0250 | 0,0272     | 0,0006 | 0,0                    | 171,0                   | 6,4  | 199,0                   | 20,0 | 470                      | 200 |

# Muestra JGB-513

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/206Pb | ±2s    | 207Pb/235U | ±2s   | 206Pb/238U | ±2s   | Correlación<br>errores | 206Pb/238U Edad<br>(Ma) | ±2s  | 207Pb/235U Edad<br>(Ma) | ±2s   | 207Pb/206Pb Edad<br>(Ma) | ±2s   |
|--------------|---------|-------------|------|-------------|--------|------------|-------|------------|-------|------------------------|-------------------------|------|-------------------------|-------|--------------------------|-------|
| JGB_513_01   | 56,6    | 4,2         | 0,1  | 0,0691      | 0,0039 | 1,553      | 0,088 | 0,162      | 0,003 | 0,1                    | 971,6                   | 24,7 | 945,0                   | 36,0  | 890                      | 120   |
| JGB_513_02   | 275,0   | 154,0       | 0,6  | 0,0563      | 0,0037 | 0,213      | 0,015 | 0,027      | 0,001 | 0,3                    | 172,4                   | 5,1  | 195,0                   | 12,0  | 420                      | 130   |
| JGB_513_03   | 129,9   | 89,3        | 0,7  | 0,0816      | 0,0085 | 0,356      | 0,039 | 0,031      | 0,001 | 0,4                    | 189,8                   | 6,3  | 289,0                   | 27,0  | 940                      | 180   |
| JGB_513_04   | 105,3   | 75,6        | 0,7  | 0,0510      | 0,0059 | 0,212      | 0,025 | 0,029      | 0,001 | 0,2                    | 186,5                   | 5,6  | 190,0                   | 20,0  | 140                      | 190   |
| JGB_513_05   | 1057,0  | 795,0       | 0,8  | 0,0492      | 0,0012 | 0,189      | 0,005 | 0,028      | 0,000 | 0,4                    | 178,1                   | 4,4  | 175,8                   | 4,3   | 151                      | 51    |
| JGB_513_06   | 76,8    | 66,7        | 0,9  | 0,0607      | 0,0084 | 0,244      | 0,032 | 0,029      | 0,001 | 0,1                    | 184,5                   | 5,6  | 218,0                   | 26,0  | 380                      | 240   |
| JGB_513_07   | 143,4   | 161,3       | 1,1  | 0,0501      | 0,0052 | 0,196      | 0,020 | 0,028      | 0,001 | 0,1                    | 176,6                   | 4,9  | 182,0                   | 17,0  | 180                      | 180   |
| JGB_513_08   | 1184    | 179,0       | 0,2  | 0,0750      | 0,0008 | 1,737      | 0,024 | 0,168      | 0,002 | 0,6                    | 997,0                   | 21,8 | 1,021,1                 | 8,9   | 1,069                    | 22    |
| JGB_513_09   | 1318    | 647,0       | 0,5  | 0,0796      | 0,0009 | 1,897      | 0,033 | 0,173      | 0,003 | 0,8                    | 1,022,0                 | 25,1 | 1,079,0                 | 12,0  | 1,183                    | 21    |
| JGB_513_10   | 98,1    | 103,4       | 1,1  | 0,0488      | 0,0071 | 0,185      | 0,026 | 0,028      | 0,001 | 0,1                    | 178,8                   | 5,3  | 166,0                   | 23,0  | 80                       | 230   |
| JGB_513_11   | 137,7   | 173,1       | 1,3  | 0,0474      | 0,0052 | 0,183      | 0,020 | 0,027      | 0,001 | 0,1                    | 173,5                   | 4,7  | 167,0                   | 17,0  | 70                       | 180   |
| JGB_513_12   | 15      | 7,4         | 0,5  | 0,1060      | 0,0810 | 0,520      | 0,460 | 0,038      | 0,003 | 0,1                    | 224,7                   | 30,9 | 530,0                   | 140,0 | 2,200                    | 1,600 |
| JGB_513_13   | 65,6    | 54,6        | 0,8  | 0,0689      | 0,0089 | 0,260      | 0,033 | 0,028      | 0,001 | 0,2                    | 172,5                   | 5,9  | 226,0                   | 27,0  | 590                      | 240   |
| JGB_513_14   | 343,0   | 75,2        | 0,2  | 0,0546      | 0,0031 | 0,219      | 0,013 | 0,029      | 0,001 | 0,5                    | 180,4                   | 6,9  | 204,0                   | 11,0  | 370                      | 110   |
| JGB_513_15   | 202,0   | 138,4       | 0,7  | 0,0556      | 0,0043 | 0,219      | 0,017 | 0,028      | 0,001 | 0,1                    | 179,5                   | 4,8  | 199,0                   | 14,0  | 400                      | 130   |
| JGB_513_16   | 77,4    | 26,3        | 0,3  | 0,0661      | 0,0085 | 0,248      | 0,031 | 0,027      | 0,001 | 0,2                    | 167,0                   | 5,7  | 225,0                   | 25,0  | 690                      | 220   |
| JGB_513_17   | 41,8    | 34,0        | 0,8  | 0,0620      | 0,0160 | 0,274      | 0,059 | 0,030      | 0,001 | 0,1                    | 189,6                   | 7,8  | 247,0                   | 49,0  | 190                      | 380   |
| JGB_513_18   | 103,5   | 78,4        | 0,8  | 0,0459      | 0,0065 | 0,176      | 0,025 | 0,027      | 0,001 | 0,2                    | 175,6                   | 5,0  | 166,0                   | 21,0  | 10                       | 220   |
| JGB_513_19   | 186,0   | 306,0       | 1,6  | 0,0556      | 0,0040 | 0,211      | 0,015 | 0,028      | 0,001 | 0,0                    | 176,1                   | 4,7  | 192,0                   | 12,0  | 340                      | 130   |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U   | 207Pb/206Pb | ±2s    | 207Pb/235U | ±2s   | 206Pb/238U | ±2s   | Correlación<br>errores | 206Pb/238U Edad<br>(Ma) | ±2s    | 207Pb/235U Edad<br>(Ma) | ±2s   | 207Pb/206Pb Edad<br>(Ma) | ±2s   |
|--------------|---------|-------------|--------|-------------|--------|------------|-------|------------|-------|------------------------|-------------------------|--------|-------------------------|-------|--------------------------|-------|
| JGB_513_20   | 195,0   | 47,3        | 0,2    | 0,0614      | 0,0065 | 0,216      | 0,023 | 0,026      | 0,001 | 0,5                    | 165,5                   | 8,8    | 200,0                   | 18,0  | 560                      | 190   |
| JGB_513_21   | 58,2    | 8,0         | 0,1    | 0,0700      | 0,0028 | 1,605      | 0,067 | 0,166      | 0,003 | 0,2                    | 990,8                   | 24,5   | 968,0                   | 26,0  | 908                      | 84    |
| JGB_513_22   | 230     | 60,3        | 0,3    | 0,0532      | 0,0040 | 0,246      | 0,021 | 0,034      | 0,001 | 0,6                    | 214,8                   | 9,4    | 220,0                   | 17,0  | 290                      | 140   |
| JGB_513_23   | 109,0   | 93,0        | 0,9    | 0,0693      | 0,0081 | 0,276      | 0,032 | 0,030      | 0,001 | 0,1                    | 183,6                   | 5,7    | 246,0                   | 26,0  | 780                      | 200   |
| JGB_513_24   | 13,9    | 3,2         | 0,2    | 0,1330      | 0,0650 | 0,270      | 0,160 | 0,026      | 0,002 | 0,0                    | 145,4                   | 16,3   | 400,0                   | 100,0 | 2,800                    | 1,400 |
| JGB_513_25   | 48,9    | 45,5        | 0,9    | 0,0870      | 0,0130 | 0,358      | 0,056 | 0,031      | 0,001 | 0,2                    | 188,9                   | 6,7    | 304,0                   | 42,0  | 790                      | 290   |
| JGB_513_26   | 46,5    | 48,7        | 1,0    | 0,0520      | 0,0130 | 0,212      | 0,050 | 0,029      | 0,001 | 0,0                    | 182,2                   | 6,9    | 195,0                   | 41,0  | 50                       | 340   |
| JGB_513_27   | 35,5    | 12,4        | 0,3    | 0,4400      | 0,0210 | 2,610      | 0,110 | 0,044      | 0,001 | 0,2                    | 144,6                   | 9,2    | 1,302,0                 | 30,0  | 4,023                    | 72    |
| JGB_513_28   | 2,048   | 1,9         | 0,9    | 0,8280      | 0,0630 | 36,300     | 2,800 | 0,340      | 0,022 | 0,6                    | 370,3                   | 145,9  | 3,642,0                 | 77,0  | 5,040                    | 160   |
| JGB_513_29   | 143,9   | 138,7       | 1,0    | 0,0527      | 0,0051 | 0,200      | 0,019 | 0,028      | 0,000 | 0,1                    | 176,7                   | 4,7    | 186,0                   | 16,0  | 240                      | 170   |
| JGB_513_30   | 221,3   | 216,5       | 1,0    | 0,0502      | 0,0037 | 0,191      | 0,013 | 0,027      | 0,000 | 0,0                    | 173,7                   | 4,4    | 178,0                   | 11,0  | 210                      | 130   |
| JGB_513_31   | 122,2   | 190,1       | 1,6    | 0,0561      | 0,0046 | 0,240      | 0,020 | 0,030      | 0,001 | 0,2                    | 190,3                   | 5,9    | 217,0                   | 16,0  | 390                      | 150   |
| JGB_513_32   | 114,7   | 100,8       | 0,9    | 0,0618      | 0,0067 | 0,232      | 0,025 | 0,027      | 0,001 | 0,1                    | 170,6                   | 4,9    | 199,0                   | 19,0  | 400                      | 190   |
| JGB_513_33   | 190,9   | 221,1       | 1,2    | 0,0679      | 0,0039 | 0,263      | 0,015 | 0,028      | 0,000 | 0,2                    | 174,1                   | 4,5    | 240,0                   | 12,0  | 820                      | 110   |
| JGB_513_34   | 125,5   | 120,4       | 1,0    | 0,0494      | 0,0051 | 0,181      | 0,019 | 0,027      | 0,000 | 0,1                    | 173,9                   | 4,6    | 170,0                   | 17,0  | 90                       | 180   |
| JGB_513_35   | 90,7    | 97,9        | 1,1    | 0,0506      | 0,0060 | 0,198      | 0,023 | 0,028      | 0,001 | 0,1                    | 180,5                   | 5,2    | 179,0                   | 19,0  | 170                      | 200   |
| JGB_513_36   | 97,7    | 64,2        | 0,7    | 0,0535      | 0,0057 | 0,224      | 0,023 | 0,030      | 0,001 | 0,2                    | 187,4                   | 6,3    | 200,0                   | 19,0  | 260                      | 180   |
| JGB_513_37   | 95,4    | 75,0        | 0,8    | 0,0596      | 0,0050 | 0,228      | 0,019 | 0,029      | 0,001 | 0,0                    | 179,9                   | 5,0    | 212,0                   | 16,0  | 460                      | 160   |
| JGB_513_38   | 280,7   | 116,1       | 0,4    | 0,0670      | 0,0014 | 0,955      | 0,021 | 0,104      | 0,001 | 0,4                    | 632,0                   | 14,3   | 679,0                   | 11,0  | 819                      | 43    |
| JGB_513_39   | 81,5    | 50,8        | 0,6    | 0,0477      | 0,0060 | 0,178      | 0,022 | 0,028      | 0,001 | 0,1                    | 177,0                   | 5,0    | 163,0                   | 19,0  | 80                       | 200   |
| JGB_513_40   | 67,3    | 40,2        | 0,6    | 0,0626      | 0,0074 | 0,252      | 0,029 | 0,029      | 0,001 | 0,2                    | 180,0                   | 5,5    | 225,0                   | 23,0  | 560                      | 210   |
| JGB_513_41   | 75,3    | 49,0        | 0,7    | 0,0569      | 0,0058 | 0,245      | 0,024 | 0,031      | 0,001 | 0,0                    | 192,1                   | 5,6    | 221,0                   | 20,0  | 440                      | 180   |
| JGB_513_42   | 98,6    | 50,1        | 0,5    | 0,0564      | 0,0049 | 0,221      | 0,019 | 0,029      | 0,001 | 0,2                    | 183,6                   | 5,0    | 206,0                   | 16,0  | 350                      | 150   |
| JGB_513_43   | 106,4   | 80,8        | 0,8    | 0,0509      | 0,0045 | 0,195      | 0,017 | 0,028      | 0,000 | 0,1                    | 177,0                   | 4,6    | 182,0                   | 15,0  | 250                      | 160   |
| JGB_513_44   | 116,6   | 54,1        | 0,5    | 0,0554      | 0,0044 | 0,219      | 0,017 | 0,029      | 0,001 | 0,2                    | 181,3                   | 5,0    | 200,0                   | 14,0  | 370                      | 140   |
| JGB_513_45   | 91,5    | 83,0        | 0,9    | 0,0502      | 0,0073 | 0,198      | 0,030 | 0,030      | 0,001 | 0,0                    | 187,5                   | 5,6    | 185,0                   | 26,0  | 170                      | 230   |
| JGB_513_46   | 129,1   | 89,6        | 0,7    | 0,0526      | 0,0040 | 0,224      | 0,018 | 0,031      | 0,001 | 0,1                    | 196,7                   | 5,5    | 206,0                   | 15,0  | 300                      | 140   |
| JGB_513_47   | 172,0   | 127,0       | 0,7    | 0,0548      | 0,0049 | 0,216      | 0,021 | 0,028      | 0,001 | 0,2                    | 177,1                   | 4,8    | 194,0                   | 18,0  | 360                      | 170   |
| JGB_513_48   | 112,3   | 131,5       | 1,2    | 0,0519      | 0,0048 | 0,196      | 0,018 | 0,027      | 0,001 | 0,1                    | 173,9                   | 4,8    | 180,0                   | 15,0  | 220                      | 160   |
| JGB_513_49   | 290,5   | 543,7       | 1,9    | 0,0494      | 0,0025 | 0,198      | 0,010 | 0,029      | 0,000 | 0,1                    | 182,0                   | 4,6    | 182,9                   | 8,5   | 164                      | 94    |
| JGB_513_50   | -7E-07  | 0,0         | ###### | no value    | NAN    | no value   | NAN   | no value   | NAN   | NaN                    | #¡VALOR!                | ###### | no value                | NAN   | no value                 | NAN   |
| JGB_513_51   | 962     | 75,8        | 0,1    | 0,0697      | 0,0008 | 1,323      | 0,024 | 0,137      | 0,002 | 0,8                    | 825,9                   | 19,8   | 854,0                   | 11,0  | 923                      | 24    |
| JGB_513_52   | 153,5   | 18,0        | 0,1    | 0,0532      | 0,0042 | 0,235      | 0,019 | 0,032      | 0,001 | 0,2                    | 203,4                   | 5,7    | 216,0                   | 15,0  | 300                      | 140   |
| JGB_513_53   | 120,0   | 135,9       | 1,1    | 0,0559      | 0,0049 | 0,209      | 0,017 | 0,028      | 0,001 | 0,0                    | 174,2                   | 4,7    | 188,0                   | 15,0  | 320                      | 160   |
| JGB_513_54   | 130,2   | 157,7       | 1,2    | 0,0538      | 0,0051 | 0,208      | 0,019 | 0,028      | 0,000 | 0,1                    | 177,0                   | 4,6    | 187,0                   | 16,0  | 240                      | 160   |
| JGB_513_55   | 0,0044  | 0,0         | 0,0    | no value    | NAN    | no value   | NAN   | no value   | NAN   | NaN                    | #¡VALOR!                | ###### | no value                | NAN   | no value                 | NAN   |
| JGB_513_56   | 24,6    | 10,8        | 0,4    | 0,1360      | 0,0440 | 0,460      | 0,130 | 0,029      | 0,002 | 0,0                    | 164,0                   | 14,3   | 322,0                   | 79,0  | 20                       | 580   |
| JGB_513_57   | 753,0   | 881,0       | 1,2    | 0,0638      | 0,0018 | 0,235      | 0,008 | 0,026      | 0,001 | 0,6                    | 162,0                   | 5,1    | 213,5                   | 6,8   | 722                      | 64    |
| JGB_513_58   | 225,0   | 366,0       | 1,6    | 0,0517      | 0,0035 | 0,216      | 0,014 | 0,030      | 0,001 | 0,1                    | 193,2                   | 5,0    | 199,0                   | 12,0  | 250                      | 120   |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U   | 207Pb/206Pb | ±2s    | 207Pb/235U | ±2s   | 206Pb/238U | ±2s   | Correlación<br>errores | 206Pb/238U Edad<br>(Ma) | ±2s    | 207Pb/235U Edad<br>(Ma) | ±2s  | 207Pb/206Pb Edad<br>(Ma) | ±2s |
|--------------|---------|-------------|--------|-------------|--------|------------|-------|------------|-------|------------------------|-------------------------|--------|-------------------------|------|--------------------------|-----|
| JGB_513_59   | 409,0   | 964,0       | 2,4    | 0,0484      | 0,0020 | 0,185      | 0,008 | 0,027      | 0,000 | 0,2                    | 174,0                   | 4,1    | 172,6                   | 6,6  | 121                      | 79  |
| JGB_513_60   | 158,7   | 169,5       | 1,1    | 0,0481      | 0,0038 | 0,180      | 0,014 | 0,027      | 0,000 | 0,0                    | 172,1                   | 4,3    | 167,0                   | 12,0 | 120                      | 130 |
| JGB_513_61   | 203,0   | 221,1       | 1,1    | 0,0519      | 0,0035 | 0,196      | 0,013 | 0,026      | 0,000 | 0,1                    | 167,7                   | 4,3    | 183,0                   | 11,0 | 290                      | 120 |
| JGB_513_62   | 201,9   | 217,0       | 1,1    | 0,0471      | 0,0035 | 0,177      | 0,013 | 0,027      | 0,000 | 0,0                    | 170,1                   | 4,2    | 167,0                   | 11,0 | 130                      | 130 |
| JGB_513_63   | 113,0   | 58,6        | 0,5    | 0,0528      | 0,0068 | 0,197      | 0,026 | 0,027      | 0,001 | 0,2                    | 172,2                   | 5,5    | 187,0                   | 21,0 | 290                      | 220 |
| JGB_513_64   | 539     | 30,2        | 0,1    | 0,0759      | 0,0011 | 1,690      | 0,029 | 0,161      | 0,002 | 0,6                    | 957,6                   | 21,9   | 1,007,0                 | 10,0 | 1,090                    | 29  |
| JGB_513_65   | 112,8   | 71,0        | 0,6    | 0,0495      | 0,0055 | 0,196      | 0,022 | 0,028      | 0,001 | 0,2                    | 180,0                   | 4,9    | 184,0                   | 18,0 | 170                      | 180 |
| JGB_513_66   | 167,9   | 154,6       | 0,9    | 0,0490      | 0,0037 | 0,193      | 0,015 | 0,028      | 0,001 | 0,1                    | 178,9                   | 4,9    | 179,0                   | 12,0 | 190                      | 140 |
| JGB_513_67   | 125,0   | 112,6       | 0,9    | 0,0485      | 0,0058 | 0,187      | 0,023 | 0,028      | 0,001 | 0,1                    | 176,9                   | 4,9    | 170,0                   | 19,0 | 40                       | 190 |
| JGB_513_68   | 124,7   | 135,6       | 1,1    | 0,0840      | 0,0075 | 0,344      | 0,031 | 0,029      | 0,001 | 0,1                    | 177,6                   | 5,4    | 292,0                   | 23,0 | 1,070                    | 180 |
| JGB_513_69   | 283,0   | 148,2       | 0,5    | 0,0555      | 0,0034 | 0,213      | 0,013 | 0,028      | 0,001 | 0,2                    | 176,0                   | 4,7    | 194,0                   | 11,0 | 370                      | 120 |
| JGB_513_70   | 267,0   | 454,0       | 1,7    | 0,0471      | 0,0030 | 0,179      | 0,011 | 0,028      | 0,000 | 0,1                    | 177,9                   | 4,5    | 169,1                   | 9,9  | 70                       | 110 |
| JGB_513_71   | 47,9    | 72,4        | 1,5    | 0,0610      | 0,0140 | 0,260      | 0,054 | 0,030      | 0,001 | 0,1                    | 187,9                   | 8,7    | 204,0                   | 47,0 | 60                       | 360 |
| JGB_513_72   | 496,0   | 735,0       | 1,5    | 0,0514      | 0,0025 | 0,189      | 0,009 | 0,027      | 0,001 | 0,2                    | 172,3                   | 4,6    | 174,9                   | 7,6  | 235                      | 92  |
| JGB_513_73   | 74,0    | 87,0        | 1,2    | 0,0498      | 0,0089 | 0,204      | 0,036 | 0,030      | 0,001 | 0,0                    | 188,4                   | 7,2    | 183,0                   | 31,0 | 120                      | 260 |
| JGB_513_74   | 233,0   | 199,1       | 0,9    | 0,0490      | 0,0041 | 0,191      | 0,016 | 0,028      | 0,000 | 0,1                    | 176,3                   | 4,5    | 174,0                   | 13,0 | 130                      | 140 |
| JGB_513_75   | 314,0   | 247,5       | 0,8    | 0,0515      | 0,0033 | 0,195      | 0,012 | 0,028      | 0,000 | 0,1                    | 175,5                   | 4,3    | 183,0                   | 11,0 | 270                      | 120 |
| JGB_513_76   | 60,2    | 87,2        | 1,4    | 0,0750      | 0,0100 | 0,312      | 0,043 | 0,030      | 0,001 | 0,1                    | 185,8                   | 6,5    | 276,0                   | 33,0 | 680                      | 260 |
| JGB_513_77   | 437,4   | 924,0       | 2,1    | 0,0494      | 0,0024 | 0,193      | 0,009 | 0,028      | 0,000 | 0,1                    | 177,1                   | 4,5    | 177,4                   | 7,6  | 180                      | 91  |
| JGB_513_78   | 261,8   | 387,4       | 1,5    | 0,0495      | 0,0032 | 0,194      | 0,013 | 0,028      | 0,001 | 0,2                    | 178,0                   | 5,0    | 181,0                   | 11,0 | 140                      | 120 |
| JGB_513_79   | -9E-07  | 0,0         | ###### | no value    | NAN    | no value   | NAN   | no value   | NAN   | NaN                    | #¡VALOR!                | ###### | no value                | NAN  | no value                 | NAN |
| JGB_513_80   | 150,5   | 179,2       | 1,2    | 0,0443      | 0,0051 | 0,173      | 0,019 | 0,028      | 0,001 | 0,0                    | 178,0                   | 4,9    | 164,0                   | 17,0 | 0                        | 180 |
| JGB_513_81   | 130,8   | 123,7       | 0,9    | 0,0497      | 0,0053 | 0,203      | 0,022 | 0,028      | 0,001 | 0,1                    | 180,7                   | 4,9    | 185,0                   | 18,0 | 160                      | 180 |
| JGB_513_82   | 132,4   | 123,1       | 0,9    | 0,0510      | 0,0050 | 0,199      | 0,020 | 0,028      | 0,001 | 0,2                    | 180,7                   | 5,3    | 186,0                   | 17,0 | 230                      | 170 |
| JGB_513_83   | 164,8   | 144,3       | 0,9    | 0,0595      | 0,0041 | 0,231      | 0,016 | 0,028      | 0,001 | 0,2                    | 175,9                   | 4,9    | 210,0                   | 13,0 | 500                      | 130 |
| JGB_513_84   | 180,6   | 169,6       | 0,9    | 0,0521      | 0,0045 | 0,196      | 0,016 | 0,027      | 0,001 | 0,1                    | 174,0                   | 4,9    | 179,0                   | 14,0 | 240                      | 150 |
| JGB_513_85   | 150,8   | 156,3       | 1,0    | 0,0497      | 0,0044 | 0,202      | 0,018 | 0,030      | 0,001 | 0,1                    | 189,8                   | 5,7    | 184,0                   | 15,0 | 150                      | 150 |
| JGB_513_86   | 204     | 132,3       | 0,6    | 0,0528      | 0,0033 | 0,239      | 0,016 | 0,032      | 0,001 | 0,2                    | 204,1                   | 5,2    | 216,0                   | 13,0 | 280                      | 120 |
| JGB_513_87   | 136,6   | 127,8       | 0,9    | 0,0452      | 0,0041 | 0,175      | 0,016 | 0,028      | 0,001 | 0,1                    | 181,4                   | 5,0    | 162,0                   | 14,0 | 10                       | 150 |
| JGB_513_88   | 93,9    | 76,3        | 0,8    | 0,0525      | 0,0061 | 0,203      | 0,024 | 0,029      | 0,001 | 0,1                    | 185,2                   | 6,1    | 189,0                   | 21,0 | 190                      | 200 |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/206Pb | ±2s    | 207Pb/<br>235U | ±2s    | 206Pb/238U | ±2s    | Correlación<br>errores | 206Pb/238U Edad<br>(Ma) | ±2s      | 207Pb/235U Edad<br>(Ma) | ±2s  | 207Pb/206Pb Edad<br>(Ma) | ±2s |
|--------------|---------|-------------|------|-------------|--------|----------------|--------|------------|--------|------------------------|-------------------------|----------|-------------------------|------|--------------------------|-----|
| GR_6792_01   | 122,8   | 94,0        | 0,8  | 0,0548      | 0,0067 | 0,2080         | 0,0250 | 0,0271     | 0,0005 | 0,1                    | 171,2                   | 5,4      | 193,0                   | 21,0 | 350                      | 210 |
| GR_6792_02   | 0,0     | 0,0         | 41,1 | no value    | NAN    | no value       | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ######## | no value                | NAN  | no value                 | NAN |
| GR_6792_03   | 101,1   | 94,6        | 0,9  | 0,0505      | 0,0081 | 0,1810         | 0,0300 | 0,0268     | 0,0006 | 0,1                    | 170,1                   | 5,7      | 173,0                   | 26,0 | 50                       | 250 |
| GR_6792_04   | 178,8   | 137,7       | 0,8  | 0,0620      | 0,0061 | 0,2250         | 0,0210 | 0,0264     | 0,0005 | 0,1                    | 165,3                   | 5,0      | 202,0                   | 17,0 | 500                      | 170 |
| GR_6792_05   | 94,8    | 63,5        | 0,7  | 0,0492      | 0,0086 | 0,1980         | 0,0340 | 0,0288     | 0,0008 | 0,1                    | 183,1                   | 6,6      | 178,0                   | 28,0 | 0                        | 260 |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/206Pb | ±2s    | 207Pb/<br>235U | ±2s    | 206Pb/238U | ±2s    | Correlación<br>errores | 206Pb/238U Edad<br>(Ma) | ±2s       | 207Pb/235U Edad<br>(Ma) | ±2s  | 207Pb/206Pb Edad<br>(Ma) | ±2s |
|--------------|---------|-------------|------|-------------|--------|----------------|--------|------------|--------|------------------------|-------------------------|-----------|-------------------------|------|--------------------------|-----|
| GR_6792_06   | 313,0   | 377,0       | 1,2  | 0,0495      | 0,0031 | 0,1950         | 0,0130 | 0,0281     | 0,0008 | 0,3                    | 178,8                   | 6,3       | 184,0                   | 11,0 | 210                      | 110 |
| GR_6792_07   | 172,8   | 141,0       | 0,8  | 0,0704      | 0,0064 | 0,2670         | 0,0240 | 0,0285     | 0,0005 | 0,0                    | 176,6                   | 5,5       | 237,0                   | 19,0 | 740                      | 170 |
| GR_6792_08   | 48,8    | 29,1        | 0,6  | 0,0570      | 0,0140 | 0,2370         | 0,0530 | 0,0301     | 0,0010 | 0,0                    | 189,5                   | 8,2       | 199,0                   | 45,0 | -30                      | 370 |
| GR_6792_09   | 231,8   | 159,6       | 0,7  | 0,0666      | 0,0051 | 0,2420         | 0,0190 | 0,0261     | 0,0005 | 0,1                    | 162,7                   | 4,8       | 217,0                   | 15,0 | 690                      | 140 |
| GR_6792_10   | 0,0     | 0,0         | 1,8  | no value    | NAN    | no value       | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ######### | no value                | NAN  | no value                 | NAN |
| GR_6792_11   | 0,0     | 0,0         | 2,4  | no value    | NAN    | no value       | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ######### | no value                | NAN  | no value                 | NAN |
| GR_6792_12   | 90,6    | 52,7        | 0,6  | 0,0604      | 0,0091 | 0,2230         | 0,0330 | 0,0262     | 0,0006 | 0,1                    | 164,3                   | 5,8       | 198,0                   | 27,0 | 280                      | 260 |
| GR_6792_13   | 0,0     | 0,0         | 0,3  | no value    | NAN    | no value       | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ########  | no value                | NAN  | no value                 | NAN |
| GR_6792_14   | 0,0     | 0,0         | 1,1  | no value    | NAN    | no value       | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ########  | no value                | NAN  | no value                 | NAN |
| GR_6792_15   | 206,6   | 199,0       | 1,0  | 0,0676      | 0,0049 | 0,2730         | 0,0200 | 0,0292     | 0,0005 | 0,3                    | 181,3                   | 5,4       | 240,0                   | 16,0 | 810                      | 140 |
| GR_6792_16   | 0,1     | 0,0         | 0,4  | no value    | NAN    | no value       | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ######### | no value                | NAN  | no value                 | NAN |
| GR_6792_17   | 42,4    | 32,3        | 0,8  | 0,0760      | 0,0170 | 0,2420         | 0,0590 | 0,0268     | 0,0010 | 0,1                    | 164,9                   | 8,2       | 219,0                   | 50,0 | 140                      | 400 |
| GR_6792_18   | 49,5    | 33,8        | 0,7  | 0,0580      | 0,0140 | 0,2510         | 0,0570 | 0,0332     | 0,0011 | 0,1                    | 208,5                   | 8,9       | 240,0                   | 47,0 | 70                       | 350 |
| GR_6792_19   | 335,0   | 539,0       | 1,6  | 0,0552      | 0,0033 | 0,2210         | 0,0130 | 0,0283     | 0,0005 | 0,1                    | 178,5                   | 5,1       | 201,0                   | 11,0 | 420                      | 120 |
| GR_6792_20   | 130,3   | 129,1       | 1,0  | 0,0486      | 0,0066 | 0,1860         | 0,0250 | 0,0275     | 0,0008 | 0,1                    | 174,9                   | 6,5       | 175,0                   | 21,0 | 160                      | 210 |
| GR_6792_21   | 143,7   | 136,5       | 0,9  | 0,0492      | 0,0057 | 0,1810         | 0,0210 | 0,0283     | 0,0007 | 0,1                    | 179,9                   | 6,0       | 179,0                   | 18,0 | 160                      | 190 |
| GR_6792_22   | 93,7    | 69,8        | 0,7  | 0,0814      | 0,0085 | 0,4150         | 0,0480 | 0,0371     | 0,0014 | 0,4                    | 226,0                   | 10,0      | 356,0                   | 34,0 | 930                      | 210 |
| GR_6792_23   | 407,7   | 772,0       | 1,9  | 0,0559      | 0,0031 | 0,2040         | 0,0120 | 0,0266     | 0,0006 | 0,3                    | 167,7                   | 5,5       | 188,0                   | 10,0 | 420                      | 110 |
| GR_6792_24   | 211,0   | 186,0       | 0,9  | 0,0510      | 0,0048 | 0,1860         | 0,0180 | 0,0268     | 0,0005 | 0,1                    | 170,2                   | 5,0       | 171,0                   | 15,0 | 180                      | 160 |
| GR_6792_25   | 420,0   | 629,0       | 1,5  | 0,0632      | 0,0031 | 0,2170         | 0,0100 | 0,0248     | 0,0004 | 0,1                    | 155,0                   | 4,2       | 198,9                   | 8,5  | 670                      | 100 |
| GR_6792_26   | 361,0   | 430,0       | 1,2  | 0,0532      | 0,0034 | 0,2010         | 0,0130 | 0,0271     | 0,0004 | 0,1                    | 171,6                   | 4,8       | 184,0                   | 11,0 | 330                      | 120 |
| GR_6792_27   | 158,6   | 137,4       | 0,9  | 0,0927      | 0,0068 | 0,3710         | 0,0280 | 0,0287     | 0,0006 | 0,3                    | 172,5                   | 5,5       | 322,0                   | 20,0 | 1360                     | 150 |
| GR_6792_28   | 97,4    | 86,2        | 0,9  | 0,0592      | 0,0094 | 0,2140         | 0,0340 | 0,0272     | 0,0008 | 0,1                    | 171,0                   | 6,6       | 189,0                   | 29,0 | 230                      | 270 |
| GR_6792_29   | 83,0    | 75,1        | 0,9  | 0,0540      | 0,0100 | 0,1940         | 0,0370 | 0,0272     | 0,0007 | 0,0                    | 172,2                   | 6,1       | 182,0                   | 32,0 | 120                      | 290 |
| GR_6792_30   | 190,2   | 135,7       | 0,7  | 0,0837      | 0,0071 | 0,3120         | 0,0260 | 0,0271     | 0,0005 | 0,1                    | 164,9                   | 5,2       | 260,0                   | 19,0 | 1000                     | 170 |
| GR_6792_31   | 0,0     | 0,0         | 0,8  | no value    | NAN    | no value       | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ########  | no value                | NAN  | no value                 | NAN |
| GR_6792_32   | 251,0   | 134,6       | 0,5  | 0,0453      | 0,0046 | 0,1700         | 0,0170 | 0,0279     | 0,0005 | 0,1                    | 178,5                   | 5,2       | 162,0                   | 15,0 | 10                       | 160 |
| GR_6792_33   | 164,3   | 66,8        | 0,4  | 0,0507      | 0,0059 | 0,1860         | 0,0210 | 0,0266     | 0,0007 | 0,1                    | 168,9                   | 6,1       | 171,0                   | 18,0 | 150                      | 190 |
| GR_6792_34   | 0,0     | 0,0         | 0,0  | no value    | NAN    | no value       | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ########  | no value                | NAN  | no value                 | NAN |
| GR_6792_35   | 265,0   | 208,0       | 0,8  | 0,0550      | 0,0041 | 0,2370         | 0,0180 | 0,0305     | 0,0009 | 0,3                    | 192,7                   | 7,0       | 213,0                   | 15,0 | 360                      | 140 |
| GR_6792_36   | 183,0   | 178,8       | 1,0  | 0,0456      | 0,0053 | 0,1780         | 0,0200 | 0,0296     | 0,0010 | 0,1                    | 188,7                   | 7,7       | 166,0                   | 17,0 | -20                      | 180 |
| GR_6792_37   | 157,3   | 144,3       | 0,9  | 0,0437      | 0,0063 | 0,1850         | 0,0240 | 0,0292     | 0,0009 | 0,0                    | 186,9                   | 7,1       | 168,0                   | 20,0 | -70                      | 210 |
| GR_6792_38   | 93,4    | 59,2        | 0,6  | 0,0580      | 0,0100 | 0,2130         | 0,0350 | 0,0266     | 0,0008 | 0,0                    | 167,2                   | 6,6       | 190,0                   | 30,0 | 290                      | 280 |
| GR_6792_39   | 328,4   | 370,0       | 1,1  | 0,0548      | 0,0040 | 0,2050         | 0,0150 | 0,0273     | 0,0006 | 0,1                    | 172,2                   | 5,5       | 193,0                   | 13,0 | 360                      | 140 |
| GR_6792_40   | 274,8   | 257,8       | 0,9  | 0,0471      | 0,0042 | 0,1760         | 0,0150 | 0,0271     | 0,0004 | 0,0                    | 173,1                   | 4,8       | 167,0                   | 13,0 | 140                      | 150 |
| GR_6792_41   | 0,0     | 0,1         | 1,6  | no value    | NAN    | no value       | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ########  | no value                | NAN  | no value                 | NAN |
| GR_6792_42   | 57,7    | 44,6        | 0,8  | 0,0410      | 0,0160 | 0,1850         | 0,0610 | 0,0273     | 0,0011 | 0,1                    | 175,5                   | 8,4       | 159,0                   | 50,0 | -510                     | 430 |
| GR_6792_43   | 112,7   | 85,1        | 0,8  | 0,0630      | 0,0085 | 0,2120         | 0,0290 | 0,0259     | 0,0007 | 0,1                    | 162,0                   | 6,1       | 200,0                   | 25,0 | 450                      | 230 |
| GR_6792_44   | 120,9   | 116,6       | 1,0  | 0,0853      | 0,0065 | 0,5520         | 0,0510 | 0,0475     | 0,0021 | 0,6                    | 287,0                   | 13,9      | 455,0                   | 33,0 | 1140                     | 170 |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U   | 207Pb/206Pb | ±2s    | 207Pb/<br>235U | ±2s    | 206Pb/238U | ±2s    | Correlación<br>errores | 206Pb/238U Edad<br>(Ma) | ±2s      | 207Pb/235U Edad<br>(Ma) | ±2s   | 207Pb/206Pb Edad<br>(Ma) | ±2s  |
|--------------|---------|-------------|--------|-------------|--------|----------------|--------|------------|--------|------------------------|-------------------------|----------|-------------------------|-------|--------------------------|------|
| GR_6792_45   | 222,3   | 205,8       | 0,9    | 0,0812      | 0,0046 | 0,5650         | 0,0330 | 0,0494     | 0,0012 | 0,3                    | 299,9                   | 9,8      | 454,0                   | 22,0  | 1200                     | 110  |
| GR_6792_46   | 86,2    | 85,6        | 1,0    | 0,0570      | 0,0140 | 0,2190         | 0,0530 | 0,0296     | 0,0010 | 0,1                    | 186,4                   | 8,2      | 206,0                   | 46,0  | 50                       | 360  |
| GR_6792_47   | 167,9   | 203,0       | 1,2    | 0,1280      | 0,0130 | 0,5910         | 0,0700 | 0,0328     | 0,0010 | 0,7                    | 188,0                   | 8,2      | 434,0                   | 42,0  | 1710                     | 220  |
| GR_6792_48   | 123,1   | 99,8        | 0,8    | 0,1520      | 0,0140 | 0,6210         | 0,0520 | 0,0298     | 0,0008 | 0,1                    | 165,4                   | 7,0      | 481,0                   | 34,0  | 2090                     | 190  |
| GR_6792_49   | 519,0   | 677,0       | 1,3    | 0,0548      | 0,0038 | 0,1980         | 0,0130 | 0,0265     | 0,0004 | 0,0                    | 167,3                   | 4,7      | 181,0                   | 11,0  | 300                      | 130  |
| GR_6792_50   | 472,0   | 384,0       | 0,8    | 0,0570      | 0,0041 | 0,2170         | 0,0150 | 0,0280     | 0,0005 | 0,1                    | 176,3                   | 5,2      | 199,0                   | 12,0  | 390                      | 130  |
| GR_6792_51   | 1196,0  | 2440,0      | 2,0    | 0,0561      | 0,0028 | 0,2290         | 0,0120 | 0,0295     | 0,0007 | 0,3                    | 186,1                   | 6,1      | 209,0                   | 10,0  | 410                      | 100  |
| GR_6792_52   | 247,6   | 186,5       | 0,8    | 0,0850      | 0,0110 | 0,3290         | 0,0410 | 0,0281     | 0,0007 | 0,0                    | 170,8                   | 6,1      | 289,0                   | 31,0  | 1010                     | 240  |
| GR_6792_53   | 128,9   | 73,4        | 0,6    | 0,0870      | 0,0190 | 0,3720         | 0,0780 | 0,0301     | 0,0011 | 0,2                    | 182,4                   | 9,1      | 309,0                   | 58,0  | 370                      | 440  |
| GR_6792_54   | 72,3    | 41,2        | 0,6    | 0,1270      | 0,0460 | 0,3400         | 0,1400 | 0,0298     | 0,0017 | 0,1                    | 171,2                   | 15,1     | 415,0                   | 89,0  | -890                     | 930  |
| GR_6792_55   | 324,0   | 479,0       | 1,5    | 0,0626      | 0,0091 | 0,3020         | 0,0550 | 0,0327     | 0,0011 | 0,1                    | 204,3                   | 9,0      | 237,0                   | 32,0  | 460                      | 250  |
| GR_6792_56   | 226,9   | 171,4       | 0,8    | 0,0616      | 0,0098 | 0,2860         | 0,0430 | 0,0327     | 0,0010 | 0,0                    | 204,5                   | 7,9      | 235,0                   | 35,0  | 400                      | 270  |
| GR_6792_57   | 91,9    | 77,5        | 0,8    | 0,1810      | 0,0890 | 0,4200         | 0,1400 | 0,0298     | 0,0018 | 0,1                    | 158,4                   | 23,2     | 427,0                   | 86,0  | -1300                    | 1500 |
| GR_6792_58   | 49,4    | 34,3        | 0,7    | 0,1460      | 0,0990 | 0,3000         | 0,1700 | 0,0317     | 0,0022 | 0,1                    | 177,2                   | 27,8     | 320,0                   | 120,0 | -2400                    | 2300 |
| GR_6792_59   | 202,6   | 192,2       | 0,9    | 0,2250      | 0,0360 | 1,1400         | 0,1800 | 0,0363     | 0,0016 | 0,1                    | 180,2                   | 13,8     | 617,0                   | 56,0  | 2170                     | 270  |
| GR_6792_60   | 0,0     | 0,1         | 3,4    | no value    | NAN    | no value       | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ######## | no value                | NAN   | no value                 | NAN  |
| GR_6792_61   | 0,0     | 0,0         | -229,3 | no value    | NAN    | no value       | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ######## | no value                | NAN   | no value                 | NAN  |
| GR_6792_62   | 347,0   | 313,0       | 0,9    | 0,0896      | 0,0079 | 0,3020         | 0,0250 | 0,0248     | 0,0006 | 0,1                    | 149,7                   | 5,1      | 276,0                   | 20,0  | 1240                     | 170  |
| GR_6792_63   | 453,0   | 541,0       | 1,2    | 0,0468      | 0,0041 | 0,1660         | 0,0140 | 0,0257     | 0,0005 | 0,0                    | 164,2                   | 5,0      | 156,0                   | 13,0  | 90                       | 150  |
| GR_6792_64   | 185,0   | 70,5        | 0,4    | 0,0611      | 0,0088 | 0,2330         | 0,0330 | 0,0284     | 0,0007 | 0,1                    | 178,1                   | 6,3      | 212,0                   | 26,0  | 430                      | 240  |
| GR_6792_65   | 183,0   | 105,0       | 0,6    | 0,0494      | 0,0083 | 0,2020         | 0,0340 | 0,0293     | 0,0008 | 0,1                    | 186,1                   | 7,2      | 186,0                   | 27,0  | 20                       | 250  |
| GR_6792_66   | 120,0   | 53,7        | 0,4    | 0,0440      | 0,0120 | 0,1760         | 0,0440 | 0,0276     | 0,0008 | 0,0                    | 176,8                   | 7,5      | 153,0                   | 39,0  | -120                     | 330  |
| GR_6792_67   | 0,0     | 0,0         | -207,3 | no value    | NAN    | no value       | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ######## | no value                | NAN   | no value                 | NAN  |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/206Pb | ±2s    | 207Pb/235U | ±2s    | 206Pb/238U | ±2s    | Correlación<br>errores | 206Pb/238U Edad<br>(Ma) | ±2s  | 207Pb/235U Edad<br>(Ma) | ±2s  | 207Pb/206Pb Edad<br>(Ma) | ±2s |
|--------------|---------|-------------|------|-------------|--------|------------|--------|------------|--------|------------------------|-------------------------|------|-------------------------|------|--------------------------|-----|
| GR_6768_01   | 143     | 99,6        | 0,7  | 0,1550      | 0,0200 | 0,7600     | 0,1200 | 0,0348     | 0,0014 | 0,7                    | 192,0                   | 11,2 | 532,0                   | 63,0 | 1680                     | 240 |
| GR_6768_02   | 186,9   | 304         | 1,6  | 0,0505      | 0,0047 | 0,1790     | 0,0170 | 0,0265     | 0,0006 | 0,1                    | 168,6                   | 6,0  | 164,0                   | 14,0 | 150                      | 160 |
| GR_6768_03   | 96,6    | 57,3        | 0,6  | 0,0516      | 0,0089 | 0,1800     | 0,0310 | 0,0262     | 0,0006 | 0,1                    | 166,4                   | 6,4  | 165,0                   | 27,0 | 30                       | 260 |
| GR_6768_04   | 169,3   | 124,2       | 0,7  | 0,0559      | 0,0056 | 0,1970     | 0,0190 | 0,0263     | 0,0005 | 0,1                    | 166,0                   | 5,8  | 176,0                   | 16,0 | 300                      | 180 |
| GR_6768_05   | 179,2   | 151,2       | 0,8  | 0,0459      | 0,0052 | 0,1690     | 0,0190 | 0,0270     | 0,0005 | 0,1                    | 172,3                   | 5,9  | 161,0                   | 16,0 | 50                       | 170 |
| GR_6768_06   | 222,7   | 230,9       | 1,0  | 0,0601      | 0,0046 | 0,2160     | 0,0160 | 0,0266     | 0,0004 | 0,0                    | 167,1                   | 5,5  | 196,0                   | 13,0 | 490                      | 140 |
| GR_6768_07   | 326,8   | 305,8       | 0,9  | 0,0497      | 0,0035 | 0,1700     | 0,0120 | 0,0252     | 0,0004 | 0,1                    | 160,5                   | 5,2  | 157,0                   | 10,0 | 160                      | 130 |
| GR_6768_08   | 210,7   | 144,7       | 0,7  | 0,0496      | 0,0042 | 0,1700     | 0,0140 | 0,0257     | 0,0005 | 0,0                    | 163,7                   | 5,5  | 160,0                   | 12,0 | 130                      | 140 |
| GR_6768_09   | 124,7   | 86,2        | 0,7  | 0,0785      | 0,0081 | 0,2920     | 0,0320 | 0,0273     | 0,0006 | 0,3                    | 167,6                   | 6,2  | 245,0                   | 24,0 | 880                      | 200 |
| GR_6768_10   | 241,4   | 258,7       | 1,1  | 0,0543      | 0,0043 | 0,1960     | 0,0150 | 0,0262     | 0,0004 | 0,1                    | 165,7                   | 5,4  | 180,0                   | 13,0 | 360                      | 150 |
| GR_6768_11   | 185,8   | 140,7       | 0,8  | 0,0573      | 0,0052 | 0,2070     | 0,0180 | 0,0270     | 0,0005 | 0,1                    | 170,0                   | 6,0  | 191,0                   | 16,0 | 380                      | 170 |
| GR_6768_12   | 306,5   | 204,9       | 0,7  | 0,0496      | 0,0031 | 0,1770     | 0,0110 | 0,0263     | 0,0004 | 0,2                    | 167,4                   | 5,3  | 163,5                   | 9,6  | 150                      | 110 |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/206Pb | ±2s    | 207Pb/235U | ±2s    | 206Pb/238U | ±2s    | Correlación<br>errores | 206Pb/238U Edad<br>(Ma) | ±2s  | 207Pb/235U Edad<br>(Ma) | ±2s   | 207Pb/206Pb Edad<br>(Ma) | ±2s |
|--------------|---------|-------------|------|-------------|--------|------------|--------|------------|--------|------------------------|-------------------------|------|-------------------------|-------|--------------------------|-----|
| GR_6768_13   | 10,46   | 6,49        | 0,6  | 0,1670      | 0,0410 | 0,8600     | 0,1800 | 0,0402     | 0,0032 | 0,1                    | 217,8                   | 22,7 | 630,0                   | 100,0 | 1050                     | 620 |
| GR_6768_14   | 116,7   | 84,1        | 0,7  | 0,0450      | 0,0050 | 0,1570     | 0,0170 | 0,0265     | 0,0006 | 0,1                    | 169,6                   | 6,2  | 146,0                   | 15,0  | 20                       | 170 |
| GR_6768_15   | 94,3    | 57,8        | 0,6  | 0,1073      | 0,0092 | 0,4100     | 0,0310 | 0,0292     | 0,0007 | 0,1                    | 172,1                   | 6,5  | 342,0                   | 21,0  | 1480                     | 160 |
| GR_6768_16   | 236     | 158         | 0,7  | 0,0524      | 0,0038 | 0,1940     | 0,0140 | 0,0271     | 0,0004 | 0,2                    | 172,0                   | 5,6  | 179,0                   | 12,0  | 300                      | 130 |
| GR_6768_17   | 95,1    | 77,6        | 0,8  | 0,0506      | 0,0056 | 0,2060     | 0,0230 | 0,0294     | 0,0006 | 0,1                    | 186,5                   | 6,5  | 185,0                   | 20,0  | 170                      | 190 |
| GR_6768_18   | 114,7   | 85          | 0,7  | 0,0513      | 0,0051 | 0,1750     | 0,0180 | 0,0253     | 0,0005 | 0,1                    | 160,5                   | 5,7  | 163,0                   | 16,0  | 270                      | 170 |
| GR_6768_19   | 144,9   | 94,4        | 0,7  | 0,0438      | 0,0041 | 0,1600     | 0,0150 | 0,0268     | 0,0005 | 0,1                    | 171,4                   | 5,8  | 148,0                   | 13,0  | -30                      | 150 |
| GR_6768_20   | 209,7   | 113         | 0,5  | 0,0477      | 0,0038 | 0,1710     | 0,0140 | 0,0262     | 0,0004 | 0,1                    | 167,1                   | 5,4  | 160,0                   | 12,0  | 120                      | 140 |
| GR_6768_21   | 115,1   | 83,2        | 0,7  | 0,0519      | 0,0043 | 0,1960     | 0,0170 | 0,0275     | 0,0005 | 0,1                    | 174,6                   | 5,8  | 184,0                   | 14,0  | 300                      | 140 |
| GR_6768_22   | 115,6   | 70,1        | 0,6  | 0,0466      | 0,0046 | 0,1940     | 0,0190 | 0,0300     | 0,0005 | 0,1                    | 191,0                   | 6,3  | 177,0                   | 16,0  | 40                       | 160 |
| GR_6768_23   | 97,6    | 56,9        | 0,6  | 0,0572      | 0,0060 | 0,1910     | 0,0200 | 0,0249     | 0,0005 | 0,0                    | 156,7                   | 5,6  | 178,0                   | 17,0  | 280                      | 190 |
| GR_6768_24   | 105,6   | 46,1        | 0,4  | 0,0576      | 0,0061 | 0,2060     | 0,0210 | 0,0259     | 0,0006 | 0,2                    | 163,4                   | 5,9  | 180,0                   | 17,0  | 320                      | 180 |
| GR_6768_25   | 124,9   | 203,6       | 1,6  | 0,0464      | 0,0051 | 0,1800     | 0,0200 | 0,0285     | 0,0005 | 0,0                    | 182,0                   | 6,3  | 163,0                   | 17,0  | -20                      | 180 |
| GR_6768_26   | 360,2   | 218,7       | 0,6  | 0,0475      | 0,0025 | 0,1746     | 0,0092 | 0,0272     | 0,0004 | 0,1                    | 173,2                   | 5,5  | 164,3                   | 8,0   | 103                      | 93  |
| GR_6768_27   | 76,6    | 24,4        | 0,3  | 0,0499      | 0,0071 | 0,1890     | 0,0270 | 0,0277     | 0,0007 | 0,1                    | 175,9                   | 6,5  | 178,0                   | 23,0  | 90                       | 220 |
| GR_6768_28   | 187,9   | 93,7        | 0,5  | 0,0523      | 0,0040 | 0,1870     | 0,0150 | 0,0260     | 0,0004 | 0,2                    | 164,9                   | 5,4  | 170,0                   | 12,0  | 240                      | 140 |
| GR_6768_29   | 239,1   | 168,2       | 0,7  | 0,0553      | 0,0037 | 0,2200     | 0,0160 | 0,0278     | 0,0005 | 0,5                    | 175,6                   | 5,9  | 200,0                   | 13,0  | 380                      | 120 |
| GR_6768_30   | 208,3   | 127         | 0,6  | 0,0508      | 0,0035 | 0,2020     | 0,0140 | 0,0292     | 0,0005 | 0,1                    | 185,5                   | 6,2  | 186,0                   | 12,0  | 200                      | 130 |
| GR_6768_31   | 190,4   | 114,4       | 0,6  | 0,0520      | 0,0040 | 0,1940     | 0,0150 | 0,0274     | 0,0005 | 0,2                    | 173,6                   | 5,8  | 177,0                   | 13,0  | 230                      | 140 |
| GR_6768_32   | 132,1   | 62,5        | 0,5  | 0,0479      | 0,0056 | 0,1880     | 0,0210 | 0,0270     | 0,0005 | 0,1                    | 172,3                   | 6,0  | 172,0                   | 18,0  | 210                      | 180 |
| GR_6768_33   | 207,6   | 132,5       | 0,6  | 0,0709      | 0,0052 | 0,2560     | 0,0190 | 0,0268     | 0,0004 | 0,1                    | 165,6                   | 5,6  | 227,0                   | 15,0  | 820                      | 140 |
| GR_6768_34   | 235,1   | 160,7       | 0,7  | 0,0467      | 0,0039 | 0,1680     | 0,0140 | 0,0266     | 0,0005 | 0,2                    | 170,0                   | 5,7  | 153,0                   | 12,0  | 0                        | 140 |
| GR_6768_35   | 97,7    | 65,2        | 0,7  | 0,0558      | 0,0069 | 0,2060     | 0,0250 | 0,0282     | 0,0006 | 0,0                    | 177,8                   | 6,5  | 185,0                   | 21,0  | 230                      | 210 |
| GR_6768_36   | 174,2   | 174         | 1,0  | 0,0567      | 0,0046 | 0,2260     | 0,0190 | 0,0291     | 0,0005 | 0,2                    | 183,1                   | 6,3  | 207,0                   | 16,0  | 400                      | 150 |
| GR_6768_37   | 152,8   | 100,7       | 0,7  | 0,0570      | 0,0057 | 0,1980     | 0,0200 | 0,0253     | 0,0005 | 0,1                    | 159,3                   | 5,5  | 182,0                   | 16,0  | 380                      | 170 |
| GR_6768_38   | 218,8   | 177,4       | 0,8  | 0,0519      | 0,0043 | 0,1890     | 0,0150 | 0,0265     | 0,0005 | 0,1                    | 167,8                   | 5,6  | 176,0                   | 13,0  | 260                      | 150 |
| GR_6768_39   | 93,5    | 62,7        | 0,7  | 0,0990      | 0,0130 | 0,4260     | 0,0620 | 0,0294     | 0,0010 | 0,4                    | 175,1                   | 8,4  | 332,0                   | 42,0  | 1320                     | 270 |
| GR_6768_40   | 246,5   | 254,4       | 1,0  | 0,0475      | 0,0040 | 0,1780     | 0,0150 | 0,0268     | 0,0005 | 0,1                    | 170,8                   | 5,8  | 164,0                   | 12,0  | 90                       | 140 |
| GR_6768_41   | 233     | 214         | 0,9  | 0,0484      | 0,0039 | 0,1730     | 0,0140 | 0,0265     | 0,0005 | 0,1                    | 168,6                   | 5,7  | 163,0                   | 11,0  | 120                      | 130 |
| GR_6768_42   | 392,5   | 323         | 0,8  | 0,0512      | 0,0028 | 0,1890     | 0,0110 | 0,0270     | 0,0004 | 0,1                    | 171,3                   | 5,4  | 175,1                   | 9,2   | 260                      | 100 |
| GR_6768_43   | 153,2   | 88,5        | 0,6  | 0,0643      | 0,0062 | 0,2340     | 0,0230 | 0,0263     | 0,0006 | 0,3                    | 164,2                   | 6,1  | 212,0                   | 19,0  | 600                      | 180 |
| GR_6768_44   | 244,9   | 275         | 1,1  | 0,0540      | 0,0043 | 0,2080     | 0,0160 | 0,0282     | 0,0005 | 0,1                    | 178,1                   | 6,0  | 189,0                   | 13,0  | 320                      | 140 |
| GR_6768_45   | 249     | 237         | 1,0  | 0,0569      | 0,0045 | 0,2200     | 0,0170 | 0,0278     | 0,0005 | 0,2                    | 175,0                   | 6,0  | 198,0                   | 14,0  | 390                      | 150 |
| GR_6768_46   | 239     | 182,1       | 0,8  | 0,0575      | 0,0056 | 0,2100     | 0,0210 | 0,0270     | 0,0005 | 0,2                    | 169,9                   | 5,9  | 186,0                   | 17,0  | 390                      | 170 |
| GR_6768_47   | 160,7   | 126,3       | 0,8  | 0,0497      | 0,0071 | 0,1760     | 0,0250 | 0,0255     | 0,0006 | 0,1                    | 162,1                   | 6,1  | 158,0                   | 21,0  | 50                       | 230 |
| GR_6768_48   | 677     | 1132        | 1,7  | 0,0553      | 0,0022 | 0,1997     | 0,0082 | 0,0262     | 0,0003 | 0,1                    | 165,4                   | 5,1  | 183,6                   | 6,9   | 427                      | 84  |
| GR_6768_49   | 417     | 696         | 1,7  | 0,0574      | 0,0035 | 0,2080     | 0,0120 | 0,0262     | 0,0004 | 0,1                    | 165,1                   | 5,4  | 191,0                   | 10,0  | 480                      | 110 |
| GR_6768_50   | 224,2   | 151,3       | 0,7  | 0,0450      | 0,0040 | 0,1730     | 0,0150 | 0,0289     | 0,0006 | 0,1                    | 184,9                   | 6,5  | 159,0                   | 13,0  | -70                      | 140 |
| GR_6768_51   | 180,2   | 170,3       | 0,9  | 0,0532      | 0,0047 | 0,1960     | 0,0170 | 0,0264     | 0,0005 | 0,1                    | 167,3                   | 5,9  | 180,0                   | 14,0  | 290                      | 150 |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/206Pb | ±2s    | 207Pb/235U | ±2s    | 206Pb/238U | ±2s    | Correlación<br>errores | 206Pb/238U Edad<br>(Ma) | ±2s | 207Pb/235U Edad<br>(Ma) | ±2s  | 207Pb/206Pb Edad<br>(Ma) | ±2s |
|--------------|---------|-------------|------|-------------|--------|------------|--------|------------|--------|------------------------|-------------------------|-----|-------------------------|------|--------------------------|-----|
| GR_6768_52   | 211,4   | 115,9       | 0,5  | 0,0545      | 0,0049 | 0,2050     | 0,0190 | 0,0274     | 0,0005 | 0,1                    | 173,2                   | 5,8 | 183,0                   | 16,0 | 200                      | 160 |
| GR_6768_53   | 163     | 132         | 0,8  | 0,0514      | 0,0044 | 0,2030     | 0,0180 | 0,0298     | 0,0006 | 0,2                    | 189,2                   | 6,4 | 187,0                   | 15,0 | 230                      | 150 |
| GR_6768_54   | 330     | 259         | 0,8  | 0,0566      | 0,0031 | 0,2180     | 0,0120 | 0,0281     | 0,0004 | 0,1                    | 177,1                   | 5,7 | 198,0                   | 10,0 | 400                      | 110 |
| GR_6768_55   | 157,5   | 84,1        | 0,5  | 0,0572      | 0,0051 | 0,2070     | 0,0190 | 0,0266     | 0,0005 | 0,2                    | 167,5                   | 5,7 | 191,0                   | 15,0 | 390                      | 160 |
| GR_6768_56   | 134,6   | 67,7        | 0,5  | 0,0554      | 0,0057 | 0,2050     | 0,0200 | 0,0272     | 0,0005 | 0,1                    | 171,9                   | 5,9 | 185,0                   | 16,0 | 250                      | 160 |
| GR_6768_57   | 212     | 127,3       | 0,6  | 0,0515      | 0,0035 | 0,1910     | 0,0130 | 0,0268     | 0,0005 | 0,2                    | 170,3                   | 5,6 | 174,0                   | 11,0 | 300                      | 120 |
| GR_6768_58   | 185     | 243         | 1,3  | 0,0580      | 0,0042 | 0,2330     | 0,0170 | 0,0289     | 0,0005 | 0,2                    | 181,7                   | 6,1 | 210,0                   | 14,0 | 470                      | 140 |
| GR_6768_59   | 133     | 78,5        | 0,6  | 0,0499      | 0,0044 | 0,1890     | 0,0170 | 0,0273     | 0,0005 | 0,0                    | 173,7                   | 6,0 | 173,0                   | 14,0 | 160                      | 150 |
| GR_6768_60   | 345     | 247         | 0,7  | 0,0528      | 0,0033 | 0,2100     | 0,0140 | 0,0289     | 0,0005 | 0,3                    | 182,7                   | 6,1 | 191,0                   | 12,0 | 360                      | 110 |
| GR_6768_61   | 157,1   | 124,8       | 0,8  | 0,0467      | 0,0037 | 0,1730     | 0,0140 | 0,0270     | 0,0005 | 0,2                    | 172,5                   | 5,7 | 162,0                   | 12,0 | 130                      | 140 |
| GR_6768_62   | 124,8   | 80,3        | 0,6  | 0,0902      | 0,0066 | 0,3340     | 0,0260 | 0,0267     | 0,0005 | 0,3                    | 161,3                   | 5,8 | 288,0                   | 19,0 | 1250                     | 150 |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/206Pb | ±2s    | 207Pb/235U | ±2s    | 206Pb/238U | ±2s    | Correlación<br>errores | 206Pb/238U Edad<br>(Ma) | ±2s      | 207Pb/235U Edad<br>(Ma) | ±2s   | 207Pb/206Pb Edad<br>(Ma) | ±2s  |
|--------------|---------|-------------|------|-------------|--------|------------|--------|------------|--------|------------------------|-------------------------|----------|-------------------------|-------|--------------------------|------|
| GR_6765_01   | 0,002   | 0,07        | 38,9 | no value    | NAN    | no value   | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ######## | no value                | NAN   | no value                 | NAN  |
| GR_6765_03   | 75,7    | 63,8        | 0,8  | 0,1010      | 0,0100 | 0,4150     | 0,0450 | 0,0287     | 0,0009 | 0,5                    | 170,6                   | 7,0      | 338,0                   | 32,0  | 1340                     | 220  |
| GR_6765_04   | 252     | 225         | 0,9  | 0,0513      | 0,0037 | 0,1950     | 0,0150 | 0,0269     | 0,0005 | 0,3                    | 170,9                   | 5,1      | 178,0                   | 12,0  | 280                      | 130  |
| GR_6765_05   | 140,1   | 186         | 1,3  | 0,0622      | 0,0050 | 0,2460     | 0,0190 | 0,0291     | 0,0006 | 0,1                    | 182,0                   | 5,7      | 220,0                   | 16,0  | 550                      | 150  |
| GR_6765_06   | 55,4    | 72,5        | 1,3  | 0,0633      | 0,0091 | 0,2350     | 0,0330 | 0,0268     | 0,0009 | 0,2                    | 167,6                   | 6,5      | 207,0                   | 28,0  | 540                      | 240  |
| GR_6765_07   | 0,097   | 0,108       | 1,1  | no value    | NAN    | no value   | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ######## | no value                | NAN   | no value                 | NAN  |
| GR_6765_08   | 234     | 290         | 1,2  | 0,0606      | 0,0050 | 0,2270     | 0,0180 | 0,0266     | 0,0005 | 0,1                    | 166,8                   | 5,1      | 206,0                   | 14,0  | 530                      | 150  |
| GR_6765_09   | 6,33    | 4,85        | 0,8  | 0,2800      | 0,1200 | 1,0000     | 0,4300 | 0,0412     | 0,0051 | 0,1                    | 186,7                   | 45,2     | 850,0                   | 200,0 | -100                     | 1700 |
| GR_6765_10   | 52,4    | 66,3        | 1,3  | 0,1300      | 0,0210 | 0,5250     | 0,0810 | 0,0290     | 0,0014 | 0,1                    | 165,9                   | 9,8      | 395,0                   | 56,0  | 1760                     | 340  |
| GR_6765_11   | 46,3    | 35,46       | 0,8  | 0,0540      | 0,0110 | 0,1910     | 0,0370 | 0,0251     | 0,0008 | 0,1                    | 159,1                   | 6,6      | 157,0                   | 32,0  | 10                       | 310  |
| GR_6765_12   | 273     | 49,4        | 0,2  | 0,1043      | 0,0029 | 1,5540     | 0,0440 | 0,1093     | 0,0022 | 0,4                    | 635,0                   | 19,0     | 949,0                   | 18,0  | 1684                     | 51   |
| GR_6765_13   | 37,81   | 23,88       | 0,6  | 0,0710      | 0,0120 | 0,2590     | 0,0420 | 0,0274     | 0,0010 | 0,1                    | 169,6                   | 7,8      | 210,0                   | 34,0  | 470                      | 290  |
| GR_6765_14   | 100,6   | 53,8        | 0,5  | 0,0748      | 0,0070 | 0,2980     | 0,0270 | 0,0291     | 0,0008 | 0,1                    | 179,0                   | 6,3      | 270,0                   | 21,0  | 880                      | 180  |
| GR_6765_15   | 43,5    | 32,5        | 0,7  | 0,0630      | 0,0110 | 0,2430     | 0,0380 | 0,0284     | 0,0009 | 0,2                    | 177,6                   | 7,2      | 193,0                   | 31,0  | 200                      | 270  |
| GR_6765_16   | 38,5    | 45,8        | 1,2  | 0,0760      | 0,0130 | 0,2800     | 0,0420 | 0,0291     | 0,0010 | 0,0                    | 178,9                   | 7,9      | 267,0                   | 33,0  | 660                      | 290  |
| GR_6765_17   | 80,9    | 43,1        | 0,5  | 0,0815      | 0,0076 | 0,3360     | 0,0280 | 0,0297     | 0,0009 | 0,1                    | 181,0                   | 6,9      | 293,0                   | 22,0  | 1010                     | 180  |
| GR_6765_18   | 71,1    | 41,6        | 0,6  | 0,0488      | 0,0064 | 0,2040     | 0,0250 | 0,0289     | 0,0010 | 0,2                    | 183,8                   | 7,7      | 183,0                   | 21,0  | 150                      | 190  |
| GR_6765_19   | 52,3    | 39,4        | 0,8  | 0,0578      | 0,0077 | 0,2160     | 0,0290 | 0,0274     | 0,0007 | 0,1                    | 172,5                   | 5,9      | 200,0                   | 24,0  | 330                      | 220  |
| GR_6765_2    | 150     | 75          | 0,5  | 0,0463      | 0,0051 | 0,1910     | 0,0210 | 0,0307     | 0,0007 | 0,3                    | 195,9                   | 6,3      | 183,0                   | 17,0  | 100                      | 170  |
| GR_6765_20   | 34,16   | 25,34       | 0,7  | 0,1650      | 0,0150 | 0,7080     | 0,0690 | 0,0300     | 0,0010 | 0,4                    | 163,3                   | 7,5      | 525,0                   | 42,0  | 2310                     | 180  |
| GR_6765_21   | 133     | 50,7        | 0,4  | 0,0664      | 0,0051 | 0,2580     | 0,0200 | 0,0283     | 0,0008 | 0,3                    | 176,4                   | 6,3      | 228,0                   | 16,0  | 750                      | 140  |
| GR_6765_22   | 89,6    | 52,6        | 0,6  | 0,0589      | 0,0054 | 0,2080     | 0,0200 | 0,0256     | 0,0006 | 0,2                    | 160,9                   | 5,4      | 191,0                   | 16,0  | 430                      | 170  |
| GR_6765_23   | 178,3   | 115,6       | 0,6  | 0,0637      | 0,0036 | 0,2400     | 0,0150 | 0,0268     | 0,0006 | 0,5                    | 167,7                   | 5,3      | 217,0                   | 12,0  | 640                      | 120  |
| GR_6765_24   | 51,6    | 27,5        | 0,5  | 0,0790      | 0,0100 | 0,3090     | 0,0380 | 0,0282     | 0,0009 | 0,0                    | 172,7                   | 7,1      | 281,0                   | 29,0  | 920                      | 230  |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/206Pb | ±2s    | 207Pb/235U | ±2s    | 206Pb/238U | ±2s    | Correlación<br>errores | 206Pb/238U Edad<br>(Ma) | ±2s      | 207Pb/235U Edad<br>(Ma) | ±2s  | 207Pb/206Pb Edad<br>(Ma) | ±2s |
|--------------|---------|-------------|------|-------------|--------|------------|--------|------------|--------|------------------------|-------------------------|----------|-------------------------|------|--------------------------|-----|
| GR_6765_25   | 91,5    | 16,82       | 0,2  | 0,0758      | 0,0076 | 0,2460     | 0,0250 | 0,0227     | 0,0010 | 0,4                    | 139,6                   | 6,9      | 231,0                   | 19,0 | 940                      | 190 |
| GR_6765_26   | 81,7    | 59,9        | 0,7  | 0,0725      | 0,0088 | 0,2880     | 0,0340 | 0,0275     | 0,0007 | 0,1                    | 169,9                   | 6,1      | 246,0                   | 26,0 | 780                      | 220 |
| GR_6765_27   | 163     | 132,4       | 0,8  | 0,0616      | 0,0055 | 0,2280     | 0,0200 | 0,0264     | 0,0006 | 0,1                    | 165,4                   | 5,5      | 205,0                   | 16,0 | 500                      | 160 |
| GR_6765_28   | 80,7    | 57,6        | 0,7  | 0,0574      | 0,0067 | 0,2210     | 0,0230 | 0,0271     | 0,0007 | 0,1                    | 170,9                   | 5,9      | 202,0                   | 19,0 | 430                      | 190 |
| GR_6765_29   | 21,1    | 11,99       | 0,6  | 0,1270      | 0,0520 | 0,3290     | 0,0870 | 0,0292     | 0,0014 | 0,0                    | 167,7                   | 15,1     | 234,0                   | 66,0 | -10                      | 890 |
| GR_6765_30   | 64,1    | 36,7        | 0,6  | 0,0910      | 0,0110 | 0,3290     | 0,0380 | 0,0269     | 0,0010 | 0,1                    | 162,3                   | 7,6      | 283,0                   | 27,0 | 970                      | 240 |
| GR_6765_31   | 56,9    | 52,6        | 0,9  | 0,0720      | 0,0120 | 0,2940     | 0,0470 | 0,0289     | 0,0010 | 0,1                    | 178,6                   | 7,8      | 252,0                   | 37,0 | 520                      | 290 |
| GR_6765_32   | 67,6    | 61,9        | 0,9  | 0,0571      | 0,0087 | 0,2620     | 0,0370 | 0,0335     | 0,0011 | 0,2                    | 210,6                   | 8,4      | 225,0                   | 30,0 | 280                      | 240 |
| GR_6765_33   | 45,5    | 53,8        | 1,2  | 0,1110      | 0,0160 | 0,4300     | 0,0610 | 0,0288     | 0,0011 | 0,1                    | 169,1                   | 8,5      | 350,0                   | 44,0 | 1240                     | 300 |
| GR_6765_34   | 49,5    | 62,2        | 1,3  | 0,1710      | 0,0160 | 0,7440     | 0,0690 | 0,0311     | 0,0011 | 0,2                    | 167,8                   | 8,1      | 554,0                   | 40,0 | 2410                     | 180 |
| GR_6765_35   | 110,4   | 94,1        | 0,9  | 0,0791      | 0,0070 | 0,3220     | 0,0280 | 0,0290     | 0,0007 | 0,2                    | 177,6                   | 6,2      | 277,0                   | 22,0 | 930                      | 190 |
| GR_6765_36   | 19,7    | 13,99       | 0,7  | 0,1120      | 0,0280 | 0,4300     | 0,1100 | 0,0324     | 0,0018 | 0,2                    | 189,8                   | 13,1     | 384,0                   | 80,0 | -30                      | 580 |
| GR_6765_37   | 276     | 203         | 0,7  | 0,0698      | 0,0069 | 0,2610     | 0,0200 | 0,0281     | 0,0007 | 0,1                    | 174,4                   | 6,1      | 233,0                   | 17,0 | 690                      | 180 |
| GR_6765_38   | 69,3    | 58,8        | 0,8  | 0,1390      | 0,0160 | 0,5360     | 0,0600 | 0,0307     | 0,0011 | 0,1                    | 173,4                   | 8,4      | 425,0                   | 40,0 | 1910                     | 230 |
| GR_6765_39   | 58,5    | 37,1        | 0,6  | 0,0673      | 0,0099 | 0,2750     | 0,0390 | 0,0297     | 0,0012 | 0,2                    | 184,6                   | 8,9      | 243,0                   | 32,0 | 640                      | 260 |
| GR_6765_40   | 194     | 169         | 0,9  | 0,0531      | 0,0059 | 0,2070     | 0,0210 | 0,0289     | 0,0007 | 0,1                    | 183,1                   | 6,2      | 195,0                   | 17,0 | 260                      | 170 |
| GR_6765_41   | 359     | 418         | 1,2  | 0,0661      | 0,0043 | 0,2630     | 0,0160 | 0,0295     | 0,0007 | 0,1                    | 183,4                   | 6,0      | 234,0                   | 12,0 | 700                      | 120 |
| GR_6765_42   | 0,058   | 0,05        | 0,9  | no value    | NAN    | no value   | NAN    | no value   | NAN    | NaN                    | #¡VALOR!                | ######## | no value                | NAN  | no value                 | NAN |
| GR_6765_43   | 33,7    | 29,34       | 0,9  | 0,1050      | 0,0190 | 0,4010     | 0,0670 | 0,0297     | 0,0013 | 0,1                    | 175,8                   | 9,3      | 347,0                   | 48,0 | 1260                     | 320 |
| GR_6765_44   | 38,9    | 26,3        | 0,7  | 0,0730      | 0,0150 | 0,3130     | 0,0620 | 0,0292     | 0,0010 | 0,2                    | 180,2                   | 8,1      | 232,0                   | 47,0 | 420                      | 340 |
| GR_6765_45   | 59,6    | 47,7        | 0,8  | 0,0720      | 0,0170 | 0,2730     | 0,0570 | 0,0275     | 0,0010 | 0,1                    | 170,0                   | 8,2      | 207,0                   | 38,0 | 210                      | 340 |
| GR_6765_46   | 33,8    | 33,1        | 1,0  | 0,1450      | 0,0520 | 0,3640     | 0,0830 | 0,0301     | 0,0015 | 0,1                    | 168,6                   | 15,2     | 336,0                   | 58,0 | -90                      | 620 |
| GR_6765_47   | 49,5    | 71,7        | 1,4  | 0,1070      | 0,0240 | 0,4010     | 0,0730 | 0,0262     | 0,0016 | 0,4                    | 154,8                   | 11,1     | 296,0                   | 55,0 | 760                      | 420 |
| GR_6765_48   | 55,8    | 47,2        | 0,8  | 0,0620      | 0,0140 | 0,2550     | 0,0510 | 0,0285     | 0,0011 | 0,1                    | 178,4                   | 8,7      | 251,0                   | 39,0 | 300                      | 350 |
| GR_6765_49   | 79      | 102         | 1,3  | 0,0630      | 0,0100 | 0,2430     | 0,0380 | 0,0291     | 0,0010 | 0,1                    | 181,9                   | 7,8      | 219,0                   | 29,0 | 350                      | 260 |
| GR_6765_50   | 96,6    | 109,8       | 1,1  | 0,0581      | 0,0092 | 0,2240     | 0,0330 | 0,0286     | 0,0009 | 0,1                    | 179,9                   | 7,2      | 209,0                   | 27,0 | 380                      | 240 |
| GR_6765_51   | 33      | 24          | 0,7  | 0,0710      | 0,0180 | 0,3150     | 0,0650 | 0,0316     | 0,0015 | 0,1                    | 195,4                   | 11,3     | 270,0                   | 53,0 | 320                      | 400 |
| GR_6765_52   | 221     | 141         | 0,6  | 0,0519      | 0,0040 | 0,2290     | 0,0170 | 0,0305     | 0,0008 | 0,2                    | 193,4                   | 6,4      | 207,0                   | 14,0 | 240                      | 140 |
| GR_6765_53   | 213     | 150,8       | 0,7  | 0,0534      | 0,0040 | 0,2040     | 0,0150 | 0,0280     | 0,0008 | 0,3                    | 177,1                   | 6,3      | 185,0                   | 13,0 | 290                      | 140 |
| GR_6765_54   | 58,2    | 35,6        | 0,6  | 0,1080      | 0,0170 | 0,4990     | 0,0750 | 0,0332     | 0,0016 | 0,1                    | 195,5                   | 11,4     | 394,0                   | 48,0 | 1330                     | 300 |

#### Muestra GR-6764A

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/<br>206Pb | ±2s    | 207Pb/<br>235U | ±2s    | 206Pb/<br>238U | ±2s    | Correlación<br>errores | 206Pb/238U<br>Edad (Ma) | ±2s  | 207Pb/235U<br>Edad (Ma) | ±2s  | 207Pb/206Pb<br>Edad (Ma) | ±2s |
|--------------|---------|-------------|------|-----------------|--------|----------------|--------|----------------|--------|------------------------|-------------------------|------|-------------------------|------|--------------------------|-----|
| GR_6764_A_01 | 105,5   | 70,6        | 0,7  | 0,0452          | 0,0052 | 0,1770         | 0,0200 | 0,0279         | 0,0007 | 0,1011                 | 178,6                   | 7,1  | 166,0                   | 17,0 | 0                        | 170 |
| GR_6764_A_02 | 218,8   | 111,3       | 0,5  | 0,0517          | 0,0033 | 0,1980         | 0,0120 | 0,0278         | 0,0005 | 0,0633                 | 176,6                   | 6,4  | 183,0                   | 10,0 | 240                      | 120 |
| GR_6764_A_03 | 287,0   | 124,4       | 0,4  | 0,0470          | 0,0028 | 0,1720         | 0,0100 | 0,0272         | 0,0004 | 0,1821                 | 173,6                   | 6,2  | 159,6                   | 8,7  | 60                       | 100 |
| GR_6764_A_04 | 46,7    | 20,6        | 0,4  | 0,0512          | 0,0085 | 0,1970         | 0,0320 | 0,0283         | 0,0009 | 0,1000                 | 179,6                   | 8,4  | 173,0                   | 27,0 | 80                       | 250 |
| GR_6764_A_05 | 118,2   | 43,5        | 0,4  | 0,0491          | 0,0045 | 0,2060         | 0,0180 | 0,0295         | 0,0006 | 0,0606                 | 187,6                   | 7,0  | 191,0                   | 15,0 | 170                      | 150 |
| GR_6764_A_06 | 32,4    | 13,9        | 0,4  | 0,1520          | 0,0170 | 0,6570         | 0,0740 | 0,0314         | 0,0012 | 0,4105                 | 174,1                   | 10,0 | 519,0                   | 45,0 | 2010                     | 240 |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/<br>206Pb | ±2s    | 207Pb/<br>235U | ±2s    | 206Pb/<br>238U | ±2s    | Correlación<br>errores | 206Pb/238U<br>Edad (Ma) | ±2s    | 207Pb/235U<br>Edad (Ma) | ±2s  | 207Pb/206Pb<br>Edad (Ma) | ±2s |
|--------------|---------|-------------|------|-----------------|--------|----------------|--------|----------------|--------|------------------------|-------------------------|--------|-------------------------|------|--------------------------|-----|
| GR_6764_A_07 | 68,4    | 39,9        | 0,6  | 0,0529          | 0,0059 | 0,2050         | 0,0230 | 0,0276         | 0,0007 | 0,0393                 | 174,6                   | 7,0    | 187,0                   | 19,0 | 220                      | 180 |
| GR_6764_A_08 | 30,5    | 8,6         | 0,3  | 0,0510          | 0,0100 | 0,2110         | 0,0390 | 0,0312         | 0,0011 | 0,0479                 | 197,8                   | 9,8    | 191,0                   | 35,0 | 160                      | 290 |
| GR_6764_A_09 | 41,2    | 20,6        | 0,5  | 0,0525          | 0,0094 | 0,2070         | 0,0360 | 0,0281         | 0,0008 | 0,1000                 | 177,8                   | 7,8    | 172,0                   | 31,0 | 40                       | 270 |
| GR_6764_A_10 | 67,0    | 38,6        | 0,6  | 0,0659          | 0,0083 | 0,2230         | 0,0280 | 0,0271         | 0,0007 | 0,0031                 | 169,0                   | 7,1    | 199,0                   | 23,0 | 520                      | 220 |
| GR_6764_A_11 | 78,8    | 42,1        | 0,5  | 0,0501          | 0,0072 | 0,1780         | 0,0260 | 0,0261         | 0,0007 | 0,0632                 | 166,1                   | 7,1    | 161,0                   | 22,0 | 0                        | 230 |
| GR_6764_A_12 | 99,4    | 90,7        | 0,9  | 0,0496          | 0,0059 | 0,1800         | 0,0220 | 0,0265         | 0,0007 | 0,0603                 | 168,7                   | 7,1    | 162,0                   | 19,0 | 50                       | 200 |
| GR_6764_A_13 | 64,6    | 37,8        | 0,6  | 0,0860          | 0,0110 | 0,3700         | 0,0480 | 0,0290         | 0,0008 | 0,2032                 | 175,9                   | 7,7    | 285,0                   | 34,0 | 910                      | 250 |
| GR_6764_A_14 | 151,1   | 146,4       | 1,0  | 0,0512          | 0,0046 | 0,2000         | 0,0180 | 0,0277         | 0,0006 | 0,0475                 | 175,8                   | 7,0    | 180,0                   | 15,0 | 200                      | 160 |
| GR_6764_A_15 | 287,8   | 309,0       | 1,1  | 0,0495          | 0,0026 | 0,1814         | 0,0094 | 0,0266         | 0,0003 | 0,1000                 | 169,3                   | 5,9    | 168,3                   | 8,0  | 180                      | 100 |
| GR_6764_A_16 | 37,1    | 33,8        | 0,9  | 0,0480          | 0,0120 | 0,1820         | 0,0440 | 0,0275         | 0,0009 | 0,0089                 | 175,4                   | 8,6    | 161,0                   | 37,0 | -30                      | 320 |
| GR_6764_A_17 | 163,0   | 133,0       | 0,8  | 0,0493          | 0,0035 | 0,1990         | 0,0140 | 0,0296         | 0,0005 | 0,0350                 | 188,4                   | 7,0    | 189,0                   | 12,0 | 190                      | 120 |
| GR_6764_A_18 | 81,3    | 63,5        | 0,8  | 0,0522          | 0,0055 | 0,1950         | 0,0200 | 0,0274         | 0,0005 | 0,0136                 | 173,4                   | 6,4    | 182,0                   | 17,0 | 260                      | 170 |
| GR_6764_A_19 | 43,1    | 44,2        | 1,0  | 0,0534          | 0,0067 | 0,2000         | 0,0260 | 0,0269         | 0,0006 | 0,1181                 | 170,0                   | 7,1    | 174,0                   | 21,0 | 260                      | 200 |
| GR_6764_A_20 | 44,3    | 31,5        | 0,7  | 0,0517          | 0,0072 | 0,1870         | 0,0260 | 0,0264         | 0,0006 | 0,0454                 | 167,6                   | 7,1    | 172,0                   | 22,0 | 130                      | 220 |
| GR_6764_A_21 | 57,8    | 66,8        | 1,2  | 0,0735          | 0,0064 | 0,2820         | 0,0230 | 0,0279         | 0,0006 | 0,1054                 | 172,1                   | 6,9    | 245,0                   | 19,0 | 910                      | 160 |
| GR_6764_A_22 | 138,9   | 221,0       | 1,6  | 0,0489          | 0,0033 | 0,1970         | 0,0140 | 0,0294         | 0,0005 | 0,1870                 | 187,3                   | 7,0    | 184,0                   | 11,0 | 170                      | 120 |
| GR_6764_A_23 | 84,5    | 150,9       | 1,8  | 0,0508          | 0,0048 | 0,1960         | 0,0180 | 0,0273         | 0,0005 | 0,1000                 | 173,4                   | 6,4    | 179,0                   | 15,0 | 170                      | 160 |
| GR_6764_A_24 | 49,2    | 35,6        | 0,7  | 0,0460          | 0,0064 | 0,1810         | 0,0240 | 0,0278         | 0,0007 | 0,1000                 | 177,7                   | 7,1    | 169,0                   | 20,0 | 120                      | 200 |
| GR_6764_A_25 | 77,9    | 61,9        | 0,8  | 0,0493          | 0,0064 | 0,1870         | 0,0240 | 0,0274         | 0,0007 | 0,0742                 | 174,4                   | 7,1    | 174,0                   | 21,0 | 130                      | 210 |
| GR_6764_A_26 | 198,5   | 184,3       | 0,9  | 0,0512          | 0,0034 | 0,1910         | 0,0130 | 0,0275         | 0,0005 | 0,1217                 | 174,3                   | 6,4    | 176,0                   | 11,0 | 230                      | 120 |
| GR_6764_A_27 | 298,0   | 74,5        | 0,3  | 0,0501          | 0,0031 | 0,2010         | 0,0120 | 0,0291         | 0,0004 | 0,0590                 | 185,0                   | 6,4    | 183,0                   | 10,0 | 210                      | 120 |
| GR_6764_A_28 | 0,0     | 0,0         | 0,3  | no value        | NAN    | no value       | NAN    | no value       | NAN    | NaN                    | #¡VALOR!                | ###### | no value                | NAN  | no value                 | NAN |
| GR_6764_A_29 | 0,0     | 0,0         | 1,3  | no value        | NAN    | no value       | NAN    | no value       | NAN    | NaN                    | #¡VALOR!                | ###### | no value                | NAN  | no value                 | NAN |
| GR_6764_A_30 | 0,0     | 0,0         | 0,7  | no value        | NAN    | no value       | NAN    | no value       | NAN    | NaN                    | #¡VALOR!                | ###### | no value                | NAN  | no value                 | NAN |
| GR_6764_A_31 | 134,6   | 27,9        | 0,2  | 0,0735          | 0,0021 | 1,6220         | 0,0480 | 0,1616         | 0,0023 | 0,3586                 | 963,2                   | 33,2   | 980,0                   | 19,0 | 1044                     | 57  |
| GR_6764_A_32 | 146,5   | 22,6        | 0,2  | 0,0721          | 0,0021 | 1,5860         | 0,0470 | 0,1571         | 0,0018 | 0,2466                 | 938,8                   | 31,5   | 966,0                   | 18,0 | 991                      | 61  |
| GR_6764_A_33 | 173,6   | 121,7       | 0,7  | 0,0537          | 0,0038 | 0,1930         | 0,0140 | 0,0255         | 0,0004 | 0,1271                 | 161,6                   | 6,0    | 180,0                   | 12,0 | 330                      | 130 |
| GR_6764_A_34 | 115,3   | 168,0       | 1,5  | 0,0635          | 0,0055 | 0,2480         | 0,0210 | 0,0286         | 0,0007 | 0,1605                 | 178,9                   | 7,6    | 220,0                   | 17,0 | 520                      | 170 |
| GR_6764_A_35 | 156,7   | 76,1        | 0,5  | 0,0416          | 0,0041 | 0,1560         | 0,0150 | 0,0267         | 0,0005 | 0,0245                 | 171,3                   | 6,4    | 145,0                   | 13,0 | -100                     | 150 |
| GR_6764_A_36 | 71,0    | 45,0        | 0,6  | 0,0496          | 0,0077 | 0,1800         | 0,0290 | 0,0268         | 0,0007 | 0,0390                 | 170,3                   | 7,2    | 159,0                   | 24,0 | 10                       | 240 |
| GR_6764_A_37 | 82,6    | 59,3        | 0,7  | 0,0437          | 0,0085 | 0,1680         | 0,0320 | 0,0273         | 0,0008 | 0,0005                 | 175,0                   | 7,9    | 140,0                   | 28,0 | -220                     | 270 |
| GR_6764_A_38 | 135,1   | 99,9        | 0,7  | 0,0547          | 0,0064 | 0,2140         | 0,0250 | 0,0278         | 0,0007 | 0,2165                 | 175,5                   | 7,7    | 189,0                   | 21,0 | 290                      | 200 |
| GR_6764_A_39 | 373,0   | 153,2       | 0,4  | 0,0525          | 0,0037 | 0,1920         | 0,0140 | 0,0261         | 0,0005 | 0,2799                 | 165,4                   | 6,2    | 177,0                   | 12,0 | 290                      | 130 |
| GR_6764_A_40 | 160,4   | 192,8       | 1,2  | 0,0501          | 0,0076 | 0,1730         | 0,0270 | 0,0270         | 0,0008 | 0,0531                 | 171,7                   | 7,8    | 158,0                   | 24,0 | 10                       | 230 |
| GR_6764_A_41 | 323,0   | 561,0       | 1,7  | 0,0497          | 0,0053 | 0,1860         | 0,0200 | 0,0273         | 0,0006 | 0,1000                 | 173,7                   | 7,0    | 169,0                   | 17,0 | 150                      | 180 |
| GR_6764_A_42 | 500,0   | 655,0       | 1,3  | 0,0499          | 0,0037 | 0,1930         | 0,0150 | 0,0281         | 0,0005 | 0,0764                 | 178,3                   | 6,4    | 177,0                   | 13,0 | 170                      | 130 |
| GR_6764_A_43 | 521,0   | 565,0       | 1,1  | 0,0510          | 0,0038 | 0,1900         | 0,0140 | 0,0269         | 0,0004 | 0,0306                 | 170,9                   | 6,2    | 175,0                   | 12,0 | 230                      | 130 |
| GR_6764_A_44 | 234,4   | 286,0       | 1,2  | 0,0482          | 0,0059 | 0,1710         | 0,0210 | 0,0270         | 0,0007 | 0,1093                 | 172,1                   | 7,1    | 165,0                   | 19,0 | 70                       | 190 |
| GR_6764_A_45 | 61,0    | 54,0        | 0,9  | 0,0480          | 0,0130 | 0,1670         | 0,0450 | 0,0261         | 0,0010 | 0,0487                 | 166,3                   | 8,6    | 132,0                   | 40,0 | -280                     | 360 |

| AnalysisName | U (ppm) | Th<br>(ppm) | Th/U | 207Pb/<br>206Pb | ±2s    | 207Pb/<br>235U | ±2s    | 206Pb/<br>238U | ±2s    | Correlación<br>errores | 206Pb/238U<br>Edad (Ma) | ±2s  | 207Pb/235U<br>Edad (Ma) | ±2s  | 207Pb/206Pb<br>Edad (Ma) | ±2s |
|--------------|---------|-------------|------|-----------------|--------|----------------|--------|----------------|--------|------------------------|-------------------------|------|-------------------------|------|--------------------------|-----|
| GR_6764_A_46 | 82,0    | 71,4        | 0,9  | 0,0434          | 0,0091 | 0,1610         | 0,0330 | 0,0265         | 0,0009 | 0,0051                 | 169,8                   | 7,9  | 145,0                   | 29,0 | -80                      | 270 |
| GR_6764_A_47 | 175,5   | 135,9       | 0,8  | 0,0484          | 0,0058 | 0,1800         | 0,0220 | 0,0274         | 0,0007 | 0,0599                 | 174,2                   | 7,1  | 166,0                   | 19,0 | 30                       | 190 |
| GR_6764_A_48 | 118,8   | 150,8       | 1,3  | 0,0418          | 0,0063 | 0,1710         | 0,0260 | 0,0274         | 0,0008 | 0,2516                 | 175,9                   | 7,8  | 150,0                   | 22,0 | -140                     | 220 |
| GR_6764_A_49 | 83,7    | 75,8        | 0,9  | 0,0409          | 0,0077 | 0,1630         | 0,0310 | 0,0274         | 0,0008 | 0,0332                 | 176,1                   | 7,8  | 144,0                   | 26,0 | -170                     | 260 |
| GR_6764_A_50 | 127,6   | 126,7       | 1,0  | 0,0522          | 0,0075 | 0,1960         | 0,0270 | 0,0269         | 0,0006 | 0,1000                 | 170,4                   | 7,1  | 183,0                   | 22,0 | 290                      | 220 |
| GR_6764_A_51 | 423,0   | 349,0       | 0,8  | 0,0501          | 0,0034 | 0,1910         | 0,0130 | 0,0268         | 0,0005 | 0,1316                 | 170,6                   | 6,2  | 178,0                   | 11,0 | 220                      | 120 |
| GR_6764_A_52 | 381,0   | 317,0       | 0,8  | 0,0531          | 0,0044 | 0,2100         | 0,0170 | 0,0283         | 0,0005 | 0,1320                 | 179,4                   | 6,4  | 192,0                   | 14,0 | 300                      | 150 |
| GR_6764_A_53 | 187,7   | 221,6       | 1,2  | 0,0466          | 0,0060 | 0,1750         | 0,0240 | 0,0283         | 0,0008 | 0,2423                 | 180,5                   | 7,7  | 159,0                   | 21,0 | -30                      | 200 |
| GR_6764_A_54 | 397,4   | 416,5       | 1,0  | 0,0764          | 0,0022 | 2,0190         | 0,0590 | 0,1902         | 0,0035 | 0,4048                 | 1123,3                  | 40,8 | 1117,0                  | 19,0 | 1106                     | 55  |
| GR_6764_A_55 | 671,0   | 688,0       | 1,0  | 0,0806          | 0,0018 | 2,1470         | 0,0510 | 0,1923         | 0,0038 | 0,5474                 | 1129,8                  | 41,8 | 1161,0                  | 17,0 | 1197                     | 43  |
| GR_6764_A_56 | 747,0   | ######      | 1,4  | 0,0475          | 0,0031 | 0,1790         | 0,0120 | 0,0272         | 0,0004 | 0,2054                 | 173,7                   | 6,3  | 166,0                   | 10,0 | 80                       | 120 |
| GR_6764_A_57 | 235,3   | 370,0       | 1,6  | 0,0550          | 0,0074 | 0,2030         | 0,0270 | 0,0273         | 0,0008 | 0,0698                 | 172,5                   | 7,7  | 179,0                   | 22,0 | 200                      | 220 |
| GR_6764_A_58 | 616,0   | ######      | 1,8  | 0,0481          | 0,0037 | 0,1880         | 0,0140 | 0,0283         | 0,0006 | 0,1479                 | 180,3                   | 7,0  | 174,0                   | 12,0 | 100                      | 130 |
| GR_6764_A_59 | 242,5   | 244,0       | 1,0  | 0,0488          | 0,0056 | 0,1900         | 0,0210 | 0,0283         | 0,0008 | 0,0482                 | 179,8                   | 7,7  | 177,0                   | 18,0 | 120                      | 190 |
| GR_6764_A_60 | 309,0   | 338,0       | 1,1  | 0,0743          | 0,0050 | 0,3010         | 0,0220 | 0,0295         | 0,0005 | 0,2627                 | 181,7                   | 6,9  | 269,0                   | 17,0 | 900                      | 140 |
| GR_6764_A_61 | 122,9   | 103,6       | 0,8  | 0,0522          | 0,0073 | 0,1900         | 0,0280 | 0,0264         | 0,0008 | 0,2116                 | 167,6                   | 7,7  | 173,0                   | 23,0 | 150                      | 220 |
| GR_6764_A_62 | 85,1    | 71,7        | 0,8  | 0,0438          | 0,0081 | 0,1700         | 0,0310 | 0,0271         | 0,0009 | 0,0297                 | 173,3                   | 7,8  | 146,0                   | 27,0 | -100                     | 260 |
| GR_6764_A_63 | 104,6   | 117,2       | 1,1  | 0,0517          | 0,0070 | 0,1890         | 0,0260 | 0,0273         | 0,0008 | 0,1259                 | 172,8                   | 7,7  | 164,0                   | 22,0 | 110                      | 220 |
| GR_6764_A_64 | 91,1    | 74,2        | 0,8  | 0,0477          | 0,0075 | 0,1730         | 0,0270 | 0,0275         | 0,0008 | 0,1000                 | 175,0                   | 7,8  | 159,0                   | 24,0 | 50                       | 240 |
| GR_6764_A_65 | 329,0   | 360,0       | 1,1  | 0,0546          | 0,0034 | 0,2040         | 0,0130 | 0,0273         | 0,0004 | 0,0564                 | 172,8                   | 6,2  | 188,0                   | 10,0 | 350                      | 120 |
| GR_6764_A_66 | 283,0   | 326,0       | 1,2  | 0,0460          | 0,0043 | 0,1870         | 0,0170 | 0,0293         | 0,0006 | 0,1508                 | 186,9                   | 7,0  | 174,0                   | 14,0 | 70                       | 140 |
| GR_6764_A_67 | 164,4   | 50,4        | 0,3  | 0,0735          | 0,0023 | 1,6090         | 0,0610 | 0,1579         | 0,0032 | 0,5534                 | 941,9                   | 34,9 | 971,0                   | 23,0 | 1025                     | 63  |
| GR_6764_A_68 | 343,8   | 98,9        | 0,3  | 0,0711          | 0,0017 | 1,5930         | 0,0400 | 0,1610         | 0,0024 | 0,4166                 | 962,4                   | 33,8 | 966,0                   | 16,0 | 945                      | 49  |
| GR_6764_A_69 | 312,0   | 251,0       | 0,8  | 0,0513          | 0,0033 | 0,2230         | 0,0140 | 0,0314         | 0,0005 | 0,0810                 | 199,3                   | 7,0  | 204,0                   | 11,0 | 250                      | 120 |
| GR_6764_A_70 | 421,0   | 673,0       | 1,6  | 0,0507          | 0,0035 | 0,2070         | 0,0150 | 0,0289         | 0,0007 | 0,1979                 | 183,4                   | 7,0  | 188,0                   | 13,0 | 270                      | 120 |
| GR_6764_A_71 | 630,0   | 743,0       | 1,2  | 0,0528          | 0,0030 | 0,2030         | 0,0110 | 0,0286         | 0,0004 | 0,0662                 | 180,8                   | 6,3  | 185,1                   | 9,6  | 270                      | 110 |
| GR_6764_A_72 | 309,0   | 288,0       | 0,9  | 0,0538          | 0,0049 | 0,1930         | 0,0170 | 0,0265         | 0,0005 | 0,0093                 | 167,9                   | 6,3  | 178,0                   | 14,0 | 260                      | 160 |